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ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS OF ORDINARY SECOND-ORDER
DIFFERENTIAL EQUATIONS WITH RAPIDLY VARYING NONLINEARITIES

V. M. Evtukhov and A. G. Chernikova UDC 517.925

We establish conditions for the existence of one class of solutions of two-term nonautonomous second-
order differential equations with rapidly varying nonlinearities and obtain the asymptotic representations
for these solutions and their first-order derivatives as t " ! (!  +1 ).

1. Introduction

Consider a differential equation

y00 = ↵0p(t)'(y), (1.1)

where ↵0 2 {−1, 1}, p : [a,![ −! ]0,+1[ is a continuous function, −1 < a < !  +1, and

' : ∆
Y0 −! ]0,+1[

is a twice continuously differentiable function such that

'0
(y) 6= 0 for y 2 ∆

Y0 , lim

y!Y0
y2∆Y0

'(y) =

8
<

:
either 0,

or +1,
lim

y!Y0
y2∆Y0

'(y)'00
(y)

'02
(y)

= 1, (1.2)

where Y0 is equal either to zero or to ±1 and ∆

Y0 is one-sided neighborhood of Y0.
It follows from the identity

'00
(y)'(y)

'02
(y)

=

✓
'0
(y)

'(y)

◆0

✓
'0
(y)

'(y)

◆2 + 1 for y 2 ∆

Y0

and conditions (1.2) that

'0
(y)

'(y)
⇠ '00

(y)

'0
(y)

as y ! Y0 (y 2 ∆

Y0) and lim

y!Y0
y2∆Y0

y'0
(y)

'(y)
= ±1. (1.3)

Hence, in the considered equation, the function ' and its first-order derivative are rapidly varying as y ! Y0 (see
[1, pp. 91, 92], Chap. 3, Sec. 3.4, Lemmas 3.2 and 3.3).
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Under conditions (1.2), the asymptotic behavior of solutions of the differential equation (1.1) was investigated
in the monograph [1, pp. 90–99] (Chap. 3, Sec. 3.4) in a special case where ↵0 = 1, ! = +1, Y0 = 0, and p is
a regularly varying function as t ! +1. In the general case, this problem was investigated in [2]. However, the
class of solutions studied in [2] was expressed via a function ', which is not natural. Indeed, it is more natural to
study for Eq. (1.1) the same class of solutions as earlier (see, e.g., [3]) in the case of a function ' regularly varying
as y ! Y0 .

Definition 1.1. A solution y of the differential equation (1.1) is called a P
!

(Y0,λ0)-solution, where −1 
λ0  +1, if it is defined on the interval [t0,![ ⇢ [a,![ and satisfies the conditions

y(t) 2 ∆

Y0 for t 2 [t0,![,

lim

t"!
y(t) = Y0, lim

t"!
y0(t) =

8
<

:
either 0,

or ±1,
lim

t"!

y02(t)

y00(t)y(t)
= λ0.

The aim of the present paper is to establish necessary and sufficient conditions for the existence of P
!

(Y0,λ0)-
solutions of Eq. (1.1) in the nonsingular case where λ0 2 R \ {0, 1}, as well as the asymptotic representations for
these solutions and their first-order derivatives as t " !.

2. Some Auxiliary Statements

We first recall a series of important properties of a class of twice continuously differentiable functions

f : ∆
Y0 −! R \ {0},

where Y0 is equal either to zero or to ±1 and ∆

Y0 is a one-sided neighborhood of Y0, each of which satisfies the
conditions

f 0
(y) 6= 0 for y 2 ∆

Y0 , lim

y!Y0
y2∆Y0

f(y) =

8
<

:
either 0,

or ±1,
lim

y!Y0
y2∆Y0

f(y)f 00
(y)

f 02
(y)

= 1. (2.1)

In what follows, without loss of generality, we assume that

∆

Y0 =

8
<

:
[y0, Y0[ if ∆

Y0 is a left neighborhood of Y0,

]Y0, y0] if ∆

Y0 is a right neighborhood of Y0,
(2.2)

where y0 2 R is such that |y0| < 1 for Y0 = 0 and y0 > 1 (y0 < −1) for Y0 = +1 (for Y0 = −1).
In addition to the asymptotic relations (1.3) with ' replaced by f, these functions satisfy the following asser-

tion:

Lemma 2.1. If a twice continuously differentiable function f : ∆
Y0 −! R \ {0}, where Y0 is equal either

to zero or to ±1 and ∆

Y0 is a one-sided neighborhood of Y0, satisfies conditions (2.1), then

lim

y!Y0
y2∆Y0

f2
(y)

f 0
(y)

Z
y

Y

f(x) dx

= 1, lim

y!Y0
y2∆Y0

Z
y

Y

f(x) dx

�2

f(y)

Z
y

Y

✓Z
x

Y

f(u) du

◆
dx

= 1, (2.3)
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where

Y =

8
><

>:

y0 for lim y!Y0
y2∆Y0

f(y) = +1,

Y0 for lim y!Y0
y2∆Y0

f(y) = 0.

Proof. By virtue of the asymptotic relations (1.3) with ' replaced by f and the choice of the limit of
integration Y, each integral in (2.3) tends either to zero or to ±1 as y ! Y0.

In view of this fact, we first prove the validity of the first limit relation in (2.3). We set

z(y) =
f2

(y)

f 0
(y)

Z
y

Y

f(x) dx

. (2.4)

Then

z0(y) =
2f(y)Z
y

Y

f(x) dx

− f2
(y)f 00

(y)

f 02
(y)
R
y

Y

f(x) dx
− f3

(y)

f 0
(y)
⇥R

y

Y

f(x) dx
⇤2

=

f(y)R
y

Y

f(x) dx


2− f 00

(y)f(y)

f 02
(y)

− z(y)

�
,

i.e., function (2.4) is a solution of the differential equation

z0 =
f(y)Z

y

Y

f(x) dx


2− f 00

(y)f(y)

f 02
(y)

− z

�
. (2.5)

We now write the following function corresponding to this equation:

F (y, c) =
f(y)Z

y

Y

f(x) dx


2− f 00

(y)f(y)

f 02
(y)

− c

�
.

