NEW FRACTIONAL INTEGRAL INEQUALITIES FOR DIFFERENTIABLE CONVEX FUNCTIONS AND THEIR APPLICATIONS

K.-L. Tseng and K.-C. Hsu

UDC 517.5

We establish some new fractional integral inequalities for differentiable convex functions and give several applications for the Beta-function.

1. Introduction

Throughout this paper, we assume that a < b in \mathbb{R} .

The inequality

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le \frac{f(a)+f(b)}{2} \tag{1.1}$$

which holds for all convex functions $f:[a,b] \to \mathbb{R}$, is known in the literature as the Hermite-Hadamard inequality [7].

For some results generalizing, improving, and extending the inequality (1.1), see [1–6] and [8–17].

In [14], Tseng, et al. established the following Hermite–Hadamard-type inequality refining inequality (1.1).

Theorem A. Suppose that $f:[a,b] \to \mathbb{R}$ is a convex function on [a,b]. Then

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{2} \left[f\left(\frac{3a+b}{4}\right) + f\left(\frac{a+3b}{4}\right) \right]$$

$$\le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le \frac{1}{2} \left[f\left(\frac{a+b}{2}\right) + \frac{(a)+f(b)}{2} \right] \le \frac{f(a)+f(b)}{2}. \tag{1.2}$$

The third inequality in (1.2) is known in the literature as the Bullen inequality.

In [4], Dragomir and Agarwal established the following results connected with the second inequality in (1.1).

Theorem B. Let $f:[a,b] \to \mathbb{R}$ be a differentiable function on (a,b) with a < b. If |f'| is convex on [a,b], then

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) \, dx \right| \le \frac{b - a}{8} \left(\left| f'(a) \right| + \left| f'(b) \right| \right)$$

which is the trapezoid inequality provided that |f'| is convex on [a, b].

Aletheia University, Tamsui, Taiwan.

Published in Ukrains'kyi Matematychnyi Zhurnal, Vol. 69, No. 3, pp. 407–425, March, 2017. Original article submitted November 18, 2015.

In [11], Kirmaci and Özdemir established the following results connected with the first inequality in (1.1):

Theorem C. Under the assumptions of Theorem B, the following inequality is true:

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - f\left(\frac{a+b}{2}\right) \right| \le \frac{b-a}{8} \left(\left| f'(a) \right| + \left| f'(b) \right| \right),$$

which is the midpoint inequality provided that |f'| is convex on [a, b].

In [12], Pearce and Pečarić established the following Hermite–Hadamard-type inequalities for differentiable functions:

Theorem D. If $f: I^o \subseteq R \to R$ is a differentiable mapping on $I^o, a, b \in I^o$ with

$$a < b$$
, $f' \in L_1[a, b]$, $q \ge 1$,

and $|f'|^q$ is convex on [a,b], then the following inequalities are true:

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) \, dx \right| \le \frac{b - a}{4} \left[\frac{|f'(a)|^{q} + |f'(b)|^{q}}{2} \right]^{1/q},$$

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - f\left(\frac{a+b}{2}\right) \right| \le \frac{b-a}{4} \left[\frac{|f'(a)|^q + |f'(b)|^q}{2} \right]^{1/q}.$$

We now recall the following definition [13]:

Definition 1.1. Let $f \in L_1[a,b]$. The Riemann–Liouville integrals

$$J_{a^+}^{\alpha}f$$
 and $J_{b^-}^{\alpha}f$

of order $\alpha > 0$ with $a \ge 0$ are defined by

$$J_{a+}^{\alpha} f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x-t)^{\alpha-1} f(t) dt, \quad x > a,$$

and

$$J_{b^{-}}^{\alpha} f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (t - x)^{\alpha - 1} f(t) dt, \quad x < b,$$

respectively. Here, $\Gamma(\alpha)$ is the Gamma-function and

$$J_{a^+}^0 f(x) = J_{b^-}^0 f(x) = f(x).$$

In [13], Sarikaya, et al. established the following Hermite–Hadamard-type inequalities for the fractional integrals:

Theorem E. Let $f:[a,b] \to \mathbb{R}$ be positive with $0 \le a < b$ and $f \in L_1[a,b]$. If f is a convex function on [a,b], then

$$f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} \left[J_{a^+}^{\alpha}f(b) + J_{b^-}^{\alpha}f(a)\right] \leq \frac{f(a)+f(b)}{2}$$

for $\alpha > 0$.

