I. K. Matsak¹, A. M. Plichko², and A. S. Sheludenko¹ UDC 519.21 UDC 519.21

We study the conditions of weak convergence of the maximum of sums of independent random processes in the spaces $C[0, 1]$ and L_p and present examples of applications to the analysis of statistics of the type ω^2 .

1. Introduction

Let (ξ_n) be independent identically distributed random variables with $\mathbf{E}\xi_n = 0$ and $\mathbf{D}\xi_n = 1$. In 1946, Erdös and Kac [1] established that

$$
\lim_{n \to \infty} \mathbf{P} \{ \max(0, \xi_1, \xi_1 + \xi_2, \dots, \xi_1 + \xi_2 + \dots + \xi_n) < x\sqrt{n} \} = \sqrt{\frac{2}{\pi}} \int_0^x \exp(-t^2/2) dt. \tag{1}
$$

In addition, the following equality is true for the process of Brownian motion $W(t)$ in \mathbb{R} [2]:

$$
\mathbf{P}\left\{\sup_{0\leq t\leq 1}W(t)
$$

In fact, these relations already contain one of important ideas leading to the construction of the theory of weak convergence of measures in function spaces (see [3, 4]). Clearly, equalities of the form (1) were also considered in the vector case [5, 6]. In the present paper, we study the infinite-dimensional case.

Let $X = \{X(s), s \in [0,1]\}$ be a random process and let $\Gamma = \{\Gamma(s), s \in [0,1]\}$ be a normal random process defined in the probability space $(\Omega, \Sigma, \mathbf{P})$ with values in R and such that, for any $s, t \in [0, 1]$,

$$
\mathbf{E}X(s) = \mathbf{E}\Gamma(s) = 0 \quad \text{and} \quad \mathbf{E}X(s)X(t) = \mathbf{E}\Gamma(s)\Gamma(t) =: R(s,t). \tag{2}
$$

Consider a separable function Banach space $B = \{x = x(s), s \in [0, 1]\}$. We say that a random process *belongs to B almost surely* if its sample functions belong to *B* almost surely.

We assume that Γ belongs to *B* almost surely and introduce a random function of two variables

$$
W(s,t) = \sum_{n=1}^{\infty} \Gamma_n(s) F_n(t), \quad s, t \in [0,1],
$$
 (3)

¹ Shevchenko Kyiv National University, Kyiv, Ukraine.

 2 Kościuzko University of Technology, Kraków, Poland.

Translated from Ukrains'kyi Matematychnyi Zhurnal, Vol. 70, No. 4, pp. 506–518, April, 2018. Original article submitted September 29, 2016.

where (Γ_n) is a sequence of independent copies of the process Γ and $F_n(t)$ are peaked Faber–Schauder functions (they are integrals of the Haar functions $H_n(u)$ or, more exactly,

$$
F_n(t) = \int\limits_0^t H_{n-1}(u) \, du \big).
$$

It is known (see [7, p. 128; 8]) that series (3) converges both for any $s \in [0, 1]$ and with respect to the norm of the space *B* uniformly in $t \in [0, 1]$ almost surely (a.s.). Note that Levy [9] proposed this construction for the representation of the Brownian motion in $\mathbb R$ (see also [10]).

For any $s, t \in [0,1]$, $W(s, t)$ is a normally distributed random variable and, for fixed $t \in [0,1]$, $W(\cdot, t)$ is a normally distributed random element in B , i.e., $W(\cdot, t)$ is a normally distributed continuous homogeneous process with independent increments in *B.* This process is called a *process of Brownian motion (or a Wiener process) with values in B*. In the case where $B = \mathbb{R}^m$, this definition coincides with the classical definition [5, p. 65].

By (X_n) we denote a sequence of independent copies of the process X and set

$$
S_n(s) = \sum_{k=1}^n X_k(s)
$$
, $S_0 = 0$, $\overline{S}_n(s) = \max_{0 \le k \le n} S_k(s)$, $n \ge 1$.

The following lemma is true:

Lemma 1. Finite-dimensional distributions of the random process $\frac{S_n(s)}{\sqrt{n}}$ converge to finite-dimensional dis*tributions of the process*

$$
\overline{W}(s) = \max_{t \in [0,1]} W(s,t).
$$

This statement is a direct corollary of Lemma 3 in [8].

If the random processes $\overline{S}_n(s)$ and $\overline{W}(s)$ belong to the space *B* a.s., then it is quite natural to study the conditions under which weak convergence is realized in this space:

$$
\frac{\overline{S}_n(\cdot)}{\sqrt{n}} \stackrel{D}{\to} \overline{W}(\cdot) \tag{4}
$$

as $n \to \infty$.

