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BOUNDEDNESS OF RIESZ-TYPE POTENTIAL OPERATORS ON
VARIABLE EXPONENT HERZ–MORREY SPACES

J.-L. Wu UDC 517.9

We show the boundedness of the Riesz-type potential operator of variable order β(x) from the variable
exponent Herz –Morrey spaces MK̇

↵(·),λ
p1,q1(·)(R

n) into the weighted space MK̇

↵(·),λ
p2,q2(·)(R

n

,!), where

↵(x) 2 L

1(Rn) is log-Hölder continuous both at the origin and at infinity, ! = (1 + |x|)−γ(x) with
some γ(x) > 0, and 1/q1(x) − 1/q2(x) = β(x)/n when q1(x) is not necessarily constant at infinity.
It is assumed that the exponent q1(x) satisfies the logarithmic continuity condition both locally and at
infinity and, moreover, 1 < (q1)1  q1(x)  (q1)+ < 1, x 2 Rn

.

1. Introduction

In the last decade, there is an evident intensification of investigations related both to the theory of variable
exponent function spaces and to the operator theory in these spaces. This is explained by the keen interest not only
in real analysis but also in partial differential equations and in applied mathematics because they are applicable
to the modeling for electrorheological fluids, continuum mechanics, image restoration (see, e.g., [1–7] and the
references therein), etc.

The theory of function spaces with variable exponent has rapidly made progress during the past twenty years
since some elementary properties were established by Kováčik and Rákosnı́k [8]. One of the main problems of the
theory is the problem of boundedness of the Hardy–Littlewood maximal operator in variable Lebesgue spaces.

In 2012, Almeida and Drihem [9] discussed the boundedness of a wide class of sublinear operators on the
Herz spaces

K

↵(·),p
q(·) (Rn

) and ˙

K

↵(·),p
q(·) (Rn

)

with variable exponents ↵(·) and q(·). Meanwhile, they also established the Hardy–Littlewood–Sobolev theorems
for fractional integrals on variable Herz spaces. In 2013, Samko [10, 11] introduced new Herz-type function spaces
with variable exponent, where all three parameters are variable, and proved the property of boundedness for some
sublinear operators. Later, in 2015, Rafeiro and Samko [12] studied the validity of a Sobolev-type theorem for the
Riesz potential operator in continual variable exponent Herz spaces. In recent papers, Wu [13, 14] also considered
the problem of boundedness of a fractional Hardy-type operator and a Riesz-type potential operator on the Herz–
Morrey spaces M ˙

K

↵(·),λ
p,q(·) (R

n

) with variable exponent q(·) but fixed ↵ 2 R and p 2 (0,1).

Motivated by the results mentioned above and based on some facts taken from [9, 15], we investigate the map-
ping properties of the operator I

β(·) within the framework of variable exponent Herz–Morrey spacesM ˙

K

↵(·),λ
p,q(·) (R

n

),

where the Riesz-type potential operator of variable order is given by the formula

I

β(·)(f)(x) =

Z

Rn

f(y)

|x− y|n−β(x)

dy, 0 < β(x) < n.
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2. Preliminaries

In this section, we define some function spaces with variable exponent and present basic properties and useful
lemmas. Throughout this paper, we use the following notation:

By |S| we denote the Lebesgue measure and by χ

S

we denote the characteristic function of a measurable
set S ⇢ Rn

;

f

S

denotes the mean value of f on a measurable set S, namely,

f

S

:=

1

|S|

Z

S

f(x) dx;

B(x, r) is a ball of radius r centered at x; B
0

= B(0, 1);

C is a constant whose value may differ from line to line independent of the main parameters involved;

For any exponent 1 < q(x) < 1, by q

0
(x) we denote its conjugate exponent, namely,

1/q(x) + 1/q

0
(x) = 1.

2.1. Function Spaces with Variable Exponent. Let ⌦ be a measurable set in Rn with |⌦| > 0. We first
define Lebesgue spaces with variable exponent.