By virtue of conditions (2.1), for any real c 6= 1, this function preserves sign in a certain neighborhood of Y0
contained in ∆

Y0 . Thus, by Lemma 2.1 in [3], for any solution of the differential equation (2.5) defined in a neigh-
borhood of Y0 contained in ∆

Y0 and, hence, also for function (2.4), there exists the limit (finite or equal to ±1)
as y ! Y0. We now show that this limit is equal to one. Assume the contrary. Then

either lim

y!Y0
y2∆Y0

z(y) = c = const 6= 1 or lim

y!Y0
y2∆Y0

z(y) = ±1.

In the first case, in view of (2.1), it follows from (2.5) that

z0(y) =
f(y)Z

y

Y

f(x) dx

[1− c+ o(1)] as y ! Y0.
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Integrating this relation from y1 to y, where y1 is an arbitrary interior point of the segment with endpoints y0

and Y0 and taking into account that
Z

y

Y

f(x) dx tends either to zero or to ±1 as y ! Y0 and c 6= 1, we obtain

z(y)− z(y1) = [1− c+ o(1)] ln

������

yZ

Y

f(x) dx

������
−! ±1 as y ! Y0.

However, this is impossible because the expression on the left-hand side has a finite limit as y ! Y0.

We now assume that

lim

y!Y0
y2∆Y0

z(y) = ±1.

In this case, in view of (2.4), we rewrite the expression for z0(y) in the form

z0(y) =
f 0
(y)

f(y)
z(y)


2− f 00

(y)f(y)

f 02
(y)

− z(y)

�
.

In view of the last condition in (2.1) and our assumption, we get

z0(y) = −f 0
(y)

f(y)
z2(y)

⇥
1 + o(1)

⇤
as y ! Y0.

Since f(y) tends either to zero or to +1 as y ! Y0, we can divide both sides of this relation by z2(y) and then
integrate from y1 to y. This yields

− 1

z(y)
+

1

z(y1)
=

⇥
1 + o(1)

⇤
ln f(y) −! ±1 as y ! Y0.

Hence, we arrive at a contradiction because the limit of the expression on the left-hand side as y ! Y0 is equal to

a constant
1

z(y1)
.

In view of the contradictions obtained in the analyzed two cases, we conclude that

lim

y!Y0
y2∆Y0

z(y) = 1

and, hence, the first limit relation in (2.3) is true.
Similarly, by using the already established first limit in (2.3), we prove the second limit.
The lemma is proved.

By virtue of this lemma and Theorem 3.10.8 in [5, p. 178], a twice continuously differentiable function

f : ∆
Y0 −! ]0,+1[

satisfying conditions (2.1) belongs, for Y0 = +1 and under the condition lim

y!+1 f(y) = +1, to the class of
functions Γ introduced by Hahn (see, e.g., [5, p. 175]).
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Definition 2.1. The class Γ is formed by measurable nondecreasing and right-continuous functions

f : [y0,+1[ −! ]0,+1[

for each of which there exists a measurable function g : [y0,+1[ −! ]0,+1[ complementary for the function f

such that

lim

y!+1

f (y + ug(y))

f(y)
= eu for any u 2 R.

The functions from the class Γ satisfy, in particular, the following assertions (see [5, pp. 174–178]):

Lemma 2.2.

1. If f 2 Γ with a complementary function g, then

lim

y!+1

g(y)

y
= 0.

2. If f 2 Γ with a complementary function g, then, for any function u : [y0,+1[ −! R satisfying the
conditions

lim

y!+1
u(y) = u0 2 [−1,+1], lim

y!+1
f(y + u(y)g(y)] = +1,

the limit relation

lim

y!+1

f (y + u(y)g(y))

f(y)
= eu0

is true.

3. For f 2 Γ, the complementary function is unique to within functions equivalent as y ! +1 and, e.g.,

the function

Z
y

y0

f(x) dx

f(y)
can be chosen as one of these functions.

4. The conditions f 2 Γ and

lim

y!+1

Z
y

y0

f(x) dx

�2

f(y)

Z
y

y0

✓Z
x

y0

f(u) du

◆
dx

= 1

are equivalent, i.e., the first condition implies the second condition, and vice versa.

By the change of variables, the class Γ can be easily extended to a class Γ
Y0(Z0) of functions

f : ∆
Y0 −! ]0,+1[,

where Y0 is equal either to zero or to ±1 and ∆

Y0 is a one-sided neighborhood of Y0 for which

lim

y!Y0
y2∆Y0

f(y) = Z0 =

8
<

:
either 0,

or +1.
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Definition 2.2. We say that a function f : ∆
Y0 −! ]0,+1[ belongs to the class of functions Γ

Y0(Z0) if the
following functions belong to the class Γ :

(1) the function f0(y) =
1

f(y)
for Y0 = +1 and Z0 = 0 ;

(2) the function f0(y) = f(−y) for Y0 = −1 and Z0 = +1 ;

(3) the function f0(y) = f

✓
1

y

◆
for Y0 = 0 in the case where ∆

Y0 is a right neighborhood of zero

and Z0 = +1 ;

(4) the function f0(y) =
1

f

✓
1

y

◆ for Y0 = 0 in the case where ∆

Y0 is a right neighborhood of zero

and Z0 = 0 ;

(5) the function f0(y) = f

✓
−1

y

◆
for Y0 = 0 in the case where ∆

Y0 is a left neighborhood of zero

and Z0 = +1 ;

(6) the function f0(y) =
1

f

✓
−1

y

◆ for Y0 = 0 in the case where ∆

Y0 is a left neighborhood of zero

and Z0 = 0 ;

(7) the function f0(y) ⌘ f(y) for Y0 = +1 and Z0 = +1.

By using these two definitions and the first two assertions of Lemma 2.2, we conclude that the function
f 2 Γ

Y0(Z0) satisfies the limit relation

lim

y!Y0
y2∆Y0

f(y + ug(y))

f(y)
= eu for any u 2 R, (2.6)

where, in each case (1)–(7), the function g complementary for f can be expressed via the function g0 comple-
mentary for f0 as follows:

(1) g(y) = −g0(y);

(2) g(y) = −g0(−y);

(3) g(y) = −y2g0

✓
1

y

◆
;

(4) g(y) = y2g0

✓
1

y

◆
;

(5) g(y) = y2g0

✓
−1

y

◆
;

(6) g(y) = −y2g0

✓
−1

y

◆
;

(7) g(y) = g0(y).
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Here, by virtue of the third assertion in Lemma 2.2, every function g0 : [x0,+1[ −! ]0,+1[ is uniquely defined
to within functions equivalent as x ! +1. As one of these functions, we can take, e.g., the function

xZ

x0

f0(s) ds

f0(x)
.