In [8], this problem was studied for the spaces $B = L_p$. In the present paper, we consider the space $C[0, 1]$ and also weaken the conditions obtained in [8] for *Lp.*

2. Space *C*[0*,* 1]

This analyzed space consists of functions continuous on the segment [0*,* 1] with uniform norm. We introduce the notation:

$$
T_h = \left\{ (s, t) \in [0, 1]^2 : |s - t| \le h \right\}, \qquad h > 0,
$$

$$
d_p(s,t) = (\mathbf{E}|X(s) - X(t)|^p)^{\frac{1}{p}}, \quad s, t \in [0,1], \quad p \ge 2; \quad d_p(h) = \sup_{T_h} d_p(s,t).
$$

Theorem 1. *If separable random processes X and* Γ *satisfy condition* (2) *and, for some* $p \geq 2$ *,*

$$
\sum_{n=1}^{\infty} 2^{\frac{n}{p}} d_p(2^{-n}) < \infty,\tag{5}
$$

then X, Γ *, and* \overline{W} *belong to* $C[0, 1]$ *a.s. and the weak convergence* (4) *is realized in* $C[0, 1]$ *.*

Remark 1. For the validity of the conditions of Theorem 1, it is sufficient that the well-known Kolmogorov condition (see [3, pp. 235–237])

$$
\mathbf{E}|X(s) - X(s+h)|^p \le K \cdot h^r, \qquad r > 1, \quad p \ge 2,
$$

be satisfied. Indeed, by using the definition and the Kolmogorov condition, we immediately obtain

$$
d_p(2^{-n}) = \sup_{T_{2^{-n}}} \left(\mathbf{E} |X(s) - X(t)|^p \right)^{\frac{1}{p}} \leq K^{\frac{1}{p}} 2^{-\frac{rn}{p}}.
$$

It is clear that, for $r > 1$, this estimate guarantees convergence of series (5).

Note that, in the investigation of continuity of the random processes, the Kolmogorov condition is considered in the cases $p > 0$ or $p > 1$. However, in Theorem 1, it is necessary to set $p \ge 2$.

Proof of Theorem 1. It is well known that condition (5) guarantees the a.s. continuity of sample functions of a separable process *X* [11].

It is also clear that condition (5) yields the estimate

$$
d_2(s, s+h) \le d_p(s, s+h) \le C \cdot h^{\frac{1}{p}}.
$$

By using this estimate and (2), we get

$$
\mathbf{E}|\Gamma(s) - \Gamma(s+h)|^2 = R(s,s) - 2R(s,s+h) + R(s+h,s+h)
$$

= $d_2^2(s,s+h) \le C \cdot h^{\frac{2}{p}}$.

This inequality guarantees continuity of sample functions from the separable normal process Γ [12, p. 192].

We now show that, under the conditions of Theorem 1, the random process $\overline{W}(s)$ also belongs to $C[0, 1]$ a.s. To this end, we set

$$
W_n(s,t) = \sum_{k=1}^n \Gamma_k(s) F_k(t), \quad n \in \mathbb{N}.
$$

By using the elementary number inequality

$$
\left|\max_{1\leq k\leq n} a_k - \max_{1\leq k\leq n} b_k\right| \leq \max_{1\leq k\leq n} |a_k - b_k| \tag{6}
$$

and the triangle inequality, we get

$$
\sup_{|s-s'|
$$

where

$$
D_1 = \sup_{s,t \in [0,1]} |W(s,t) - W_n(s,t)|,
$$

$$
D_2 = \sup_{|s-s'|\leq h, t \in [0,1]} |W_n(s,t) - W_n(s',t)|.
$$

As shown above, Γ*ⁿ* belongs to the space *C*[0*,* 1] a.s. and, hence, series (3) uniformly converges with respect to *t* in the norm of *C*[0*,* 1]. Thus, for any $\varepsilon > 0$, there exists $n = n(\varepsilon, \omega)$ such that

$$
D_1 < \varepsilon. \tag{8}
$$

For chosen *n*, the function $W_n(s,t)$ is uniformly continuous on $[0,1]^2$. Hence, there exists $h = h(n,\varepsilon,\omega)$ such that

$$
D_2 < \varepsilon. \tag{9}
$$

Since ε is arbitrary, estimates (7)–(9) mean that $\overline{W}(s)$ belong to $C[0, 1]$ a.s.

We now proceed to the proof of the weak convergence (4). According to the results obtained in [3, pp. 482– 483], in order that this convergence occur in the space $C[0, 1]$, it is necessary and sufficient that the following conditions be satisfied:

- (i) finite-dimensional distributions of the processes $\frac{S_n(s)}{\sqrt{n}}$ converge to finite-dimensional distributions of the process $\overline{W}(s)$;
- (ii) for any $\varepsilon > 0$,

$$
\limsup_{n \to \infty} \mathbf{P} \left\{ \sup_{T_h} \frac{1}{\sqrt{n}} |\overline{S}_n(s) - \overline{S}_n(t)| > \varepsilon \right\} \to 0 \quad \text{as} \quad h \to 0. \tag{10}
$$

The first condition directly follows from Lemma 1. Therefore, we focus our attention on the proof of the second condition. To simplify calculations, we set

$$
Y_n(s,t) = \frac{|S_n(s) - S_n(t)|}{\sqrt{n}}
$$

and first show that

$$
\limsup_{n \to \infty} \mathbf{E} \sup_{T_h} Y_n(s, t) \to 0 \quad \text{as} \quad h \to 0. \tag{11}
$$

By using the estimates from [11] (Theorem 1A), we prove a more exact result

$$
\mathbf{E} \sup_{T_h} Y_n(s, t) \le C_p \sum_{2^{-m} < h} \left| 2^{\frac{m}{p}} d_p(2^{-m}) \right| . \tag{12}
$$

Here and in what follows, the constant *C^p* depends only on *p* and is not necessarily the same in different relations.

