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ESTIMATION OF THE GENERALIZED BESSEL–STRUVE TRANSFORM
IN A SPACE OF GENERALIZED FUNCTIONS

S. K. Q. Al-Omari UDC 517.9

We study the so-called Bessel–Struve transform in a certain class of generalized functions called Boehmi-
ans. By using different convolution products, we generate the Boehmian spaces in which the extended
transform is well defined. We also show that the Bessel–Struve transform of a Boehmian is an isomor-
phism continuous with respect to a certain type of convergence.

1. Introduction

Although special types of what would later be known as Bessel functions were studied by Euler, Lagrange, and
the Bernoullis, the Bessel functions were first used by Bessel to describe the three-body motion with Bessel func-
tions appearing in the series expansion of planetary perturbations and series solutions to second-order differential
equations encountered in diverse situations. On the other hand, the Struve functions occur in numerous problems
of physics and applied mathematics, e.g., in optics, as the normalized line spread function, in fluid dynamics, and
also (quite prominently) in acoustics for the impedance calculations.

The normalized Bessel and Struve functions of index ↵ were, respectively, given by Watson [3] as follows:
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A kind of Fourier transforms called the Bessel–Struve transform was considered by Hamem, et al. [2]:
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and σ
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is the Bessel–Struve kernel given by the equation
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The Bessel–Struve kernel is the solution of the initial-value problem
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It additionally satisfies the integral representation
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where x 2 R and λ 2 C.
Moreover, the Bessel–Struve transform is related to the Weyl integral transform [2]
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and satisfies the relation
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where f 2 l1
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(R) and Ff is the Fourier transform of f,
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The Mellin-type convolution product of the first kind is given by the integral equation [10]
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where

dµ
↵

(x) = A(x)dx and A(x) = |x|
2↵+1

.

By (R) we denote the space of test functions with bounded supports over R. Thus, (R) is, indeed, a dense
subspace of lp(R) for every choice of p. Here, l1(0,1) denotes the Lebesgue space of complex-valued integrable
functions defined on (0,1) and lp

↵

(0,1) denotes the restriction of lp
↵

(R) to the open interval (0,1).

The following definition is very useful for our subsequent investigation:

Definition 1. Let ↵ > −1

2
, let A(t) = |t|2↵+1 , and let f, g in l1(0,1). Then we define the product ⌦ of f

and g by the integral
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where dµ(t) = A(t)dt.

By using (2) and (3), we get the following proposition:

Proposition 1. Let f, g, and h be integrable functions in l1(0,1) and let y > 0. Then

f ⌦ (g ⇥ h)(y) = (f ⌦ g)⌦ h(y).

Proof. Assume that the hypothesis of the theorem are satisfied for f, g and h in l1(0,1). Then, in view
of (2) and (3), we get
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By Fubini’s theorem, we obtain
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Changing the variables, we get
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Proposition 1 is proved.

By virtue of Proposition 2.1 of [2], we conclude that w
↵

is a bounded operator from l1
↵

(R) into l1(R). Hence,
we get the following remark:
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The proof of this remark follows from equation (1) and the injectivity of F . We therefore omit the details.
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2. Generated Spaces of Boehmians

Boehmians were used for all objects defined by an algebraic construction similar to the construction of the
field of quotients and, in some cases, it gives just the field of quotients. The appearance of Boehmians has recently
brought drastic changes in the concept of applied functional analysis. The idea of construction of Boehmians was
inspired by the concept of Mikusinski regular operators.

The minimal structure necessary for the construction of Boehmians consists of the following axioms:

A(i) A nonempty set a.

A(ii) A commutative semigroup (b, •).

A(iii) An operation ? : a⇥ b ! a such that, for each x 2 a and s1, s2 2 b,

x ? (s1 • s2) = (x ? s1) ? s2.

A(iv) A collection ∆ ⇢ bN such that:
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n
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n
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, s
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n

, t
n

) . The relation ⇠ is
an equivalence relation in Q. The space of equivalence classes in Q is denoted by b. The elements of b are called
Boehmians.

Between a and b, there is a canonical embedding expressed as

x ! x ? s
n

s
n

.

The operation ? can be extended to b⇥ a by

x
n

s
n

? t =
x
n

? t

s
n

.