By using the first two assertions of Lemma 2.2, we arrive at the following lemma:

Lemma 2.3.

1. If f 2 Γ

Y0(Z0) with a complementary function g, then

lim

y!Y0
y2∆Y0

g(y)

y
= 0.

2. If f 2 Γ

Y0(Z0) with a complementary function g, then, for any function u : ∆
Y0 −! R satisfying the

conditions

lim

y!Y0
y2∆Y0

u(y) = u0 2 R, lim

y!Y0
y2∆Y0

f(y + u(y)g(y)] = Z0,

the limit relation

lim

y!Y0
y2∆Y0

f (y + u(y)g(y))

f(y)
= eu0

is true.

If f 2 Γ

Y0(Z0) is a function with complementary function g and, in addition, it is continuous and strictly
monotone, then there exists a continuous strictly monotone inverse function f−1 : ∆

Z0 −! ∆

Y0 such that

∆

Z0 =

8
<

:
either [z0, Z0[,

or ]Z0, z0],
z0 = f(y0), Z0 = lim

y!Y0
y2∆Y0

f(y).

By virtue of Theorems 3.1.16 and 3.10.4 in [5, pp. 139, 176] and Definition 2.2, this inverse function has the
following properties:

Lemma 2.4. Suppose that f 2 Γ

Y0(Z0) is a function with complementary function g continuous and strictly
monotone on the segment ∆

Y0 . Then its inverse function f−1
(z) slowly varies as z ! Z0 and satisfies the limit

relation

lim

z!Z0
z2∆Z0

f−1
(λz)− f(z)

g(f−1
(z))

= lnλ for any λ > 0.

Moreover, for any ⇤ > 1, this limit relation is uniformly true in λ 2

1

⇤

,⇤

�
.
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Finally, we consider the case where the function f : ∆
Y0 −! ]0,+1[ is twice continuously differentiable and

satisfies conditions (2.1). In this case, any function f0 : [x0,+1[ −! ]0,+1[, where x0 is a positive number,
indicated in Definition 2.2 satisfies the conditions

f 0
0(x) 6= 0 for x 2 [x0,+1[, lim

x!+1
f0(x) = +1, lim

x!+1

f0(x)f
00
0 (x)

f 02
0 (x)

= 1.

By virtue of these conditions, Lemma 2.1, and the third and fourth assertions of Lemma 2.2, we get the
following statement:

Lemma 2.5. If a twice continuously differentiable function f : ∆
Y0 −! ]0,+1[ satisfies conditions (2.1),

then this function belongs to the class Γ

Y0(Z0) together with the complementary function g : ∆
Y0 −! R, which

is uniquely defined to within the equivalence of functions as y ! Y0. As this function, one can take, e.g., one of
the functions

Z
y

Y

✓Z
t

Y

f(u) du

◆
dt

Z
y

Y

f(x) dx

⇠

Z
y

Y

f(x) dx

f(y)
⇠ f(y)

f 0
(y)

⇠ f 0
(y)

f 00
(y)

as y ! Y0,

where the limit of integration Y is the same as in (2.2).

Remark 2.1. Lemmas 2.3–2.5 belong to the case where the function f : ∆
Y0 −! ]0,+1[ (i.e., takes positive

values). We say that the function f : ∆
Y0 −! ]−1, 0[ belongs to the class Γ

Y0(Z0) if (−f) 2 Γ

Y0(−Z0). Then
it is easy to see that Lemmas 2.3–2.5 remain true for this function.

In what follows, in addition to the above-mentioned properties of twice continuously differentiable functions
f : ∆

Y0 −! R \ {0} satisfying conditions (2.1), we also need one more auxiliary statement about the a priori
asymptotic properties of the P

!

(Y0,λ0)-solutions of the differential equation (1.1), which follows from Corol-
lary 10.1 in [6].

Lemma 2.6. If λ0 2 R \ {0; 1}, then, for any P
!

(Y0,λ0)-solution of the differential equation (1.1), the fol-
lowing asymptotic relations are true:

⇡
!

(t)y0(t)

y(t)
=

λ0

λ0 − 1

⇥
1 + o(1)

⇤
,

⇡
!

(t)y00(t)

y0(t)
=

1 + o(1)

λ0 − 1

as t " !, (2.7)

where

⇡
!

(t) =

8
<

:
t for ! = +1,

t− ! for ! < +1.
(2.8)

3. Main Results

First, we introduce the notation necessary in what follows. Assume that the domain of definition of the
function ' in Eq. (1.1) is given by relation (2.2). Further, we set

µ0 = sign'0
(y), ⌫0 = sign y0, ⌫1 =

8
<

:
1 for ∆

Y0 = [y0, Y0[,

−1 for ∆

Y0 = ]Y0, y0],
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and introduce a function

J(t) =

tZ

A

⇡
!

(⌧)p(⌧) d⌧, Φ(y) =

yZ

B

ds

'(s)
,

where ⇡
!

is given by relation (2.8),

A =

8
>>><

>>>:

! for
Z

!

a

⇡
!

(⌧)p(⌧) d⌧ = const,

a for
Z

!

a

⇡
!

(⌧)p(⌧) d⌧ = ±1,

B =

8
>>>><

>>>>:

Y0 for
Z

Y0

y0

ds

'(s)
= const,

y0 for
Z

Y0

y0

ds

'(s)
= ±1.

In view of the definition of a P
!

(Y0,λ0)-solution of the differential equation (1.1), we note that the numbers
⌫0, ⌫1, and ↵0 determine the signs of any P

!

(Y0,λ0)-solution and its first and second derivatives, respectively,
in a left neighborhood of !. In this case, it is clear that the conditions

⌫0⌫1 < 0 for Y0 = 0, ⌫0⌫1 > 0 for Y0 = ±1, (3.1)

and

⌫1↵0 < 0 for lim

t"!
y0(t) = 0, ⌫1↵0 > 0 for lim

t"!
y0(t) = ±1, (3.2)

are necessary for the existence of these solutions. Moreover, according to Lemma 2.6, for λ0 2 R\{0; 1}, we find

⌫0⌫1 = sign[ λ0(λ0 − 1)⇡
!