By using condition (5) and inequality (12), we immediately obtain equality (11).

We set

$$
J=\left\{k2^{-m}\colon m>1,\; 0\leq k\leq 2^m\right\}
$$

and

$$
\alpha_{nm} = \sup_{1 \le k \le 2^m} Y_n \left(k2^{-m}, \, [k-1]2^{-m} \right).
$$

As shown in [11], for any $s, s' \in J$, $|s - s'| < h$,

$$
Y_n(s, s') \le 2 \sum_{2^{-m} < h} \alpha_{nm} \qquad \text{a.s.} \tag{13}
$$

Since the inequality

$$
\alpha_{nm}^p \le \sum_{k=1}^{2^m} \left| Y_n(k2^{-m}, \, [k-1]2^{-m}) \right|^p
$$

is true, by using estimate (13), we get

$$
\mathbf{E} \sup_{|s-s'|\n(14)
$$

To estimate the terms in sum (14), we need the following lemma:

Lemma 2 [13]. Suppose that $\xi_1, \xi_2, \ldots, \xi_n$ are independent random variables, $\mathbf{E}\xi_i = 0$, and $2 \leq p < \infty$. *Then*

$$
\mathbf{E}\left|\sum_{i=1}^n\xi_i\right|^p\leq C_p\left(\sum_{i=1}^n\mathbf{E}|\xi_i|^p+\left(\sum_{i=1}^n\mathbf{E}|\xi_i|^2\right)^{\frac{p}{2}}\right).
$$

By using Lemma 2, we get

$$
\mathbf{E}\left|Y_n\left(k2^{-m},\,[k-1]2^{-m}\right)\right|^p = \mathbf{E}\left|\frac{1}{\sqrt{n}}S_n(k2^{-m}) - \frac{1}{\sqrt{n}}S_n([k-1]2^{-m})\right|^p
$$

$$
\leq C_p\left(n^{1-\frac{p}{2}}\mathbf{E}|X(k2^{-m}) - X\left([k-1]2^{-m}\right)|^p\right)
$$

+
$$
(\mathbf{E}|X(k2^{-m}) - X([k-1]2^{-m})|^2)^{\frac{p}{2}}
$$

\n $\leq C_p \mathbf{E}|X(k2^{-m}) - X([k-1]2^{-m})|^p$. (15)

It is easy to see that

$$
\sum_{k=1}^{2^m} \mathbf{E} \left| X(k2^{-m}) - X([k-1]2^{-m}) \right|^p
$$

$$
\leq 2^m \sup_{T_{2^{-m}}} \mathbf{E} \left| X(s) - X(t) \right|^p = 2^m \left| d_p(2^{-m}) \right|^p. \tag{16}
$$

Combining estimates (14) – (16) , we find

$$
\mathbf{E} \sup_{|s-s'|
$$

Since the process $S_n(t)$ is continuous, inequality (12) is a direct corollary of inequality (17).

We now prove the implication (11) \Rightarrow (10). To this end, we use inequality (6). We get

$$
\mathbf{P}\left\{\sup_{T_h}\left|\max_{1\leq k\leq n} S_k(s) - \max_{1\leq k\leq n} S_k(t)\right| > \varepsilon\right\}
$$
\n
$$
\leq \mathbf{P}\left\{\sup_{T_h}\max_{1\leq k\leq n}|S_k(s) - S_k(t)| > \varepsilon\right\}
$$
\n
$$
= \mathbf{P}\left\{\max_{1\leq k\leq n}\sup_{T_h}|S_k(s) - S_k(t)| > \varepsilon\right\}.\tag{18}
$$

Further, by $C(T_h)$ we denote a Banach space of continuous functions $x(s,t)$, $(s,t) \in T_h$, with uniform norm. Consider random functions

$$
X'_n(s,t) = X_n(s) - X_n(t)
$$

as elements of the space $C(T_h)$, $\mathbf{E} X'_n(s,t) = 0$, $S'_n(s,t) = \sum_{k=1}^n X'_k(s,t)$. Let

$$
\eta_n = \|S'_n\|_{C(T_h)}.
$$

Then the sequence (η_n) forms a submartingale. Indeed, for $k < n$, we get

$$
\mathbf{E}_k \eta_n = \mathbf{E}_k ||S'_n||_{C(T_h)} \ge ||\mathbf{E}_k S'_n||_{C(T_h)} = ||S'_k||_{C(T_h)} = \eta_k.
$$

Here, $\mathbf{E}_k \eta$ denotes the conditional expectation of the random variable η for fixed random functions $X_i'(t, s)$, $i = \overline{1,k}.$

The submartingale η_k satisfies the inequality [3, p. 78]

$$
\mathbf{P}\left\{\max_{1\leq k\leq n}\eta_k^+\geq\varepsilon\right\}\leq\frac{1}{\varepsilon}\mathbf{E}\eta_n^+.
$$

In addition, it is clear that

$$
\eta_k = \sup_{T_h} \left| S_k(s) - S_k(t) \right|.
$$

Hence,

$$
\mathbf{P}\left\{\max_{1\leq k\leq n}\sup_{T_h}|S_k(s)-S_k(t)|>\varepsilon\right\}\leq \frac{1}{\varepsilon}\mathbf{E}\left\{\sup_{T_h}|S_n(s)-S_n(t)|\right\}.
$$

By using this result and relations (11) and (18), we obtain (10).