480

Theorem F. *Under the assumptions of Theorem B, the following inequality is true:*

$$\left|\frac{f(a)+f(b)}{2}-\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}\left[J_{a^{+}}^{\alpha}f(b)+J_{b^{-}}^{\alpha}f(a)\right]\right|\leq\frac{2^{\alpha}-1}{2^{\alpha+1}(\alpha+1)}(b-a)\left(\left|f'(a)\right|+\left|f'(b)\right|\right)$$

for $\alpha > 0$.

In [9], Hwang, et al. established the following fractional integral inequalities:

Theorem G. Under the assumptions of Theorem B, the following Hermite–Hadamard-type inequality is true for fractional integrals:

$$\begin{split} \left| \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] - f\left(\frac{a+b}{2}\right) \right| \\ & \leq \frac{b-a}{4(\alpha+1)} \left(\alpha - 1 + \frac{1}{2^{\alpha-1}}\right) \left(\left| f'(a) \right| + \left| f'(b) \right| \right) \end{split}$$

for $\alpha > 0$.

Theorem H. Under the assumptions of Theorem B, the following inequality for fractional integrals is true with $\frac{f\left(\frac{3a+b}{4}\right)+f\left(\frac{a+3b}{4}\right)}{2}$:

$$\left| \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] - \frac{1}{2} \left[f\left(\frac{3a+b}{4}\right) + f\left(\frac{a+3b}{4}\right) \right] \right| \\
\leq \left(\frac{1}{8} + \frac{3^{\alpha+1} - 2^{\alpha+1} + 1}{4^{\alpha+1}(\alpha+1)} - \frac{1}{2(\alpha+1)} \right) (b-a) \left(\left| f'(a) \right| + \left| f'(b) \right| \right) \tag{1.3}$$

for $\alpha > 0$.

Theorem I. Under the assumptions of Theorem B, the following Bullen-type inequality for fractional integrals is true:

$$\left| \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] - \left[\frac{3^{\alpha}-1}{4^{\alpha}} f\left(\frac{a+b}{2}\right) + \frac{4^{\alpha}-3^{\alpha}+1}{4^{\alpha}} \frac{f(a)+f(b)}{2} \right] \right|$$

$$\leq \frac{1}{\alpha+1} \left(\frac{2^{\alpha}+1}{2^{\alpha+1}} - \frac{3^{\alpha+1}+1}{4^{\alpha+1}} \right) (b-a) \left(\left| f'(a) \right| + \left| f'(b) \right| \right) \tag{1.4}$$

for $\alpha > 0$.

Theorem J. Under the assumptions of Theorem B, the following Simpson-type inequality for fractional integrals is true:

$$\left| \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] - \left[\frac{5^{\alpha}-1}{6^{\alpha}} f\left(\frac{a+b}{2}\right) + \frac{6^{\alpha}-5^{\alpha}+1}{6^{\alpha}} \frac{f(a)+f(b)}{2} \right] \right| \\
\leq \left[\frac{1}{\alpha+1} \left(\frac{2^{\alpha}+1}{2^{\alpha+1}} - \frac{5^{\alpha+1}+1}{6^{\alpha+1}} \right) + \left(\frac{5^{\alpha}-1}{12 \cdot 6^{\alpha}} \right) \right] (b-a) \left(\left| f'(a) \right| + \left| f'(b) \right| \right) \tag{1.5}$$

for $\alpha > 0$.

Remark 1.1.