(t)], ⌫1↵0 = sign[(λ0 − 1)⇡
!

(t)] for t 2 [a,![. (3.3)

In particular, this yields

↵0⌫0λ0 > 0. (3.4)

We now mention some properties of the function Φ. It preserves sign on the segment ∆
y0 , tends either to zero

or to ±1 as y ! Y0, and is increasing on ∆

Y0 because

Φ

0
(y) =

1

'(y)
> 0

in this segment. Therefore, this function possesses the inverse function

Φ

−1 : ∆
Z0 −! ∆

Y0 ,

where, by virtue of the second condition in (1.2) and the fact that Φ−1 monotonically increases,

Z0 = lim

y!Y0
y2∆Y0

Φ(y) =

8
><

>:

either 0,

or +1,

∆

Z0 =

8
><

>:

[z0, Z0[ for ∆

Y0 = [y0, Y0[,

]Z0, z0] for ∆

Y0 = ]Y0, y0],

z0 = '(y0). (3.5)
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By virtue of the L’Hospital rule in the Stolz form and the last condition in (1.2), we find

lim

y!Y0
y2∆Y0

Φ(y)
1

'0
(y)

= lim

y!Y0
y2∆Y0

1

'(y)

− '00
(y)

'02
(y)

= − lim

y!Y0
y2∆Y0

'02
(y)

'00
(y)'(y)

= −1.

Hence,

Φ(y) ⇠ − 1

'0
(y)

as y ! Y0 and signΦ(y) = −µ0 for y 2 ∆

Y0 . (3.6)

By using the first relation, we get

Φ

0
(y)

Φ(y)
=

1

'(y)

Φ(y)
⇠ −'0

(y)

'(y)
,

Φ

00
(y)Φ(y)

Φ

02
(y)

=

− '0
(y)

'2
(y)

Φ(y)

1

'2
(y)

⇠ 1 as y ! Y0. (3.7)

Therefore, according to Lemma 2.5, Φ 2 Γ

Y0(Z0) with complementary function. As this function, we can
take one of the following equivalent functions:

Φ

0
(y)

Φ

00
(y)

⇠ Φ(y)

Φ

0
(y)

⇠ − '(y)

'0
(y)

as y ! Y0. (3.8)

In addition to the notation introduced above, we also consider auxiliary functions

q(t) =
↵0(λ0 − 1)⇡2

!

(t)'
�
Φ

−1
(↵0(λ0 − 1)J(t))

�

Φ

−1
(↵0(λ0 − 1)J(t))

,

H(t) =
Φ

−1
(↵0(λ0 − 1)J(t))'0�

Φ

−1
(↵0(λ0 − 1)J(t))

�

'(Φ−1
(↵0(λ0 − 1)J(t)))

.

The following statement is true for Eq. (1.1):

Theorem 3.1. Suppose that λ0 2 R\{0; 1}. Then, for the existence of P
!

(Y0,λ0)-solutions of the differential
equation (1.1), it is necessary that, parallel with (3.4), the following conditions be satisfied:

↵0µ0(λ0 − 1)J(t) < 0 for t 2]a,![, (3.9)

↵0(λ0 − 1) lim

t"!
J(t) = Z0, lim

t"!

⇡
!

(t)J 0
(t)

J(t)
= ±1, lim

t"!
q(t) =

λ0

λ0 − 1

. (3.10)

Moreover, each of these solutions admits the asymptotic representations

y(t) = Φ

−1
�
↵0(λ0 − 1)J(t)

�
1 +

o(1)

H(t)

�
as t " !, (3.11)
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y0(t) =
λ0

λ0 − 1

Φ

−1
�
↵0(λ0 − 1)J(t)

�

⇡
!

(t)

⇥
1 + o(1)

⇤
as t " !. (3.12)

Theorem 3.2. Suppose that λ0 2 R \ {0; 1} and, parallel with (3.4), (3.9), and (3.10), the following finite
(or equal to ±1) limit exists:

lim

y!Y0
y2∆Y0

✓
'0
(y)

'(y)

◆0

✓
'0
(y)

'(y)

◆2

s����
y'0

(y)

'(y)

����. (3.13)

Then the following assertions are true:

(1) If

(λ0 − 1)J(t) < 0 for t 2 ]a,![ and lim

t"!


λ0

λ0 − 1

− q(t)

�
|H(t)|1/2 = 0, (3.14)

then there exists a one-parameter family of P
!

(Y0,λ0)-solutions of the differential equation (1.1) with
representations (3.12) and (3.13) such that their derivative satisfies the asymptotic relation

y0(t) =
λ0

λ0 − 1

Φ

−1
(↵0(λ0 − 1)J(t))

⇡
!

(t)

h
1 + |H(t)|−1/2o(1)

i
as t " !. (3.15)

(2) If

(λ0 − 1)J(t) > 0 for t 2 ]a,![,

lim

t"!


λ0

λ0 − 1

− q(t)

�
|H(t)|1/2

0

@
tZ

t0

|H(⌧)|1/2 d⌧
⇡
!

(⌧)

1

A
2

= 0,

(3.16)

and

lim

t"!

Z
t

t0

|H(⌧)|1/2 d⌧
⇡
!

(⌧)

|H(t)|1/2
= 0,

lim

t"!
|H(t)|1/2

0

@
tZ

t0

|H(⌧)|1/2 d⌧
⇡
!

(⌧)

1

A

✓
y'0

(y)

'(y)

◆0

✓
y'0

(y)

'(y)

◆2

���������
y=Φ−1(↵0(λ0−1)J(t))

= 0,

(3.17)

where t0 is a number from the interval [a,![, then, for !=+1, Eq. (1.1) possesses a single P
!

(Y0,λ0)-
solution admitting the asymptotic representations

y(t) = Φ

−1
�
↵0(λ0 − 1)J(t)

�
2

641 +

0

@H(t)

tZ

t0

|H(⌧)|1/2 d⌧
⇡
!

(⌧)

1

A
−1

o(1)

3

75 as t " !, (3.18)
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y0(t) =
λ0

λ0 − 1

Φ

−1
(↵0(λ0 − 1)J(t))

⇡
!

(t)

2

641 +

0

@
tZ

t0

|H(⌧)|1/2 d⌧
⇡
!

(⌧)

1

A
−1

o(1)

3

75 as t " ! (3.19)

and, for ! < +1, the analyzed equation possesses a two-parameter family of P
!