Definition 2.1. Let q(·) : ⌦ ! (1,1) be a measurable function.

(i) The variable Lebesgue spaces Lq(·)
(⌦) are defined by

L

q(·)
(⌦) =

�

f is measurable function: F

q

(f/⌘) < 1 for some constant ⌘ > 0

 

,

where

F

q

(f) :=

Z

⌦

|f(x)|q(x) dx.

The Lebesgue space L

q(·)
(⌦) equipped with the norm

kfk
L

q(·)
(⌦)

= inf

8

<

:

⌘ > 0 : F
q

(f/⌘) =

Z

⌦

⇣ |f(x)|
⌘

⌘

q(x)

dx  1

9

=

;

is a Banach space.

(ii) The space L

q(·)
loc

(⌦) is defined as follows:

L

q(·)
loc

(⌦) =

�

f is a measurable function: f 2 L

q(·)
(⌦

0

) for all compact subsets ⌦

0

⇢ ⌦

 

.

(iii) The weighted Lebesgue space L

q(·)
!

(⌦) is defined as the set of all measurable functions for which

kfk
L

q(·)
!

(⌦)

= k!1/q(·)
fk

L

q(·)
(⌦)

< 1.
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Further, we define some classes of variable exponent functions. Given a function f 2 L

1

loc

(Rn

), the Hardy–
Littlewood maximal operator M is defined as

Mf(x) = sup

r>0

r

−n

Z

B(x,r)

|f(y)| dy 8 x 2 Rn

;

here and what follows, B(x, r) = {y 2 Rn : |x− y| < r}.

Definition 2.2. Given a measurable function q(·) defined on Rn

, we write

q− := ess inf

x2Rn

q(x) and q

+

:= ess sup

x2Rn

q(x).

(i) q

0
− = ess inf

x2Rn

q

0
(x) =

q

+

q

+

− 1

and q

0
+

= ess sup

x2Rn

q

0
(x) =

q−
q− − 1

.

(ii) Denote by P
0

(Rn

) the set of all measurable functions q(·) : Rn ! (0,1) such that 0 < q−  q(x) 
q

+

< 1.

(iii) Denote by P(Rn

) the set of all measurable functions q(·) : Rn ! (1,1) such that 1 < q−  q(x) 
q

+

< 1.

(iv) B(⌦) =

�

q(·) 2 P(Rn

) : the maximal operatorM is bounded on Lq(·)
(⌦)

 

.

Definition 2.3. Let q(·) : Rn ! R be a real-valued function.

(1) Denote by C
log

loc

(Rn

) the set of all local log -Hölder continuous functions q(·) such that

|q(x)− q(y)|  −C

ln(|x− y|) , |x− y|  1/2, x, y 2 Rn

.

(2) Denote by C
log

0

(Rn

) the set of all log -Hölder functions q(·) continuous at the origin and such that

|q(x)− q(0)|  C

ln

✓

e+

1

|x|

◆

, x 2 Rn

. (2.1)

(3) Denote by C
log

1 (Rn

) the set of all log -Hölder functions q(·) continuous at infinity and such that

�

�

q(x)− q1
�

�  C1
ln(e+ |x|) , x 2 Rn

, (2.2)

where q1 = lim|x|!1 q(x).

(4) Denote by

Clog

(Rn

) := C
log

loc

(Rn

) \ Clog

1 (Rn

)

the set of all global log -Hölder continuous functions q(·).
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Remark 2.1. The condition C
log

1 (Rn

) is equivalent to the condition of uniform continuity

|q(x)− q(y)|  C

ln(e+ |x|) , |y| ≥ |x|, x, y 2 Rn

.

The condition C
log

1 (Rn

) was originally introduced in this form in [16].

We now define the variable exponent Herz–Morrey spaces M ˙

K

↵(·),λ
p,q(·) (R

n

). Let

B

k

= {x 2 Rn : |x|  2

k}, A

k

= B

k

\B
k−1

, and χ

k

= χ

A

k

for k 2 Z.