3. Space *L^p*

Consider the space $([0,1], \Lambda, \mu)$, where Λ is a σ -algebra of Borel sets for the segment $[0,1]$ and μ is the Lebesgue measure. By $L_p = L_p[0,1], 1 \leq p < \infty$, we denote a Banach space of (classes of) measurable functions $x(t)$ in the space $([0, 1], \Lambda, \mu)$ with the norm

$$
||x||_p = \left(\int_0^1 |x(t)|^p \mu(dt)\right)^{1/p}.
$$

To obtain relation (4), the following conditions were imposed in [8] on the random process $X(s)$ in the space L_p by using the notation $p^* = 2$ for $p < 2$ and $p^* = p$ for $p \ge 2$:

$$
\sup_{0\leq s\leq 1} \mathbf{E}|X(s)|^{p^*} < \infty
$$

and

$$
\exists \, \varepsilon > 0: \ \mathbf{E}|X(s)|^{p+\varepsilon} < \infty \quad \forall s \in [0,1].
$$

According to the next theorem, these conditions can be replaced by a weaker condition. We set

$$
\mathfrak{S}_p = (\sigma_p(s), s \in [0, 1]), \qquad \sigma_p(s) = |\mathbf{E}|X(s)|^p|^{1/p}.
$$

Theorem 2. *If the measurable random processes X and* Γ *satisfy condition (2) and the inequality*

$$
\|\mathfrak{S}_{p^*}\|_{p^*} = \left(\int_0^1 \sigma_{p^*}^{p^*}(s)ds\right)^{1/p^*} < \infty
$$
 (19)

is true, then X , Γ *, and* \overline{W} *belong to* L_p *a.s. and the weak convergence* (4) *in* L_p *is realized.*

Proof. First, we assume that $p \ge 2$. Then $p^* = p$. By the Fubini theorem, (19) implies that

$$
\int\limits_{0}^{1} |X(s)|^p ds < \infty \quad \text{a.s.}
$$

This means that X belongs to L_p a.s. and, moreover, we can assume that it is a random element in L_p [3, pp. 390– 392]. It follows from the inequality [8]

$$
\left(\mathbf{E}|\Gamma(s)|^p\right)^{\frac{1}{p}} \le C_p \left(\mathbf{E}|X(s)|^p\right)^{\frac{1}{p}}
$$

that the random process Γ also belongs to L_p a.s. Under the conditions of the theorem, the random processes Γ_n are measurable. Hence, $\overline{W}(s)$ is also measurable. In addition, for fixed *s*, we have

$$
W(s,t) \stackrel{D}{=} \sigma_2(s) \sum_{n=1}^{\infty} \gamma_n F_n(t),
$$

where (γ_n) is a sequence of normal independent random variables, $\mathbf{E}\gamma_n=0$, $\mathbf{D}\gamma_n=1$, and the notation $\xi \stackrel{D}{=} \eta$ means that the distributions of the random variables ξ and η coincide.

Then

$$
\overline{W}(s) \stackrel{D}{=} \sigma_2(s)|\gamma_1|
$$

and, hence,

$$
\mathbf{E}\left|\overline{W}(s)\right|^p = C_p \sigma_2^p(s) \le C_p \sigma_p^p(s).
$$

By using the last estimate and (19), we conclude that the random process $\overline{W}(s)$ belongs to L_p a.s.

Further, we use the well-known result from [14] (Theorem 7 and the remark made after this theorem).

Let $Z_n = \{Z_n(s), s \in [0,1]\}$ $n \ge 1$, and $Z = \{Z(s), s \in [0,1]\}$ be measurable random processes. Then the following conditions are sufficient for the weak convergence $Z_n \stackrel{D}{\to} Z$ as $n \to \infty$ in L_p :

- (i) the finite-dimensional distributions of the random processes Z_n converge to the finite-dimensional distributions of *Z*;
- (ii) for any $\varepsilon > 0$,

$$
\limsup_{n\to\infty} \mathbf{P}\left\{\int\limits_0^1 |Z_n(s)|^p I(|Z_n(s)| > L) ds > \varepsilon\right\} \to 0 \quad \text{as} \quad L \to \infty.
$$

Here and in what follows, by *I*(*A*) we denote the indicator of the random event *A.*