(Y0,λ0)-solutions with
the indicated representations.

Proof of Theorem 3.1. Let y : [t0,![ −! R be an arbitrary P
!

(Y0,λ0)-solution of the differential equa-
tion (1.1). Then, by Lemma 2.6, the asymptotic relations (2.7) are true. By virtue of these relations and Eq. (1.1),
this solution and its first and second derivatives preserve signs on a certain interval [t1,![ ⇢ [t0,![. Moreover,
equalities (3.2) are true for these signs and imply condition (3.4). In addition, it follows from Eq. (1.1) and the
second asymptotic relation in (2.7) that

y0(t)

'(y(t))
= ↵0(λ0 − 1)⇡

!

(t)p(t)
⇥
1 + o(1)

⇤
as t " !. (3.20)

Integrating this relation from t0 to t, we obtain

y(t)Z

y(t0)

ds

'(s)
= ↵0(λ0 − 1)

tZ

t0

⇡
!

(⌧)p(⌧)
⇥
1 + o(1)

⇤
d⌧ as t " !.

Since, according to the definition of a P
!

(Y0,λ0)-solution, we have y(t) −! Y0 as t " !, the improper
integrals

Y0Z

y(t0)

ds

'(s)
and

!Z

t0

⇡
!

(⌧)p(⌧) d⌧

are simultaneously convergent or divergent. In view of this fact and the rule used to choose the limits of integration
A and B in the functions J and Φ introduced at the beginning of this section, the relation established above can
be rewritten in the form

Φ(y(t)) = ↵0(λ0 − 1)J(t)
⇥
1 + o(1)

⇤
as t " !. (3.21)

Thus, in view of the second condition in (3.6), we conclude that inequality (3.9) is true and the first condition in
(3.10) is satisfied. By virtue of the first condition in (3.6), the relation

y0(t)'0
(y(t))

'(y(t))
= −⇡

!

(t)p(t)

J(t)

⇥
1 + o(1)

⇤
as t " !

follows from (3.20) and (3.21). By using the first asymptotic relation in (2.7), we obtain

y(t)'0
(y(t))

'(y(t))
= −(λ0 − 1)⇡

!

(t)p(t)

λ0J(t)

⇥
1 + o(1)

⇤
as t " !.

By virtue of (1.3) and the definition of P
!

(Y0,λ0)-solution, this relation directly implies the second limit condition
in (3.10).
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Thus, by using (3.21), we get

y(t) = Φ

−1
�
↵0(λ− 1)J(t)

⇥
1 + o(1)

⇤�
as t " !. (3.22)

As shown above, the function Φ belongs to the class Γ
Y0(Z0), where

Z0 = lim y!Y0
y2∆Y0

Φ(y),

and its complementary function can be chosen in the form

g(y) = − '(y)

'0
(y)

.

Hence, by virtue of the conditions

↵0(λ0 − 1) lim

t"!
J(t) = Z0 and ↵0(λ0 − 1)J(t) 2 ∆

Z0 for t 2 [t0,![,

which follow from (3.20) and (3.5), according to Lemma 2.4, we obtain

lim

t"!

Φ

−1
�
↵0(λ0 − 1)J(t)

⇥
1 + o(1)

⇤�
− Φ

−1
(↵0(λ0 − 1)J(t))

−
'
�
Φ

−1
(↵0(λ0 − 1)J(t))

�

'0
(Φ

−1
(↵0(λ0 − 1)J(t)))

= lim

z!Z0
z2∆Z0

Φ

−1
(z(1 + o(1)))− Φ

−1
(z)

− '(z)

'0
(z)

= 0.

This yields

Φ

−1
�
↵0(λ0 − 1)J(t)

⇥
1 + o(1)

⇤�

= Φ

−1
(↵0(λ0 − 1)J(t)) +

'
�
Φ

−1
(↵0(λ0 − 1)J(t))

�

'0
(Φ

−1
(↵0(λ0 − 1)J(t)))

o(1) as t " !.

By using this relation and (3.22), we arrive at the asymptotic representation (3.11). In view of the fact that

lim

t"!

Φ

−1
(↵0(λ0 − 1)J(t))'0�

Φ

−1
(↵0(λ0 − 1)J(t))

�

'(Φ−1
(↵0(λ0 − 1)J(t)))

= lim

y!Y0
y2∆Y0

y'0
(y)

'(y)
= ±1,

we can rewrite (3.11) in the form

y(t) = Φ

−1
�
↵0(λ0 − 1)J(t)

�⇥
1 + o(1)

⇤
as t " !.

Thus, by virtue of the first asymptotic relation in (2.7), we get the asymptotic representation (3.12).
Further, in view of representation (3.11), it follows from (1.1) that

y00(t) = ↵0p(t)'

✓
Φ

−1
(↵0(λ0 − 1)J(t)) +

'(↵0(λ0 − 1)J(t))

'0
(↵0(λ0 − 1)J(t))

o(1)

◆
as t " !. (3.23)
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Since ' 2 Γ

Y0(Z0), where Z0 = lim y!Y0
y2∆Y0

'(y), which, according to the second condition in (1.2), is equal either

to zero or to +1, and as a complementary function, we can choose the function

g(y) =
'(y)

'0
(y)

,

by virtue of Lemma 2.3 and the conditions

lim

t"!
Φ

−1
(↵0(λ0 − 1)J(t)) = Y0 and Φ

−1
(↵0(λ0 − 1)J(t)) 2 ∆

Y0 for t 2 [t0,![,

we obtain

lim

t"!

'

✓
Φ

−1
(↵0(λ0 − 1)J(t)) +

'(↵0(λ0 − 1)J(t))

'0
(↵0(λ0 − 1)J(t))

o(1)

◆

'(Φ−1
(↵0(λ0 − 1)J(t)))

= lim

y!Y0
y2∆Y0

'

✓
y +

'(y)

'0
(y)

o(1)

◆

'(y)
= 1.

Therefore, as t " !, we find

'

0

@
Φ

−1
�
↵0(λ0 − 1)J(t)

�
+

'
⇣
Φ

−1
�
↵0(λ0 − 1)J(t)

�⌘

'0
⇣
Φ

−1
�
↵0(λ0 − 1)J(t)

�⌘ o(1)

1

A
= '

⇣
Φ

−1
�
↵0(λ0 − 1)J(t)

�⌘
[1 + o(1)]

and we can rewrite the asymptotic relation (3.23) in the form

y00(t) = ↵0p(t)'
�
Φ

−1
(↵0(λ0 − 1)J(t))

� ⇥
1 + o(1)

⇤
as t " !.