The relationship between the notion of convergence and the product ? is specified as follows:

(i) if f
n

! f as n ! 1 in a and φ 2 b is any fixed element, then f
n
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(ii) if f
n
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The convergence in b is defined as follows:

A sequence (h
n

) in b is said to be δ convergent to h in b, h
n

δ! h, if there is a sequence (s
n

) 2 ∆ such
that (h

n

? s
n

), (h ? s
n

) 2 a 8k, n 2 N and (h
n

? s
k

) ! (h ? s
k

) as n ! 1, in a for every k 2 N.

A sequence (h
n

) in b is said to be ∆ convergent to h in b, h
n

∆! h, if there is a sequence (s
n

) 2 ∆ such
that (h

n

− h) ? s
n

2 a 8n 2 N and (h
n

− h) ? s
n

! 0 as n ! 1 in a.

Several integral transforms were extended to various spaces of Boehmians by numerous authors, namely,
by Al-Omari and Kilicman [9, 15, 20], Al-Omari [13], Mikusinski, and Zayed [16], Karunakaran and Roop-
kumar [17], Karunakaran and Vembu [18], Roopkumar [19], Nemzer [21], Al-Omari, Loonker, Banerji, and
Kalla [11], and many others. However, the readers are assumed to be acquainted with the abstract construction
of Boehmian spaces. Otherwise, we refer the readers to [4–9, 11, 13] and [15–21]. In what follows, we need the
following lemma:

Lemma 1. Let f 2 l1
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(0,1) and  2 (0,1). Then
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Changing the variables, we get
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Hence, equation (3) implies that
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Lemma 1 is proved.

The spaces generated here are the space β1
�
l1
↵

,,⇥),⇥,∆
�
and the space β2

�
l1, (,⇥),⌦,∆

�
. By ∆

(wherever it appears) we denote the set of delta sequences (δ
n

) from (0,1), where
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0

δ
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(x) dx = 1, (4)
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1Z

0

��δ
n

(x)
��dx < m, m is a positive real number, (5)

supp δ
n

✓ [−", "], " ! 0 as n ! 1. (6)

It is also necessary to recall some properties of the product ⇥, namely (see [12, 10]):

f ⇥ g = g ⇥ f, (7)

f ⇥ (g + h) = f ⇥ g + f ⇥ h, (8)

f ⇥ (g ⇥ h) = (f ⇥ g)⇥ h, (9)

(↵f)⇥ g = ↵ (f ⇥ g) = f ⇥ (↵g) , ↵ 2 C. (10)

We merely generate the space β1
�
l1
↵

, (,⇥),⇥,∆
�
, while the space β2

�
l1, (,⇥),⌦,∆

�
can be generated

similarly.

Theorem 1. Let f 2 l1
↵

(0,1) and  2 (0,1), ↵ > −1

2
. Then f ⇥  2 l1

↵

(0,1).

Proof. Let f 2 l1
↵

(0,1) and  2 (0,1) be given. Assume that K = [a, b], 0 < a < b, is a compact

subset of (0,1) such that supp ✓ K. Then, for ↵ > −1

2
, we obtain

1Z

0

|f ⇥  (y)| dµ(y) =
1Z

0

������

1Z

0

f
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�
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������
dµ(y)


bZ
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0
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��� dµ(y) dt.

By the change of variables z = yt−1, we get
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|f ⇥  (y)| dµ(y) 
bZ

a

| (t)| t2↵ dt
1Z

0

|f(z)| dµ(z).

This can be interpreted as follows:

��f ⇥  (y)
��1
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 m⇤ kfk1
↵

, (11)

where

m⇤ =

bZ

a

| (t)| t2↵dt.

Theorem 1 is proved.
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Theorem 2. Let f 2 l1
↵

(0,1) and  1, 2 2 (0,1), ↵ > −1

2
. Then

(i) f ⇥ ( 1 +  2) = f ⇥  1 + f ⇥  2,

(ii) f ⇥ ( 1 ⇥  2) = (f ⇥  1)⇥ ( 2),

(iii) (↵f)⇥  1 = ↵ (f ⇥  1) = f ⇥ (↵ 1), ↵ 2 C.

The proofs of identities (i) and (iii) follow from simple integral calculus. Identity (ii) directly follows from (9).
This proves the theorem.

Theorem 3. Let f
n

! f 2 l1
↵

(0,1) as n ! 1 and let  2 (0,1), ↵ > −1

2
. Then

f
n

⇥  ! f ⇥  as n ! 1

in l1
↵

(0,1).