By Lemma 1, condition (i) is satisfied. Hence, it remains to check condition (ii). Let

$$
Y_n(s) = \frac{\overline{S}_n(s)}{\sqrt{n}}.\tag{20}
$$

By the Markov inequality, for the validity of condition (ii), it suffices to show that

$$
\limsup_{n \to \infty} \int_{0}^{1} \mathbf{E} |Y_n(s)|^p I(|Y_n(s)| > L) ds \to 0 \quad \text{as} \quad L \to \infty.
$$
 (21)

Since the sequence $(|S_n(s)|)$ forms a positive submartingale with respect to *n* (see [3, p. 78]), for $p > 1$, we find

$$
\mathbf{E}\left|\frac{\overline{S}_n(s)}{\sqrt{n}}\right|^p \le \left(\frac{p}{p-1}\right)^p \mathbf{E}\left(\frac{|S_n(s)|}{\sqrt{n}}\right)^p.
$$
 (22)

By using Lemma 2 once again, we obtain

$$
\mathbf{E}\left|\frac{S_n(s)}{\sqrt{n}}\right|^p \le C_p \left[n^{1-\frac{p}{2}} \mathbf{E}|X(s)|^p + \left(\mathbf{E}|X(s)|^2\right)^{\frac{p}{2}}\right] \le C_p |\sigma_p(s)|^p. \tag{23}
$$

Thus, relations (19) , (20) and (22) , (23) show that the function

$$
m_p(s) = \sup_{n \ge 1} \left(\mathbf{E} |Y_n(s)|^p \right)^{\frac{1}{p}} \in L_p.
$$

It is clear that the integrand in (21) does not exceed $|m_p(s)|^p$ for any $s \in [0,1]$. If we show that, for every $s \in [0, 1]$,

$$
\sup_{n\geq 1} \mathbf{E}|Y_n(s)|^p I(|Y_n(s)| > L) \to 0 \quad \text{as} \quad L \to \infty,
$$
\n(24)

then, by the Lebesgue theorem on the convergence of integrals, we arrive at equality (21).

We now formulate a lemma required to prove relation (24) .

Lemma 3. *Suppose that* (ξ_i) *are independent identically distributed random variables and, for some* $p \geq 2$ *,*

$$
\mathbf{E}\xi_n^2 = \sigma^2, \qquad \mathbf{E}\xi_i = 0, \qquad \mathbf{E}|\xi_i|^p < \infty,\tag{25}
$$

$$
\mathfrak{s}_n = \sum_{i=1}^n \xi_i
$$
, and $\overline{\mathfrak{s}}_n = \max_{1 \leq k \leq n} \mathfrak{s}_k$.

Then

$$
\sup_{n\geq 1} \mathbf{E} \left| \frac{\overline{\mathfrak{s}}_n}{\sqrt{n}} \right|^p I\left(\left| \frac{\overline{\mathfrak{s}}_n}{\sqrt{n}} \right| > L \right) \to 0 \quad \text{as} \quad L \to \infty.
$$

Prior to proving Lemma 3, we present two auxiliary lemmas.

Lemma 4 ([15, p. 68], Theorem 12). *Under the conditions of Lemma 3, for any* $x > 0$,

$$
\mathbf{P}\left\{\max_{1\leq k\leq n}\frac{1}{\sqrt{n}}|\mathfrak{s}_k|>x\right\}\leq 2\mathbf{P}\left\{\frac{1}{\sqrt{n}}|\mathfrak{s}_n|>x-\sqrt{2\sigma^2}\right\}.
$$

Lemma 5. *Suppose that nonnegative random variables* ξ *and* ζ *satisfy the following conditions (a.s.):*

- *(i)* $\mathbf{E}\xi^p < \infty$ and $\mathbf{E}\zeta^p < \infty$ for some $p \geq 1$;
- *(ii) there exist positive constants b and C such that*

$$
\mathbf{P}(\zeta > x) \le C \mathbf{P}(\xi > x - b) \quad \forall x > 0.
$$

Then there exist constants C_1 *and* C_2 *such that, for any* $L > b$,

$$
\mathbf{E}\zeta^{p}I(\zeta>L)\leq C_{1}\mathbf{E}\xi^{p}I(\xi>L-b)+C_{2}\mathbf{P}(\xi>L-b),\tag{26}
$$

where the constants C_1 *and* C_2 *depend only on* p *, b, and* C *.*

Proof of Lemma 5. We have

$$
\begin{aligned} \mathbf{E}\zeta^p I(\zeta > L) &= \int_L^\infty x^p \, d\mathbf{P}(\zeta < x) \\ &= -\int_L^\infty x^p \, d\mathbf{P}(\zeta > x) \\ &= L^p \mathbf{P}(\zeta > L) + \int_L^\infty \mathbf{P}(\zeta > x) \, dx^p \\ &\leq C(L^p \mathbf{P}(\xi > L - b) + \int_L^\infty \mathbf{P}(\xi > x - b) \, dx^p). \end{aligned} \tag{27}
$$

By using the number inequality

$$
L^p \le 2^{p-1} \big[(L-b)^p + b^p \big],
$$

we get the following estimate for the first term in (27):

$$
L^{p}\mathbf{P}(\xi > L - b) \leq C_{1}|L - b|^{p}\mathbf{P}(\xi > L - b) + C_{2}\mathbf{P}(\xi > L - b)
$$

$$
\leq C_{1} \int_{L - b}^{\infty} x^{p} d\mathbf{P}(\xi < x) + C_{2}\mathbf{P}(\xi > L - b).
$$
 (28)