Definition 2.4. Suppose that 0  λ < 1, 0 < p < 1,

q(·) 2 P(Rn

), and ↵(·) : Rn ! R with ↵(·) 2 L

1
(Rn

).

The variable exponent Herz–Morrey space M

˙

K

↵(·),λ
p,q(·) (R

n

) is defined as follows:

M

˙

K

↵(·),λ
p,q(·) (R

n

) =

n

f 2 L

q(·)
loc

(Rn\{0}) : kfk
M

˙

K

↵(·),λ
p,q(·) (R

n

)

< 1
o

,

where

kfk
M

˙

K

↵(·),λ
p,q(·) (R

n

)

= sup

k02Z
2

−k0λ

 

k0
X

k=−1
k2k↵(·)fχ

k

kp
L

q(·)
(Rn

)

!

1/p

.

We now compare the variable Herz–Morrey space

M

˙

K

↵(·),λ
p,q(·) (R

n

)

with the variable Herz space [9]

˙

K

↵(·),p
q(·) (Rn

),

where

˙

K

↵(·),p
q(·) (Rn

) =

(

f 2 L

q(·)
loc

(Rn\{0}) :
1
X

k=−1
k2k↵(·)fχ

k

kp
L

q(·)
(Rn

)

< 1
)

.

Obviously,

M

˙

K

↵(·),0
p,q(·) (R

n

) =

˙

K

↵(·),p
q(·) (Rn

).

If ↵(·) is constant, then we get

M

˙

K

↵(·),λ
p,q(·) (R

n

) = M

˙

K

↵,λ

p,q(·)(R
n

)

(see [13]). If both ↵(·) and q(·) are constants and λ = 0, then

M

˙

K

↵(·),λ
p,q(·) (R

n

) =

˙

K

↵,p

q

(Rn

)

are classical Herz spaces.
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2.2. Recent Results for the Riesz-Type Potential Iβ(·). In this section, we recall some recent results ob-
tained for the Riesz-type potential operator I

β(·). The order of potential β(x) is not assumed to be continuous.
We assume that it is a measurable function on ⌦ satisfying the following assumptions:

β

0

:= ess inf

x2Rn

β(x) > 0,

ess sup

x2Rn

p(x)β(x) < n, (2.3)

ess sup

x2Rn

p1β(x) < n.

The open problem of boundedness of the Riesz-type potential operator I
β(·) from the variable exponent space

L

p(·)
(Rn

) into the space L

q(·)
(Rn

) with the limiting Sobolev exponent

1

q(x)

=

1

p(x)

− β(x)

n

,

was first solved in the case of bounded domains ⌦ ⇢ Rn (see [17]). After Diening [18] proved the boundedness
of the maximal operator over bounded domains, the validity of the Sobolev theorem for bounded domains became
an unconditional statement.

In 2008, in the case of bounded sets, Almeida, Hasanov, and Samko [19] proved the boundedness of the
maximal operator in variable exponent Morrey spaces. In 2009, Hästö [20] used his new “local-to-global” approach
to extend the result obtained in [19] concerning the maximal operator to the entire space Rn

. In 2010, in the case
of bounded sets, Guliyev, Hasanov, and Samko [21] considered the problem of boundedness of the Riesz-type
potential operator I

β(·) on the generalized variable exponent Morrey-type spaces.
For the entire space Rn

, under the condition that the exponent p(x) is constant outside some ball of large
radius, the Sobolev theorem was proved by Diening [22].

Another version of the Sobolev theorem for the space Rn was proved in [23] for the exponent p(x) not
necessarily constant in a neighborhood of infinity but with some extra power weight fixed at infinity and under the
assumption that p(x) takes its minimal value at infinity.