This theorem is proved by simple integration. Hence, we omit the details.

Theorem 4. Let f 2 l1
↵

(0,1) and let (δ
n

) 2 ∆,↵ > −1

2
. Then

f ⇥ δ
n

! f as n ! 1

in l1
↵

(0,1).

Proof. Assume that f 2 l1
↵

(0,1) and (δ
n

) 2 ∆ are given. Since the space (0,1) is dense in l1
↵

(0,1)

we can find  2 (0,1) such that

kf −  k1
↵

< " (12)

for " > 0.

Moreover, by virtue of (11) and the fact that (δ
n

) 2 (0,1), we obtain

��(f −  )⇥ δ
n

��1
↵

 m⇤ kf −  k1
↵

for a real number m⇤.

Hence, inserting (12) in above equation we get

��(f −  )⇥ δ
n

��1
↵

 "m⇤. (13)

Thus, we get

�� ⇥ δ
n

−  
��1
↵

=

1Z

0

|( ⇥ δ
n

−  ) (y)| dµ(y)

=

1Z

0

������

1Z

0

 
�
yt−1

�
t−1δ

n

(t)dt−  (y)

1Z

0

δ
n

(t)dt

������
dµ(y)
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1Z

0

1Z

0

�� 
�
yt−1

�
t−1 −  (y)

�� |δ
n

(t)| dt dµ(y). (14)

Now, let g
y

(t) =  
�
yt−1

�
t−1. Then g

y

(t) is a uniformly continuous function in (0,1). Therefore, we can
find δ > 0 such that

��g
y

(t)− g(1)
�� < " whenever |y − 1| < δ.

Thus, using (4) in (14), we conclude that

�� ⇥ δ
n

−  
��1
↵


1Z

0

1Z

0

��g
y

(t)− g
y

(1)
��|δ

n

(t)| dt dµ(y)  "

dZ

c

dµ(y), (15)

where [a, b] is an interval containing the support of g
y

.

Therefore, inequality (15) implies that

�� ⇥ δ
n

−  
��1
↵

 A", (16)

where

A =

dZ

c

dµ(y).

In view of (13), (16) and (12), we arrive at the inequalities

��f ⇥ δ
n

− f
��1
↵


��(f −  )⇥ δ

n

��1
↵

+
�� ⇥ δ

n

−  
��1
↵

t kf −  k1
↵

 "m⇤ +A"+ ".

Hence, the equation presented above gives

��f ⇥ δ
n

− f
��1
↵

 B",

where B = m⇤ +A+ 1.

Theorem 4 is proved.

Thus, the space β1
�
l1
↵

, (,⇥),⇥,∆
�
is generated.

The sum of two Boehmians in β1
�
l1
↵

, (,⇥),⇥,∆
�
and the procedure of multiplication by a scalar can be

defined as follows:

(f

n

)

(δ
n

)

�
+


(g

n

)

( 
n

)

�
=


(f

n

)⇥  
n

+ (g
n

)⇥ (δ
n

)

(δ
n

)⇥ ( 
n

)

�

and

↵


(f

n

)

(δ
n

)

�
=


↵(f

n

)

(δ
n

)

�
,

where ↵ 2 C and C is the space of complex numbers.
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The operation ⇥ and the operation of differentiation are defined as follows:


(f

n

)

(δ
n

)

�
⇥

(g

n

)

( 
n

)

�
=


(f

n

)⇥ (g
n

)

(δ
n

)⇥ ( 
n

)

�

and

D↵


(f

n

)

(δ
n

)

�
=


D↵(f

n

)

(δ
n

)

�
,

respectively.
A sequence of Boehmians (β

n

) in β1
�
l1
↵

, (,⇥),⇥,∆
�
is said to be δ convergent to a Boehmian β in

β1
�
l1
↵

, (,⇥),⇥,∆
�
denoted by β

n

δ! β, if there exists a delta-sequence (δ
n

) such that

(β
n

⇥ δ
k

), (β ⇥ δ
k

) 2 l1
↵

8k, n 2 N,

and

(β
n

⇥ δ
k

) ! (β ⇥ δ
k

) as n ! 1, in l1
↵

, for every k 2 N.