We now estimate the second term in (27) by the quantity

$$
x^p \mathbf{P}(\xi > x - b)|_L^{\infty} + \int\limits_L^{\infty} x^p \, d\mathbf{P}(\xi < x - b)
$$

$$
\leq \int_{L-b}^{\infty} (y+b)^p d\mathbf{P}(\xi < y)
$$

\n
$$
\leq C_1 \int_{L-b}^{\infty} y^p d\mathbf{P}(\xi < y) + C_2 \mathbf{P}(\xi > L-b).
$$
 (29)

Since

$$
\mathbf{E}\xi^p I(\xi > L - b) = \int_{L-b}^{\infty} x^p d\mathbf{P}(\xi < x),
$$

we obtain estimate (26) from (27)–(29).

Proof of Lemma 3. Choosing

$$
\xi = \frac{\mathfrak{s}_n}{\sqrt{n}} \quad \text{and} \quad \zeta = \frac{\overline{\mathfrak{s}}_n}{\sqrt{n}},
$$

in view of Lemmas 4 and 5, we find

$$
\mathbf{E} \left| \frac{\bar{\mathfrak{s}}_n}{\sqrt{n}} \right|^p I\left(\frac{|\bar{\mathfrak{s}}_n|}{\sqrt{n}} > L\right) \le C_1 \mathbf{E} \left| \frac{\mathfrak{s}_n}{\sqrt{n}} \right|^p I\left(\frac{|\mathfrak{s}_n|}{\sqrt{n}} > L - \sqrt{2\sigma^2}\right) + C_2 \mathbf{P} \left(\frac{|\mathfrak{s}_n|}{\sqrt{n}} > L - \sqrt{2\sigma^2}\right). \tag{30}
$$

It is known [15, p. 130] that, under condition (25),

$$
\frac{|\mathfrak{s}_n|}{\sqrt{n}} \stackrel{D}{\to} |\gamma_1|\sigma \tag{31}
$$

and

$$
\mathbf{E}\left|\frac{\mathfrak{s}_n}{\sqrt{n}}\right|^p \to \mathbf{E}|\gamma_1|^p \sigma^p \quad \text{as} \quad n \to \infty.
$$

By using the last relation, we get (see [4, p. 51], Theorem 5.4)

$$
\sup_{n} \mathbf{E} \left| \frac{\mathfrak{s}_n}{\sqrt{n}} \right|^p I\left(\left| \frac{\mathfrak{s}_n}{\sqrt{n}} \right| > L \right) \to 0 \quad \text{as} \quad L \to \infty,
$$

whence, in view of (30), (31), we get the assertion of Lemma 3.

Hence, we have proved Theorem 2 for $p \geq 2$.

The case $p < 2$ is reduced to the case $p = 2$ considered above. Indeed, in this case, $p^* = 2$ and the condition

$$
\int\limits_0^1 \sigma_2^2(s)\,ds < \infty
$$

is satisfied. Thus, the random processes *X*, Γ , and \overline{W} belong to L_2 a.s. and, hence, definitely belong to L_p a.s.

As shown above, for $p = 2$, condition (20) is satisfied. Then it is also satisfied for $p < 2$. Theorem 2 is proved.

Theorem 2 yields the following corollary:

Corollary 1. Suppose that $p \geq 2$ *is a Banach function space* $B \supset L_p$ *and*

 $||x||_B \le ||x||_{L_p} \quad \forall x \in B.$

If measurable random processes X and Γ *satisfy condition (2) and the inequality*

$$
\|\mathfrak{S}_p\|_p<\infty
$$

is true, then X , Γ *, and* \overline{W} *belong to* B *a.s. and the weak convergence* (4) takes place in B *.*

We introduce integral functionals of the form

$$
f(x(\cdot)) = \int_{0}^{1} \varphi(s, x(s)) ds,
$$

where $\varphi(s, y)$ is a continuous function of two variables such that

$$
\sup_{s\in[0,1]}\varphi(s,y)=O\big(|y|^p\big).
$$

For these functionals, we obtain the following corollary from Theorem 2 and [14]:

Corollary 2. If measurable random processes X and Γ *satisfy conditions (2) and (21), then the following weak convergence takes place:*

$$
f\left(\frac{S_n(\cdot)}{\sqrt{n}}\right) \stackrel{D}{\to} f(\overline{W}(\cdot)) \quad \text{as} \quad n \to \infty.
$$

Remark 2. Under the conditions of Theorem 1, we consider the random processes

$$
S_n^*(s) = \max_{0 \le k \le n} |S_k(s)| \quad \text{as} \quad W^*(s) = \sup_{0 \le t \le 1} |W(t, s)|.
$$

It follows from the results presented in [8] that the finite-dimensional distributions of the process $\frac{S_n^*(s)}{\sqrt{n}}$ $\frac{n}{\sqrt{n}}$ converge to the finite-dimensional distributions of the random process $W^*(s)$.