Theorem A. Let β(x) meet conditions (2.3) with q

1

(·) instead of p(·). Suppose that

q

1

(·) 2 Clog

(Rn

) \ P(Rn

)

and

1 < (q

1

)1  q

1

(x)  (q

1

)

+

< 1. (2.4)

Then the following weighted Sobolev-type estimate is valid for the operator I
β(·) :

�

�

(1 + |x|)−γ(x)

I

β(·)(f)
�

�

L

q2(·)
(Rn

)

 Ckfk
L

q1(·)
(Rn

)

,

where q

2

(x) is given by the formula

1

q

2

(x)

=

1

q

1

(x)

− β(x)

n

, (2.5)
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and

γ(x) = C1β(x)

✓

1− β(x)

n

◆

 n

4

C1, (2.6)

C1 is the Dini–Lipschitz constant from (2.2) with q(·) replaced by q

1

(·).

In 2013, in the case of unbounded sets, Guliyev and Samko [24] studied the boundedness of the Riesz-type
potential operator I

β(·) on the generalized variable-exponent Morrey-type spaces. Recently, the author [14] has
obtained the results similar to Theorem A for the variable-exponent Herz–Morrey space M

˙

K

↵,λ

p,q(·)(R
n

).

Remark 2.2. The fractional maximal operator is defined as follows:

M

β(·)(f)(x) = sup

r>0

1

|B(x, r)|n−β(x)

Z

B(x,r)

|f(y)| dy. (2.7)

The pointwise estimate for (2.7) is also valid. This yields Theorem A.

2.3. Auxiliary Propositions and Lemmas. In this section, we formulate some auxiliary propositions and
lemmas required to prove our main theorems. Here, we present only partial results used in our subsequent presen-
tation.

Proposition 2.1. Let q(·) 2 P(Rn

).

(i) If q(·) 2 Clog

(Rn

), then q(·) 2 B(Rn

).

(ii) q(·) 2 B(Rn

) if and only if q0(·) 2 B(Rn

).

The first part of Proposition 2.1 was independently proved by Cruz–Uribe, et al. [16] and Nekvinda [25].
The second part of Proposition 2.1 belongs to Diening [26] (see Theorem 8.1 or Theorem 1.2 in [27]).

Remark 2.3. Since
�

�

q

0
(x)− q

0
(y)

�

�  |q(x)− q(y)|
(q− − 1)

2

,

we immediately conclude that if q(·) 2 Clog

(Rn

), then the same is true for q

0
(·), i.e., if the condition is satis-

fied, then M is bounded on L

q(·)
(Rn

) and L

q

0
(·)
(Rn

). Furthermore, Diening also proved general results for the
Musielak–Orlicz spaces.

The next proposition is a generalization of variable-exponent Herz spaces from [9]. It was proved in [15].

Proposition 2.2. Let q(·) 2 P(Rn

), p 2 (0,1), and λ 2 [0,1). If a real-valued function

↵(·) 2 L

1
(Rn

) \ C
log

0

(Rn

) \ Clog

1 (Rn

),

then

kfk
M

˙

K

↵(·),λ
p,q(·) (R

n

)

= sup

k02Z
2

−k0λ

 

k0
X

k=−1
k2k↵(·)fχ

k

kp
L

q(·)
(Rn

)

!

1/p
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⇡ max

8

>

<

>

:

sup

k0<0
k02Z

2

−k0λ

0

@

˜

k1
X

k=−1
2

k↵(0)pkfχ
k

kp
L

q(·)
(Rn

)

1

A

1/p

,

sup

k0≥0
k02Z

0

B

@

2

−k0λ

0

@

˜

k2
X

k=−1
2

k↵(0)pkfχ
k

kp
L

q(·)
(Rn

)

1

A

1/p

+2

−k0λ

0

@

˜

k3
X

k=0

2

k↵1pkfχ
k

kp
L

q(·)
(Rn

)

1

A

1/p

1

C

A

9

>

=

>

;

,

where ˜

k

1

= k

0

,

˜

k

2

= −1,

˜

k

3

= k

0

.

The next lemma is known as the generalized Hölder’s inequality on Lebesgue spaces with variable exponent,
and the proof can be found in [8].