By virtue of this representation and (3.12), we get

⇡
!

(t)y00(t)

y0(t)
=

↵0(λ0 − 1)⇡2
!

(t)p(t)'
�
Φ

−1
(↵0(λ0 − 1)J(t))

�

λ0Φ
−1

(↵0(λ0 − 1)J(t))

⇥
1 + o(1)

⇤
as t " !,

whence, in view of the second asymptotic relation in (2.7), we arrive at the third condition in (3.10).
Theorem 3.1 is proved.

Proof of Theorem 3.2. Assume that limit (3.13) (finite or equal to ±1) exists and, for some λ0 2 R\{0, 1},
conditions (3.4), (3.9), and (3.10) and one of the following conditions: either (3.14) or (3.16) and (3.17), are satis-
fied. Under these conditions, we establish the existence of P

!

(Y0,λ0)-solutions of the differential equation (1.1)
admitting the asymptotic representations (3.11) and (3.12) and find the number of these solutions.

First, in view of the existence of limit (3.13) (finite or equal to ±1), we show that this limit is equal to zero.
Assume the contrary. Then the following relation is true:

✓
'0
(y)

'(y)

◆0

����
'0
(y)

'(y)

����
3/2

=

z(y)

|y|1/2
,
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where the function z : ∆
Y0 −! R is continuous and such that

lim

y!Y0
y2∆Y0

z(y) =

8
<

:
either c = const 6= 0,

or ±1.
(3.24)

Integrating this relation from y0 to y, we find

−2µ0

����
'0
(y)

'(y)

����
−1/2

= c0 +

yZ

y0

z(s)

|s|1/2
ds, (3.25)

where c0 is a constant.
If

Y0Z

y0

z(s) ds

|s|1/2
= ±1,

then, as a result of the division by |y|1/2, we get

−2µ0

����
y'0

(y)

'(y)

����
−1/2

=

Z
y

y0

z(s)ds

|s|1/2

|y|1/2
⇥
1 + o(1)

⇤
as y ! Y0.

Here, by virtue of (1.3), the expression on the left-hand side tends to zero as y ! Y0 , whereas the expression on
the right-hand side tends either to a nonzero constant or to ±1 by virtue of condition (3.24) because, according
to the L’Hospital rule in the Stolz form, we have

lim

y!Y0
y2∆Y0

Z
y

y0

z(s)ds

|s|1/2

|y|1/2
= 2µ0 lim

y!Y0
y2∆Y0

z(y),

which is impossible.
If

Y0Z

y0

z(s) ds

|s|1/2

converges, which is possible only in the case where Y0 = 0, then we can rewrite (3.25) in the form

−2µ0

����
'0
(y)

'(y)

����
−1/2

= c1 +

yZ

0

z(s) ds

|s|1/2
,

where

c1 = c0 +

0Z

y0

z(s) ds

|s|1/2
.
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We now prove that, in the analyzed case, c1 = 0 . Indeed, if c1 6= 0, then this relation implies that

'0
(y)

'(y)
=

4µ0

c21
+ o(1) as y ! 0.

Integrating this expression from y0 to y, we find

ln |'(y)| = const + o(1) as y ! 0,

which contradicts the second condition in (1.2). Hence, c1 = 0 and we get

−2µ0

����
'0
(y)

'(y)

����
−1/2

=

yZ

0

z(s) ds

|s|1/2
.

Dividing both sides of this equality by |y|1/2, we note that the left-hand side of the obtained relation tends
to zero as y ! 0 by virtue of conditions (1.3), whereas the right-hand side, according to the L’Hospital rule and
relation (3.24), tends either to a nonzero constant or to ±1.

The contradictions obtained in both possible cases imply that

lim

y!Y0
y2∆Y0

✓
'0
(y)

'(y)

◆0

✓
'0
(y)

'(y)

◆2

s����
y'0

(y)

'(y)

���� = 0. (3.26)

Further, by applying the transformation

y(t) = Φ

−1
�
↵0(λ0 − 1)J(t)

�
1 +

y1
H(t)

�
,

y0(t) =
λ0

(λ0 − 1)⇡
!

(t)
Φ

−1
�
↵0(λ0 − 1)J(t)

�⇥
1 + y2(t)

⇤
(3.27)

to Eq. (1.1), we obtain a system of differential equations

y01 =
H(t)

⇡
!

(t)


λ0

λ0 − 1

− q(t) + h(t)y1 +
λ0

λ0 − 1

y2

�
,

y02 =
1

⇡
!

(t)


1− λ0 − 1

λ0
q(t) +

q(t)

λ0
y1 + (1− q(t)) y2 +

1

λ0
q(t)R(t, y1)

�
,

(3.28)

where

h(t) = q(t)

✓
'0
(y)

'(y)

◆0

✓
'0
(y)

'(y)

◆2

���������
y=Φ−1(↵0(λ0−1)J(t))

,
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R(t, y1) =

'

 
Φ

−1
(↵0(λ0 − 1)J(t)) +

'
�
Φ

−1
(↵0(λ0 − 1)J(t))

�

'0
(Φ

−1
(↵0(λ0 − 1)J(t)))

y1

!

'(Φ−1
(↵0(λ0 − 1)J(t)))

− 1− y1.

We consider this system on the set

⌦ = [t0,![⇥D1 ⇥D2,

where D
i

= {y
i

: |y
i

|  1}, i = 1, 2, and the number t0 2 [a,![ chosen with regard for conditions (1.3), (3.5),
(3.6), (3.9), and (3.10) is such that

↵0(λ0 − 1)J(t) 2 ∆

Z0 for t 2 [t0,![,

Φ

−1
(↵0(λ0 − 1)J(t)) +

'
�
Φ

−1
(↵0(λ0 − 1)J(t))

�

'0
(Φ

−1
(↵0(λ0 − 1)J(t)))

y1 2 ∆

Y0 for t 2 [t0,![ and |y1|  1.