The analysis of the proof of Theorem 1 shows that it also enables us (without any significant changes) to establish the weak convergence in $C[0, 1]$:

$$
\frac{S_n^*(\cdot)}{\sqrt{n}} \xrightarrow{D} W^*(\cdot). \tag{32}
$$

Similar conclusions are true for the space L_p . More exactly, if the conditions of Theorem 2 are satisfied, then relation (32) is true in L_p .

4. Examples of Applications

It is clear that, for the application of Theorems 1 and 2, it is necessary to know the distributions of the corresponding limit random variables. Unfortunately, the problem of determination of these distributions is very complicated.

For the space L_p , we denote

$$
\zeta_p = \int_0^1 \left| \sup_{0 \le t \le 1} W(t, s) \right|^p ds,
$$

$$
\mathfrak{S} = \{ \sigma(s), \ s \in [0, 1] \}, \qquad \sigma(s) = \sigma_2(s), \quad s \in [0, 1].
$$

The following auxiliary statement gives simple estimates for the first two moments of the quantity ζ_p :

Lemma 6. *Under the conditions of Theorem 2,*

$$
\mathbf{E}\zeta_p=\|\mathfrak{S}\|_p^p\cdot\Theta_p,
$$

$$
\mathbf{D}\zeta_p\leq \|\mathfrak{S}\|_{2p}^{2p}\cdot\Theta_{2p}-\|\mathfrak{S}\|_p^{2p}\cdot\Theta_p^2,
$$

where

$$
\Theta_p = \sqrt{\frac{2^p}{\pi}} \,\Gamma\left(\frac{p+1}{2}\right). \tag{33}
$$

Moreover,

$$
\Theta_{2k}=1\cdot 3\cdot 5\cdot \ldots\cdot (2k-1),
$$

Γ(*s*) *is the gamma-function.*

Proof. As shown above,

$$
\overline{W}(s) \stackrel{d}{=} \sigma(s)|\gamma|,\tag{34}
$$

where γ is a standard normal random variable, $\mathbf{E}\gamma = 0$, and $\mathbf{E}\gamma^2 = 1$. It is known [12, p. 32] that, for $p \ge 1$, we have

$$
\mathbf{E}|\gamma|^p = \Theta_p,\tag{35}
$$

where Θ_p is given by equality (33).

By using (34) and (35), we get

$$
\mathbf{E}\zeta_p = \int\limits_0^1 \mathbf{E} |\overline{W}(s)|^p \, ds = \Theta_p \int\limits_0^1 |\sigma(s)|^p \, ds = \Theta_p ||\mathfrak{S}||_p^p. \tag{36}
$$

Further, we obtain

$$
\mathbf{E}\zeta_p^2\leq \int\limits_0^1\mathbf{E}|\overline{W}(s)|^{2p}\,ds=\|\mathfrak{S}\|_{2p}^{2p}\cdot\Theta_{2p}.
$$

By using this result and (36), we immediately arrive at the estimate for the variance $D\xi_p$.

Let (u_i) be independent identically distributed random variables with the distribution function $F(x) = x$, $x \in [0, 1]$, i.e., u_i are uniformly distributed on [0,1]. By

$$
F_n^*(s) = \frac{1}{n} \sum_{n=1}^n I(u_i \in [0, s]), \quad s \in \mathbb{R},
$$

we denote an empirical distribution function of the random variables u_i , $i = \overline{1, n}$.

By analogy with the classical statistics ω_n^2 and Ω_n^2 , we consider their modifications:

$$
n^{p/2} \omega_n^p = \int_0^1 \left| \frac{\sup_{1 \le k \le n} k(F_k^*(s) - s)}{\sqrt{n}} \right|^p ds,
$$

$$
n^{p/2} \Omega_n^p = \int_0^1 \left| \frac{\sup_{1 \le k \le n} k(F_k^*(s) - s)}{\sqrt{n}} \right|^p (s(1 - s))^{-1} ds.
$$

By $W_0(s)$, $s \in [0, 1]$, we denote the normal random process for which

$$
\mathbf{E}W_0(s) = 0,
$$

$$
\mathbf{E}W_0(s_1)W_0(s_2) = \min(s_1, s_2) - s_1 s_2.
$$

This process is called a *Brownian bridge*. Assume that, in representation (3), for the process $W(t, s)$, we have $\Gamma_n \stackrel{d}{=} W_0$ and

$$
\overline{W}(s) = \sup_{0 \le t \le 1} W(t, s).
$$

Then Theorem 2 yields the following corollary:

Corollary 3. As $n \to \infty$

$$
n^{p/2}\omega_n^p \stackrel{D}{\rightarrow} \zeta_p[1] = \int_0^1 |\overline{W}(s)|^p ds,
$$
\n(37)

$$
n^{p/2} \Omega_n^p \xrightarrow{D} \zeta_p \left[\frac{1}{s(1-s)} \right] = \int_0^1 \frac{|\overline{W}(s)|^p}{s(1-s)} ds. \tag{38}
$$

Proof. We set

$$
X_i(s) = I(u_i \in (0, s)) - s.
$$

Then

 $\mathbf{E}X_i(s)=0,$

$$
\mathbf{E}X_i(s_1)X_i(s_2) = R(s_1, s_2) = \min(s_1, s_2) - s_1s_2,
$$

i.e., the correlation functions of the processes $X_i(s)$ and $W_0(s)$ coincide. In order to use Theorem 2, it remains to check condition (21). Thus, we have

$$
|\sigma_p(s)|^p = \mathbf{E}|X_i(s)|^p = (1-s)s[(1-s)^{p-1} + s^{p-1}] \le 1.
$$
 (39)

The last estimate means that condition (21) is satisfied and, hence, (37) is true.