Lemma 2.1 (generalized Hölder’s inequality). Suppose that q(·) 2 P(Rn

). Then, for any f 2 L

q(·)
(Rn

) and
any g 2 L

q

0
(·)
(Rn

), the following inequality is true:

Z

Rn

�

�

f(x)g(x)

�

�

dx  C

q

kfk
L

q(·)
(Rn

)

kgk
L

q

0(·)
(Rn

)

,

where C

q

= 1 + 1/q− − 1/q

+

.

The following lemma can be found in [28]:

Lemma 2.2.

(I) Let q(·) 2 B(Rn

). Then there exist positive constants δ 2 (0, 1) and C > 0 such that

kχ
S

k
L

q(·)
(Rn

)

kχ
B

k
L

q(·)
(Rn

)

 C

✓

|S|
|B|

◆

δ

for all balls B in Rn and all measurable subsets S ⇢ B.

(II) Let q(·) 2 B(Rn

). Then there exists a positive constant C > 0 such that

C

−1  1

|B|kχB

k
L

q(·)
(Rn

)

kχ
B

k
L

q

0(·)
(Rn

)

 C

for all balls B in Rn

.

Remark 2.4.

(i) If

q

1

(·), q
2

(·) 2 Clog

(Rn

) \ P(Rn

),
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then we can see that

q

0
1

(·), q
2

(·) 2 B(Rn

).

Hence, it is possible take positive constants

0 < δ

1

< 1/(q

0
1

)

+

, 0 < δ

2

< 1/(q

2

)

+

such that

kχ
S

k
L

q

0
1(·)

(Rn

)

kχ
B

k
L

q

0
1(·)

(Rn

)

 C

✓

|S|
|B|

◆

δ1

,

kχ
S

k
L

q2(·)
(Rn

)

kχ
B

k
L

q2(·)
(Rn

)

 C

✓

|S|
|B|

◆

δ2

(2.8)

hold for all balls B in Rn and all measurable subsets S ⇢ B (see [28, 29]).

(ii) On the other hand, Kopaliani [30] proved the following fact: If the exponent q(·) 2 P(Rn

) is equal to
a constant outside a certain large ball, then q(·) 2 B(Rn

) if and only if q(·) satisfies the Muckenhoupt-
type condition

sup

Q : cube

1

|Q|kχQ

k
L

q(·)
(Rn

)

kχ
Q

k
L

q

0(·)
(Rn

)

< 1.

3. Main Result and Its Proof

Our main result can be formulated as follows:

Theorem 3.1. Suppose that q

1

(·) 2 Clog

(Rn

) \ P(Rn

) and β(x) satisfy conditions (2.3) with q

1

(·) in-
stead of p(·). Consider a variable exponent q

2

(·) defined by (2.5). Let q
1

(·) and q

0
2

(·) satisfy condition (2.4),
let 0 < p

1

 p

2

< 1, λ ≥ 0, and let ↵(·) 2 L

1
(Rn

) be log-Hölder continuous both at the origin and at
infinity with

λ− nδ

2

< ↵(0)  ↵1 < λ+ nδ

1

,

where δ

1

2 (0, 1/(q

0
1

)

+

) and δ

2

2 (0, 1/(q

2

)

+

) are the constants appearing in (2.8). Then

�

�

(1 + |x|)−γ(x)

I

β(·)(f)
�

�

M

˙

K

↵(·),λ
p2,q2(·)

(Rn

)

 Ckfk
M

˙

K

↵(·),λ
p1,q1(·)

(Rn

)

,

where γ(x) is defined as in (2.6), and the Dini–Lipschitz constant has the form

max

⇢

C1,

2C1
�

(q

1

)− − 1

�

2

�

if q(·) in (2.2) is replaced by q

1

(·).

Remark 3.1.