In this set, the right-hand sides of the system of differential equations (3.28) are continuous and the function R

has continuous partial derivatives on the set [t0,![⇥D1 with respect to the variable y1 up to the second order,
inclusively. Thus, we get

R0
y1
(t, y1) =

'0

 
Φ

−1
(↵0(λ0 − 1)J(t)) +

'
�
Φ

−1
(↵0(λ0 − 1)J(t))

�

'0
(Φ

−1
(↵0(λ0 − 1)J(t)))

y1

!

'0
(Φ

−1
(↵0(λ0 − 1)J(t)))

− 1.

Here, '0 2 Γ

Y0(Z0) with the complementary function g(y) =
'(y)

'0
(y)

. Therefore,

lim

t"!

'0

 
Φ

−1
(↵0(λ0 − 1)J(t)) +

'
�
Φ

−1
(↵0(λ0 − 1)J(t))

�

'0
(Φ

−1
(↵0(λ0 − 1)J(t)))

y1

!

'0
(Φ

−1
(↵0(λ0 − 1)J(t)))

= lim

y!Y0
y2∆Y0

'0
✓
y + y1

'(y)

'0
(y)

◆

'0
(y)

= ey1 .

By virtue of this limit relation and Lemma 2.3, we find

R0
y1
(t, y1) = ey1

⇥
1 + r(t, y1)

⇤
− 1,

where

lim

t"!
r(t, y1) = 0 uniformly in y1 2 [−1, 1].

Hence, for any " > 0, there exist t1 2 [t0,![ and δ > 0 such that

|R0
y1
(t, y1)|  " for t 2 [t1,![ and y1 2 D1δ = {y1 : |y1|  δ  1}.

This means that, on the set [t1,![⇥D1δ, the function R satisfies the Lipschitz condition with respect to the
variable y1 with Lipschitz constant ". By virtue of the identity R(t, 0) ⌘ 0, this yields the estimate

|R(t, y1)|  "|y1| for t 2 [t1,![ and y1 2 D1δ. (3.29)
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If, for fixed t 2 [t0,![, we expand the function R in the Maclaurin series with Lagrange remainder up to the
terms of the second order, then we get

R(t, v1) =
'
�
Φ

−1
(↵0(λ0 − 1)J(t))

�

'02
(Φ

−1
(↵0(λ0 − 1)J(t)))

⇥ '00

 
Φ

−1
(↵0(λ0 − 1)J(t)) +

'
�
Φ

−1
(↵0(λ0 − 1)J(t))

�

'0
(Φ

−1
(↵0(λ0 − 1)J(t)))

⇠

!
y21, (3.30)

where |⇠| < |y1|. Here, by virtue of the last condition in (1.2), we obtain

'00

 
Φ

−1
(↵0(λ0 − 1)J(t)) +

'
�
Φ

−1
(↵0(λ0 − 1)J(t))

�

'0
(Φ

−1
(↵0(λ0 − 1)J(t)))

⇠

!

=

'02

 
Φ

−1
(↵0(λ0 − 1)J(t)) +

'
�
Φ

−1
(↵0(λ0 − 1)J(t))

�

'0
(Φ

−1
(↵0(λ0 − 1)J(t)))

⇠

!

'

 
Φ

−1
(↵0(λ0 − 1)J(t)) +

'
�
Φ

−1
(↵0(λ0 − 1)J(t))

�

'0
(Φ

−1
(↵0(λ0 − 1)J(t)))

⇠

!
⇥
1 + r1(t, y1)

⇤
,

where lim

t"! r1(t, y1) = 0 uniformly in y1 2 D1. Thus, in view of the fact that the functions ','0 2 Γ

Y0(Z0)

and have the complementary function

g(y) =
'(y)

'0
(y)

,

we obtain

'00

 
Φ

−1
(↵0(λ0 − 1)J(t)) +

'
�
Φ

−1
(↵0(λ0 − 1)J(t))

�

'0
(Φ

−1
(↵0(λ0 − 1)J(t)))

⇠

!

=

'02 �
Φ

−1
(↵0(λ0 − 1)J(t))

�

'(Φ−1
(↵0(λ0 − 1)J(t)))

e⇠
⇥
1 + r2(t, y1)

⇤
,

where lim

t"! r2(t, y1) = 0 uniformly in y1 2 D1. Hence, relation (3.25) can be rewritten in the form

R(t, y1) = e⇠
⇥
1 + r1(t, y1)

⇤⇥
1 + r2(t, y1)

⇤
y21.

It is clear that, for any " > 0, there exist δ > 0 and t1 2 [t0,![ such that

|R(t, y1)|  (1 + ")|y1|2 for t 2 [t1,![ and y1 2 D1δ = {y1 : |y1|  δ}. (3.31)

Moreover, by virtue of conditions (1.2), (1.3), (3.5), (3.9), and (3.10), in the system of equations (3.28),
we have

lim

t"!
q(t) =

λ0

λ0 − 1

, lim

t"!
h(t) = 0, lim

t"!
H(t) = ±1. (3.32)

According to the results presented above, system (3.28) is a quasilinear system of differential equations.
To establish the existence of P

!

(Y0,λ0)-solutions of Eq. (1.1) admitting the asymptotic representations (3.11)
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and (3.12), according to transformation (3.27), it is necessary to prove the existence of solutions of the system of
differential equations (3.28) approaching zero as t " !. In order to use the available results on the solutions
of quasilinear systems of differential equations vanishing at a singular point, we reduce system (3.28) to the form
that admits their application.

Applying an additional transformation

y1 = v1, y2 = |H(t)|−1/2v2 (3.33)

to system (3.28), we obtain the following system of differential equations:

v01 =
|H(t)|1/2

⇡
!

(t)

⇥
f1(t) + c11(t)v1 + c12(t)v2

⇤
,

v02 =
|H(t)|1/2

⇡
!

(t)

⇥
f2(t) + c21(t)v1 + c22(t)v2 + V (t, v1)

⇤
,

(3.34)

where

f1(t) =


λ0

λ0 − 1

− q(t)

�
|H(t)|1/2 signH(t), f2(t) = 1− λ0 − 1

λ0
q(t),

c11(t) = h(t)|H(t)|1/2 signH(t), c12(t) =
λ0

λ0 − 1

signH(t),

c21(t) =
q(t)

λ0
, c22(t) = |H(t)|−1/2

✓
1− q(t)

2

+

h(t)

2

|H(t)|1/2 signH(t)

◆
,

V (t, v1) =
1

λ0
q(t)R(t, v1).