The equivalent statement for the δ convergence has the following form:
β
n

δ! β (n ! 1) in β1
�
l1
↵

, (,⇥),⇥,∆
�
if and only if there exist ('

n,k

), ('
k

) 2 l1
↵

and (δ
k

) 2 ∆ such
that

β
n

=


('

n,k

)

(δ
k

)

�
, β =


('

k

)

(δ
k

)

�
,

and

'
n,k

! '
k

as n ! 1

in l1
↵

for each k 2 N.
A sequence of Boehmians (β

n

) in β1
�
l1
↵

, (,⇥),⇥,∆
�
is said to be ∆ convergent to a Boehmian β in

β1
�
l1
↵

, (,⇥),⇥,∆
�
denoted by β

n

∆! β, if there exists (δ
n

) 2 ∆ such that (β
n

− β) ⇥ δ
n

2 l1
↵

8n 2 N
and (β

n

− β)⇥ δ
n

! 0 as n ! 1 in l1
↵

.

Similarly, the following theorems generate the Boehmian space β1
�
l1
↵

, (,⇥),⇥,∆
�
.

Theorem 5. Let f 2 l1(0,1) and  2 (0,1). Then f ⌦  2 l1(0,1).

Theorem 6. Let f 2 l1(0,1) and  1, 2 2 (0,1). Then

(i) f ⌦ ( 1 +  2) = f ⌦  1 + f ⌦  2,

(ii) (↵f)⌦  1 = ↵ (f ⌦  1) = f ⌦ (↵ 1), ↵ 2 C.

Theorem 7. For f 2 l1(0,1) and  1, 2 2 (0,1), the following relation is true:

f ⌦ ( 1 ⇥  2) = (f ⌦  1)⌦  2.

The proofs of Theorems 5 and 6 are similar to the proofs of Theorems 1 and 2, respectively. The proof of
Theorem 7 follows from Proposition 1.
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Theorem 8.

(i) Let f
n

! f in l1(0,1) as n ! 1 and let  2 (0,1). Then f
n

⌦  ! f ⌦  as n ! 1.

(ii) Let f
n

2 l1(0,1) and let (δ
n

) 2 ∆. Then f
n

⌦ δ
n

! f as n ! 1.

The proof of Part (i) of the theorem is obtained by simple integration, whereas proof of the second part is
analogous to the proof of Theorem 3. Hence, we prefer to omit the details.

The sum of two Boehmians in β2
�
l1, (,⇥),⌦,∆

�
and the operation of multiplication by a scalar can be

also defined as follows:

(f

n

)

(δ
n

)

�
+


(g

n

)

("
n

)

�
=


(f

n

)⌦ "
n

+ (g
n

)⌦ (δ
n

)

(δ
n

)⇥ ("
n

)

�

and

↵


(f

n

)

(δ
n

)

�
=


↵
(f

n

)

(δ
n

)

�
=


↵(f

n

)

(δ
n

)

�
,

where ↵ 2 C and C is the space of complex numbers.
The operation ⌦ and the operation of differentiation are, respectively, defined as


(f

n

)

(δ
n

)

�
⌦

(g

n

)

("
n

)

�
=


(f

n

)⌦ (g
n

)

(δ
n

)⇥ ("
n

)

�

and

Dk


(f

n

)

(δ
n

)

�
=


Dk(f

n

)

(δ
n

)

�
.

The notions of δ - and ∆-convergence in β1
�
l1
↵

, (,⇥),⇥,∆
�
and β2

�
l1, (,⇥),⌦,∆

�
can be defined in

a natural way as above.

3. The Bessel–Struve Transform of a Boehmian

Let β 2 β1
�
l1
↵

, (,⇥),⇥,∆
�
and β =

⇥
(f

n

)(δ
n

)
⇤
. Then, for every ↵ > −1

2
, we define the Bessel–Struve

transform of β as follows:

f̆
↵

β,s

✓
(f

n

)

(δ
n

)

�◆
=

"�
f↵

β,s

f
n

�

(δ
n

)

#
. (17)

The right-hand side of (17) belongs to β2
�
l1, (,⇥),⌦,∆

�
by virtue of Remark 1. The definition presented

above is indeed well defined. Let

(f

n

)

(!
n

)

�
=


(g

n

)

("
n

)

�
2 β1

�
l1
↵

, (,⇥),⇥,∆
�
.

Then, by the notion of equivalence classes in β1
�
l1
↵

, (,⇥),⇥,∆
�
, we find

f
n

⇥ "
m

= g
m

⇥ !
n

.
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Relation (17) and the notion of equivalence classes in β2
�
l1, (,⇥),⌦,∆

�
yield

f↵

β,s

f
n

⌦ "
m

= f↵

β,s

g
m

⌦ !
n

.