(i) Under the assumptions of Theorem 3.1, the result similar to Theorem 3.1 is also valid for the fractional
maximal operator M

β(·)(f) defined by (2.7) (for some details, see [14]).
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(ii) If ↵(·) is a constant exponent, then the above result can be found in [14].

(iii) The result presented is also valid for λ = 0 .

Proof. For any f 2 M

˙

K

↵(·),λ
p1,q1(·)(R

n

), if we denote

f

j

:= fχ

j

= fχ

A

j

for all j 2 Z,

then we get

f(x) =

1
X

j=−1
f(x)χ

j

(x) =

1
X

j=−1
f

j

(x).

Since 0 < p

1

/p

2

 1, applying the inequality

 1
X

i=−1
|a

i

|
!

p1/p2


1
X

i=−1
|a

i

|p1/p2 , (3.1)

and Proposition 2.2, we obtain

�

�

(1 + |x|)−γ(x)

I

β(·)(f)
�

�

p1

M

˙

K

↵(·),λ
p2,q2(·)

(Rn

)

⇡ max

8

<

:

sup

k0<0
k02Z

2

−k0λp1

 

k0
X

k=−1
2

k↵(0)p2k(1 + |x|)−γ(x)

I

β(·)(f)χk

kp2
L

q2(·)
(Rn

)

!

p1/p2

,

sup

k0≥0
k02Z

2

−k0λp1

2

4

 −1

X

k=−1
2

k↵(0)p2k(1 + |x|)−γ(x)

I

β(·)(f)χk

kp2
L

q2(·)
(Rn

)

!

p1/p2

+

 

k0
X

k=0

2

k↵1p2k(1 + |x|)−γ(x)

I

β(·)(f)χk

kp2
L

q2(·)
(Rn

)

!

p1/p2
3

5

9

=

;

 max

8

<

:

sup

k0<0
k02Z

2

−k0λp1

 

k0
X

k=−1
2

k↵(0)p1k(1 + |x|)−γ(x)

I

β(·)(f)χk

kp1
L

q2(·)
(Rn

)

!

,

sup

k0≥0
k02Z

2

−k0λp1

" −1

X

k=−1
2

k↵(0)p1k(1 + |x|)−γ(x)

I

β(·)(f)χk

kp1
L

q2(·)
(Rn

)

!

+

 

k0
X

k=0

2

k↵1p1k(1 + |x|)−γ(x)

I

β(·)(f)χk

kp1
L

q2(·)
(Rn

)

!#

9

=

;

⌘: max{E
1

, E

2

+ E

3

},
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where

E

1

= sup

k0<0
k02Z

2

−k0λp1

 

k0
X

k=−1
2

k↵(0)p1
�

�

(1 + |x|)−γ(x)

I

β(·)(f)χk

�

�

p1

L

q2(·)
(Rn

)

!

,

E

2

= sup

k0≥0
k02Z

2

−k0λp1

 −1

X

k=−1
2

k↵(0)p1
�

�

(1 + |x|)−γ(x)

I

β(·)(f)χk

�

�

p1

L

q2(·)
(Rn

)

!

,

E

3

= sup

k0≥0
k02Z

2

−k0λp1

 

k0
X

k=0

2

k↵1p1
�

�

(1 + |x|)−γ(x)

I

β(·)(f)χk

�

�

p1

L

q2(·)
(Rn

)

!

.

It is not difficult to show that the estimate of E
1

is similar to the estimate of E
2

. Therefore, we now consider
only the estimates for E

1

and E

3

.
Thus, for E

1

, we obtain

E

1

 C sup

k0<0
k02Z

2

−k0λp1

0

@

k0
X

k=−1
2

k↵(0)p1

0

@

k−2

X

j=−1

�

�

�

(1 + |x|)−γ(x)

I

β(·)(fj)χk

�

�

�

L

q2(·)
(Rn

)

1

A

p1
1

A

+ C sup

k0<0
k02Z

2

−k0λp1

0

@

k0
X

k=−1
2

k↵(0)p1

0

@

k+1

X

j=k−1

�

�

�

(1 + |x|)−γ(x)

I

β(·)(fj)χk

�

�

�

L

q2(·)
(Rn

)

1

A

p1
1

A

+ C sup

k0<0
k02Z

2

−k0λp1

0

@

k0
X

k=−1
2

k↵(0)p1

0

@

1
X

j=k+2

�

�

�

(1 + |x|)−γ(x)

I

β(·)(fj)χk

�

�

�

L

q2(·)
(Rn

)

1

A

p1
1

A

⌘: C(E

11

+ E

12

+ E

13

).