Relation (38) is proved in a similar way. It is necessary to choose

$$
X_i(s) = \frac{I(u_i \in (0, s)) - s}{|s(1 - s)|^{1/p}} \quad \text{and} \quad \Gamma_n(s) \stackrel{d}{=} \frac{W_0(s)}{|s(1 - s)|^{1/p}}.
$$

As a result of simple calculations, we conclude that

$$
|\sigma_p(s)|^p = |1 - s|^{p-1} + s^{p-1}, \qquad \int_0^1 |\sigma_p(s)|^p = \frac{2}{p}.
$$
 (40)

Hence, conditions (2) and (21) are satisfied. This yields (38).

Further, by using Lemma 6, we establish the estimates for the first moments of the limit variables (37) and (38) for $p = 2$.

For $\zeta_2[1]$ *,* we find

$$
\mathfrak{S}^2(s) = (\sigma_2(s))^2 = s - s^2,
$$

$$
\mathbf{E}\zeta_2[1] = \int_0^1 \sigma^2(s) \, ds = \int_0^1 (s - s^2) \, ds = \frac{1}{6},
$$
\n
$$
\mathbf{D}\zeta_2[1] \le \Theta_4 \|\mathfrak{S}\|_4^4 - \|\mathfrak{S}\|_2^4 \Theta_2^2 = 3 \int_0^1 |\sigma(s)|^4 \, ds - \left[\int_0^1 |\sigma(s)| \, ds\right]^2 = \frac{13}{180}.
$$

By using equalities (40), for ζ_2 $\begin{bmatrix} 1 \end{bmatrix}$ *s*(1 *− s*) 1 *,* we obtain

$$
\mathbf{E}\,\zeta_2\bigg[\frac{1}{s(1-s)}\bigg] = 1,
$$

$$
\mathbf{D}\,\zeta_2\bigg[\frac{1}{s(1-s)}\bigg] \leq 2.
$$

REFERENCES

- 1. E. Erdös and M. Kac, "On certain limit theorems in the theory of probability," *Bull. Amer. Math. Soc.*, **52**, 292–302 (1946).
- 2. P. Bachelier, "Theorie de la speculation," *Ann. Ecol. Norm.*, 17, 21–86 (1900).
- 3. I. I. Gikhman and A. V. Skorokhod, *Theory of Random Processes* [in Russian], Vol. 1, Nauka, Moscow (1971).
- 4. P. Billingsley, *Convergence of Probability Measures* [Russian translation], Nauka, Moscow (1977).
- 5. A. V. Skorokhod and N. P. Slobodenyuk, *Limit Theorems for Random Walks* [in Russian], Naukova Dumka, Kiev (1970).
- 6. V. Paulauskas, "On the distribution of maximum for the consecutive sums of independent identically distributed random vectors," *Liet. Mat. Rink.*, 13, No. 2, 133–138 (1973).
- 7. J. Lamperti, *Probability* [Russian translation], Nauka, Moscow (1973).
- 8. I. K. Matsak, "On some limit theorems for the maximum of sums of independent random processes," *Ukr. Mat. Zh.*, 60, No. 12, 1664–1674 (2008); *English translation: Ukr. Math. J.*, 60, No. 12, 1955–1967 (2008).
- 9. P. Levy, *Processus Stochastiques et Mouvement Brownien*, Gauthier-Villars, Paris (1937).
- 10. Z. Ciesielsky, "Hölder condition for realizations of Gaussian processes," *Trans. Amer. Math. Soc.*, 99, 403–413 (1961).
- 11. I. K. Matsak, "Regularity of sampling distribution functions of a random process," *Ukr. Mat. Zh.*, 30, No. 2, 242–247 (1978); *English translation: Ukr. Math. J.*, 30, No. 2, 186–190 (1978).
- 12. H. Cramer and M. R. Leadbetter, *Stationary and Related Stochastic Processes* [Russian translation], Mir, Moscow (1969).
- 13. H. P. Rosenthal, "On the subspaces of *L^p* (*p >* 2) spanned by sequences of independent random variables," *Isr. J. Math.*, 8, No. 3, 273–303 (1970).
- 14. A. A. Borovkov and E. A. Pecherskii, "Convergence of the distributions of integral functionals," *Sib. Mat. Zh.*, 16, No. 5, 899–915 (1975).
- 15. V. V. Petrov, *Sums of Independent Random Variables* [in Russian], Nauka, Moscow (1972).