- (1) The assumption that $f:[a,b] \to \mathbb{R}$ is positive with $0 \le a < b$ in Theorem E can be weakened as $f:[a,b] \to \mathbb{R}$ with a < b.
- (2) In Theorem D, let q = 1. Then Theorem D reduces to Theorems B and C.
- (3) In Theorems F and G, let $\alpha = 1$. Then Theorems F and G reduce to Theorems B and C, respectively.
- (4) In Theorem H, let $\alpha = 1$. Then inequality (1.3) is connected with the second inequality in (1.2).
- (5) In Theorem I, let $\alpha = 1$. Then inequality (1.4) is a Bullen-type inequality.
- (6) In Theorem J, let $\alpha = 1$. Then inequality (1.5) is a Simpson-type inequality.

In the present paper, we establish some new Hermite–Hadamard-type inequalities for the fractional integrals generalizing Theorems D and G–J. Some applications for the Beta-function are given.

2. Main Results

Theorem 2.1. Under the assumptions of Theorem D, the following Hermite–Hadamard-type inequality for fractional integrals is true:

$$\left| \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] - f\left(\frac{a+b}{2}\right) \right| \\
\leq \frac{b-a}{2(\alpha+1)} \left(\alpha - 1 + \frac{1}{2^{\alpha-1}}\right) \left[\frac{|f'(a)|^{q} + |f'(b)|^{q}}{2} \right]^{1/q}$$
(2.1)

for $\alpha > 0$.

Proof. In [9], we assume that

$$h_1(x) = \begin{cases} (b-x)^{\alpha} - (x-a)^{\alpha} - (b-a)^{\alpha}, & x \in \left[a, \frac{a+b}{2}\right), \\ (b-x)^{\alpha} - (x-a)^{\alpha} + (b-a)^{\alpha}, & x \in \left[\frac{a+b}{2}, b\right]. \end{cases}$$

Then the following identities are true:

$$\frac{1}{2(b-a)^{\alpha}} \int_{a}^{b} h_{1}(x)f'(x) dx$$

$$= \frac{\alpha}{2(b-a)^{\alpha}} \int_{a}^{b} \left[(x-a)^{\alpha-1} + (b-x)^{\alpha-1} \right] f(x) dx - f\left(\frac{a+b}{2}\right)$$

$$= \frac{\alpha\Gamma(\alpha)}{2(b-a)^{\alpha}} \left[J_{a+}^{\alpha} f(b) + J_{b-}^{\alpha}(a) \right] - f\left(\frac{a+b}{2}\right)$$

$$= \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} \left[J_{a+}^{\alpha} f(b) + J_{b-}^{\alpha}(a) \right] - f\left(\frac{a+b}{2}\right). \tag{2.2}$$

As a result of simple computation, we arrive at the following identities:

$$x = \frac{b-x}{b-a}a + \frac{x-a}{b-a}b, \quad x \in [a,b],$$
 (2.3)

$$\int_{a}^{\frac{a+b}{2}} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$+ \int_{\frac{a+b}{2}}^{b} [(b-x)^{\alpha} - (x-a)^{\alpha} + (b-a)^{\alpha}] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$= \int_{a}^{\frac{a+b}{2}} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$+ \int_{a}^{\frac{a+b}{2}} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] \frac{x-a}{b-a} |f'(a)|^{q} dx$$

$$= |f'(a)|^{q} \int_{a}^{\frac{a+b}{2}} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] dx := M_{1}, \tag{2.4}$$

$$\int_{a}^{\frac{a+b}{2}} \left[(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha} \right] \frac{x-a}{b-a} \left| f'(b) \right|^{q} dx$$

$$+ \int_{\frac{a+b}{2}}^{b} \left[(b-x)^{\alpha} - (x-a)^{\alpha} + (b-a)^{\alpha} \right] \frac{x-a}{b-a} \left| f'(b) \right|^{q} dx$$

$$= \int_{a}^{\frac{a+b}{2}} \left[(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha} \right] \frac{x-a}{b-a} \left| f'(b) \right|^{q} dx$$

$$+ \int_{a}^{\frac{a+b}{2}} \left[(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha} \right] \frac{b-x}{b-a} \left| f'(b) \right|^{q} dx$$

$$= \left| f'(b) \right|^{q} \int_{a}^{\frac{a+b}{2}} \left[(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha} \right] dx := M_{2}, \tag{2.5}$$

$$\int_{a}^{b} |h_1(x)| dx = 2 \int_{a}^{\frac{a+b}{2}} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] dx.$$
 (2.6)