We choose an arbitrary number " > 0 and find, in view of the above-mentioned properties of the function R,

the numbers δ > 0 and t1 2 [t0,![ such that inequality (3.31) is true. Consider system (3.34) on the set

⌦1 =
�
(t, v1, v2) 2 R3 : t 2 [t1,![, v1 2 [−δ, δ], v2 2 [−1, 1]

 
.

By virtue of (3.31), the replacement of y1 with v1, and the first condition in (3.32), we conclude that

lim

v1!0

V (t, v1)

|v1|
= 0 uniformly in t 2 [t1,![.

In addition, in view of conditions (3.32) and (3.26) and the notation introduced at the beginning of this section,
we find

lim

t"!
f2(t) = 0, lim

t"!
c11(t) = 0, c12(t) ⌘

⌫0µ0λ0

λ0 − 1

, lim

t"!
c21(t) =

1

λ0 − 1

, (3.35)

lim

t"!
c22(t) = 0,

!Z

t1

|H(⌧)|1/2

⇡
!

(⌧)
d⌧ = ±1. (3.36)
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In particular, this implies that the limit matrix of the coefficients of v1 and v2 in the square brackets in system (3.34)
has the form

C =

0

B@
0

⌫0µ0λ0

λ0 − 1

1

λ0 − 1

0

1

CA

and

⇢2 − ⌫0µ0λ0

(λ0 − 1)

2
= 0 (3.37)

is its characteristic equation. Here, by virtue of conditions (3.4) and (3.9), we have

sign(⌫0µ0λ0) = −sign[(λ0 − 1)J(t)] for t 2 ]a,![.

Further, we assume that conditions (3.14) are satisfied. In this case, the algebraic equation (3.37) has two real
roots with opposite signs and, parallel with (3.35) and (3.36), we get

lim

t"!
f1(t) = 0.

This implies that the system of differential equations (3.34) satisfies all conditions of Theorem 2.2 in [7].
According to this theorem, the system of differential equations (3.34) possesses a one-parameter family of solutions

(v1, v2) : [t⇤,![ −! R2
(t⇤ 2 [t1,![)

vanishing as t " !. By virtue of changes (3.27) and (3.33), each of these solutions is associated with the solution

y : [t⇤,![ −! R

admitting the asymptotic representations (3.11) and (3.15).
Now let conditions (3.16) and (3.17) be satisfied. In this case, by virtue of the first condition in (3.16),

the algebraic equation (3.37) has pure imaginary roots. To find the solutions of the system of equations (3.34)
vanishing as t " !, we use the results obtained in [8]. To this end, by the change of the independent variable

v1(t) = z1(x), v2(t) = z2(x), x =

tZ

t1

|H(⌧)|1/2 d⌧
|⇡

!

(⌧)| , (3.38)

we reduce the system of equations (3.34) to the following system:

z01 = q1(x) + b1(x)z1 +
β⌫0µ0λ0

λ0 − 1

z2,

z02 = q2(x) +
β

λ0 − 1

z1 + b2(x)z2 + Z(x, z1),

(3.39)
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where

q1(x(t)) = β⌫0µ0


λ0

λ0 − 1

− q(t)

�
|H(t)|1/2, q2(x(t)) = β


1− λ0 − 1

λ0
q(t)

�
,

b1(x(t)) = β⌫0µ0h(t)
��H(t)

��1/2, b2(x(t)) = β
��H(t)

��−1/2
✓
1− q(t)

2

+

⌫0µ0h(t)

2

��H(t)
��1/2
◆
,

Z(x(t), z1) =
βq(t)

λ0
R(t, z1), β = sign⇡

!

(t).

Since x0(t) > 0 for t 2 ]t0,![ and lim

t"! x(t) = +1 by virtue of the third condition in (3.32), the system
of equations (3.39) is defined on the set

G = {(x, z1, z2) 2 R3 : x 2 [0,+1[, |z1|  δ, |z2|  1}

and, in view of (3.32), (3.16), (3.17), and (3.31), we find

lim

x!+1
x2q

i

(x) = lim

t"!

0

@
tZ

t1

|H(⌧)|1/2 d⌧
|⇡

!

(t)|

1

A
2

q
i

(x(t)) = 0, i = 1, 2,

lim

x!+1
xb

i

(x) = lim

t"!

0

@
tZ

t1

|H(⌧)|1/2 d⌧
|⇡

!

(t)|

1

Ab
i

(x(t)) = 0, i = 1, 2,

lim

z1!0

x2Z
⇣
x,

z

x

⌘

z1
= lim

z1!0

x2(t)q(t)R

✓
t,

z1
x(t)

◆

λ0z1
= 0 uniformly in x 2 [0,+1[.

In this case, the characteristic equation of the limit matrix of coefficients of the linear part of the system is the
algebraic equation (3.37), which, in the analyzed case, has pure imaginary roots.

This implies that the system of differential equations (3.39) satisfies all conditions of Theorem 2.2 in [8]
(for r = " = 1). According to this theorem, the system of differential equations (3.39) with ! < +1 has
a two-parameter family of solutions vanishing at infinity (z1, z2) : [x0,+1[ −! R2

(x0 ≥ 0) of the form

z
i

(x) = o

✓
1

x

◆
as x ! +1, i = 1, 2.

At the same time, for ! = +1, this system has at least one solution with these representations (this solution is
unique because the function R satisfies the Lipschitz condition with respect to the variable z1 ). In view of changes
(3.27), (3.33), and (3.38), each solution of this kind is associated with a P

!

(Y0,λ0)-solution

y : [t2,![ −! R (t2 2 [a,![)

admitting asymptotic representations of the forms (3.18) and (3.19).
Theorem 3.2 is proved.
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4. Conclusions

In the present paper, for an equation of the form (1.1) with nonlinearity ' rapidly varying as y ! Y0,

where Y0 is equal either to zero or to ±1, we establish, for the first time, the conditions for the existence of
P
!

(Y0,λ0)-solutions in the nonsingular case λ0 2 R\{0; 1} and the asymptotic representations of these solutions
and their first-order derivatives as t " ! (!  +1). Earlier, the problem of existence of solutions from the class
of P

!

(Y0,λ0)-solutions and their asymptotics was fairly completely investigated for the nonlinearity ' regularly
varying as y ! Y0.

REFERENCES
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