Hence, we conclude that
�
f↵

β,s

f
n

�

(!
n

)
⇠
�
f↵

β,s

g
n

�

("
n

)
in β2

�
l1, (,⇥),⌦,∆

�
.

Thus, we get
"�

f↵

β,s

f
n

�

(!
n

)

#
=

"�
f↵

β,s

g
n

�

("
n

)

#
.

This proves the claim.

Theorem 9. f̆
↵

β,s

is an isomorphism from β1
�
l1
↵

,,⇥),⇥,∆
�
into β2

�
l1, (,⇥),⌦,∆

�
.

Proof. We first establish that f̆
↵

β,s

is injective. Given

f̆
↵

β,s

✓
(f

n

)

(!
n

)

�◆
= f̆

↵

β,s

✓
(g

n

)

("
n

)

�◆
,

by virtue of Lemma 1 and the notion of equivalent classes of β2
�
l1, (,⇥),⌦,∆

�
, we conclude that

f↵

β,s

f
n

⌦ "
m

= f↵

β,s

g
m

⌦ !
n

.

Therefore, Lemma 1 implies that f↵

β,s

(f
n

⇥ "
m

) = f↵

β,s

(g
m

⇥ !
n

). Employing f↵

β,s

gives

f
n

⇥ "
m

= g
m

⇥ !
n

.

On the other hand, the notion of equivalent classes in β1
�
l1
↵

, (,⇥),⇥,∆
�
yields


(f

n

)

(!
n

)

�
=


(g

n

)

("
n

)

�
.

We now show that f̆
↵

β,s

is a surjective mapping. Let

"�
f↵

β,s

f
n

�

(!
n

)

#
2 β2

�
l1, (,⇥),⌦,∆

�

be arbitrary. Then

f↵

β,s

f
n

⌦ !
m

= f↵

β,s

f
m

⌦ !
n

for any choice of m,n 2 N. Hence, for every m,n 2 N, f
n

, f
m

2 l1
↵

(0,1), satisfy the relation

f↵

β,s

�
f
n

⇥ !
m

�
= f↵

β,s

�
f
m

⇥ !
n

�
.
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This means that

(f

n

)

(!
n

)

�
2 β1

�
l1
↵

, (,⇥),⇥,∆
�

is such that

f̆
↵

β,s

✓
(f

n

)

(!
n

)

�◆
=

"�
f↵

β,s

f
n

�

(!
n

)

#
.

Theorem 9 is proved.

In addition, we now deduce the formula of extension of ⇥ to β1
�
l1
↵

, (,⇥),⇥,∆
�
as follows:

f̆
↵

β,s

✓
(f

n

)

(!
n

)

�
⇥ φ

◆
= f̆

↵

β,s

✓
(f

n

)

(!
n

)

�◆
⌦ φ.

It can be proved as follows: By virtue of (17) we can write

f̆
↵

β,s

✓
(f

n

)

(!
n

)

�
⇥ φ

◆
=

"�
f↵

β,s

(f
n

⇥ φ)
�

(!
n

)

#
.

Hence, Lemma 1 gives

f̆
↵

β,s

✓
(f

n

)

(!
n

)

�
⇥ φ

◆
=

"�
f↵

β,s

f
n

⌦ φ
�

(!
n

)

#
.

The definition of the product ⇥ implies that

f̆
↵

β,s

✓
(f

n

)

(!
n

)

�
⇥ φ

◆
=

"�
f↵

β,s

f
n

�

(!
n

)

#
⇥ φ.

Thus, it follows from relation (17) that

f̆
↵

β,s

✓
(f

n

)

(!
n

)

�
⇥ φ

◆
= f̆

↵

β,s

✓
(f

n

)

(!
n

)

�◆
⌦ φ.

Hence, it is now possible to conclude that

f̆
↵

β,s

✓
(f

n

)

(!
n

)

�
⇥ φ

◆
= f̆

↵

β,s

✓
(f

n

)

(!
n

)

�◆
⌦ φ.

Theorem 10. f̆
↵

β,s

: β1
�
l1
↵

, (,⇥),⇥,∆
�

! β2
�
l1, (,⇥),⌦,∆

�
is continuous with respect to the δ -

and ∆-convergence.

This theorem is proved by using a technique similar to the technique presented below in the citations.
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