First, we estimate E

12

. By using Theorem A and Proposition 2.2, we get

E

12

 C sup

k0<0
k02Z

2

−k0λp1

0

@

k0
X

k=−1
2

k↵(0)p1

0

@

k+1

X

j=k−1

kf
j

χ

k

k
L

q1(·)
(Rn

)

1

A

p1
1

A

 C sup

k0<0
k02Z

2

−k0λp1

 

k0
X

k=−1
2

k↵(0)p1kfχ
k

kp1
L

q1(·)
(Rn

)

!

 Ckfkp1
M

˙

K

↵(·),λ
p1,q1(·)

(Rn

)

.

We now estimate E

11

. Note that if

x 2 A

k

, j  k − 2, and y 2 A

j

,

then

|x− y| v |x| and 2|y|  |x|.
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Therefore, by using the generalized Hölder’s inequality, we find

�

�

I

β(·)(fj)(x)χk

(x)

�

� 
Z

A

j

|f(y)|
|x− y|n−β(x)

dyχ

k

(x)

 C · 2−knkf
j

k
L

q1(·)
(Rn

)

kχ
j

k
L

q

0
1(·)

(Rn

)

|x|β(x)χ
k

(x). (3.2)

Note that

I

β(·)(χB

k

)(x) ≥ I

β(·)(χB

k

)(x)χ

B

k

(x) ≥ C|x|β(x)χ
k

(x). (3.3)

Using Theorem A, Lemma 2.2, (2.8), (3.2), and (3.3), we find

�

�

(1 + |x|)−γ(x)

I

β(·)(fj)χk

(·)
�

�

L

q2(·)
(Rn

)

 C · 2−knkf
j

k
L

q1(·)
(Rn

)

kχ
j

k
L

q

0
1(·)

(Rn

)

�

�

�

(1 + |x|)−γ(x)

I

β(·)(χB

k

)

�

�

�

L

q2(·)
(Rn

)

 C · 2−knkχ
B

k

k
L

q1(·)
(Rn

)

kf
j

k
L

q1(·)
(Rn

)

kχ
B

j

k
L

q

0
1(·)

(Rn

)

 C · 2(j−k)nδ1kf
j

k
L

q1(·)
(Rn

)

. (3.4)

On the other hand, we mention the following fact:

Case I (˜k
i

< 0, i = 1, 2, 3):

kf
j

k
L

q1(·)
(Rn

)

 2

−j↵(0)

 

j

X

i=−1
2

i↵(0)p1kf
i

kp1
L

q1(·)
(Rn

)

!

1/p1

 2

j(λ−↵(0))

0

@

2

−jλ

 

j

X

i=−1
k2i↵(·)f

i

kp1
L

q1(·)
(Rn

)

!

1/p1
1

A

 C · 2j(λ−↵(0))kfk
M

˙

K

↵(·),λ
p1,q1(·)

(Rn

)

. (3.5)

Case II (˜k
i

≥ 0, i = 1, 2, 3):

kf
j

k
L

q1(·)
(Rn

)

 2

−j↵1

 

j

X

i=0

2

i↵1p1kf
i

kp1
L

q1(·)
(Rn

)

!

1/p1

 C · 2j(λ−↵1)kfk
M

˙

K

↵(·),λ
p1,q1(·)

(Rn

)

. (3.6)

Here, we have used Definition 2.4, Proposition 2.2, and the condition for ↵(·) .
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Thus, combining (3.4) and (3.5) and using ↵(0)  ↵1 < λ+ nδ

1

, we conclude that

E

11

 C sup

k0<0
k02Z

2

−k0λp1

0

@

k0
X

k=−1
2

k↵(0)p1

0

@

k−2

X

j=−1
2

(j−k)nδ1kf
j

k
L

q1(·)
(Rn

)

1

A

p1
1

A

 C kfkp1
M

˙

K

↵(·),λ
p1,q1(·)

(Rn

)

sup

k0<0
k02Z

2

−k0λp1

 

k0
X

k=−1
2

kλp1

!

 C kfkp1
M

˙

K

↵(·),λ
p1,q1(·)

(Rn

)

.

We now estimate E

13

. Note that, if

x 2 A

k

, j ≥ k + 2, and y 2 A

j

,

then

|x− y| v |y| and 2|x|  |y|.

Hence, by using the generalized Hölder’s inequality, we find

�

�

(1 + |x|)−γ(x)

I

β(·)(fj)(x)χk

(x)

�

�

 (1 + |x|)−γ(x)

Z

A

j

|f(y)|
|x− y|n−β(x)

dyχ

k

(x)

 C

Z

A

j

|f(y)|(1 + |x|)−γ(x)|y|β(x)−n

dyχ

k

(x)

 C · 2−jnkf
j

k
L

q1(·)
(Rn

)

�

�

(1 + |x|)−γ(x)| · |β(x)χ
j

(·)
�

�

L

q

0
1(·)

(Rn

)

χ

k

(x). (3.7)

By analogy with (3.3), we get

I

β(·)(χB

j

)(x) ≥ I

β(·)(χB

j

)(x)χ

B

j

(x) ≥ C|x|β(x)χ
j

(x). (3.8)

Using Theorem A, Lemma 2.2, (2.8), (3.7), and (3.8), we obtain

�

�

(1 + |x|)−γ(x)

I

β(·)(fj)χk

�

�

L

q2(·)
(Rn

)

 C · 2−jnkχ
B

j

k
L

q

0
2(·)

(Rn

)

kf
j

k
L

q1(·)
(Rn

)

kχ
B

k

k
L

q2(·)
(Rn

)

 C · 2(k−j)nδ2kf
j

k
L

q1(·)
(Rn

)

. (3.9)

Therefore, combining (3.5) with (3.9) and using

λ− nδ

2

< ↵(0)  ↵1,
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we conclude that

E

13

 C sup

k0<0
k02Z

2

−k0λp1

0

@

k0
X

k=−1
2

k↵(0)p1

0

@

1
X

j=k+2

2

(k−j)nδ2kf
j

k
L

q1(·)
(Rn

)

1

A

p1
1

A

 Ckfkp1
M

˙

K

↵(·),λ
p1,q1(·)

(Rn

)

sup

k0<0
k02Z

2

−k0λp1

 

k0
X

k=−1
2

kλp1

!

 Ckfkp1
M

˙

K

↵(·),λ
p1,q1(·)

(Rn

)

.

Combining the estimates for E
11

, E

12

, and E

13

, we find

E

1

 Ckfkp1
M

˙

K

↵(·),λ
p1,q1(·)

(Rn

)

.

For E

3

, by analogy with the estimate of E

1

, in view of Theorem A, Proposition 2.2, and relations (2.8),
(3.1)–(3.4), and (3.6)–(3.9), we get

E

3

 Ckfkp1
M

˙

K

↵(·),λ
p1,q1(·)

(Rn

)

.

The joint estimate for E
1

, E

2

and E

3

implies that

�

�

(1 + |x|)−γ(x)

I

β(·)(f)
�

�

M

˙

K

↵(·),λ
p2,q2(·)

(Rn

)

 Ckfk
M

˙

K

↵(·),λ
p1,q1(·)

(Rn

)

.

Theorem 3.1 is proved.

Partially supported by the NNSF-China (Grant No. 11571160).
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