Further, by using the power mean inequality, identities (2.3)–(2.6) and the convexity of $|f'|^q$, we obtain the inequality

$$\left| \int_{a}^{b} h_{1}(x)f'(x) dx \right| \leq \int_{a}^{b} |h_{1}(x)| |f'(x)| dx$$

$$\leq \left[\int_{a}^{b} |h_{1}(x)| dx \right]^{\frac{q-1}{q}} \left[\int_{a}^{b} |h_{1}(x)| |f'(x)|^{q} dx \right]^{1/q}$$

$$= \left[\int_{a}^{b} |h_{1}(x)| dx \right]^{\frac{q-1}{q}} \left[\int_{a}^{\frac{a+b}{2}} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] |f'(x)|^{q} dx \right]$$

$$+ \int_{\frac{a+b}{2}}^{b} [(b-x)^{\alpha} - (x-a)^{\alpha} + (b-a)^{\alpha}] |f'(x)|^{q} dx$$

$$\leq \left[\int_{a}^{b} |h_{1}(x)| dx \right]^{\frac{q-1}{q}} (M_{1} + M_{2})^{1/q} \\
= 2 \int_{a}^{\frac{a+b}{2}} \left[(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha} \right] dx \left[\frac{|f'(a)|^{q} + |f'(b)|^{q}}{2} \right]^{1/q} \\
= \frac{(b-a)^{\alpha+1}}{\alpha+1} \left(\alpha - 1 + \frac{1}{2^{\alpha-1}} \right) \left[\frac{|f'(a)|^{q} + |f'(b)|^{q}}{2} \right]^{1/q} .$$
(2.7)

Inequality (2.1) follows from identity (2.2) and inequality (2.7). Theorem 2.1 is proved.

Remark 2.1. In Theorem 2.1, let q = 1. Then Theorem 2.1 reduces to Theorem G.

Theorem 2.2. Under the assumptions of Theorem D, the following inequality for fractional integrals is true with $\frac{f\left(\frac{3a+b}{4}\right)+f\left(\frac{a+3b}{4}\right)}{2}:$

$$\left| \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha} f(a) \right] - \frac{1}{2} \left[f\left(\frac{3a+b}{4}\right) + f\left(\frac{a+3b}{4}\right) \right] \right| \\
\leq \left(\frac{1}{4} + \frac{3^{\alpha+1} - 2^{\alpha+1} + 1}{2 \cdot 4^{\alpha}(\alpha+1)} - \frac{1}{\alpha+1} \right) (b-a) \left[\frac{|f'(a)|^{q} + |f'(b)|^{q}}{2} \right]^{1/q} \tag{2.8}$$

for $\alpha > 0$.

Proof. In [9], let

$$h_2(x) = \begin{cases} (b-x)^{\alpha} - (x-a)^{\alpha} - (b-a)^{\alpha}, & x \in \left[a, \frac{3a+b}{4}\right), \\ (b-x)^{\alpha} - (x-a)^{\alpha}, & x \in \left[\frac{3a+b}{4}, \frac{a+3b}{4}\right), \\ (b-x)^{\alpha} - (x-a)^{\alpha} + (b-a)^{\alpha}, & x \in \left[\frac{a+3b}{4}, b\right]. \end{cases}$$

Then the following identities hold:

$$\frac{1}{2(b-a)^{\alpha}} \int_{a}^{b} h_2(x)f'(x) dx = \frac{\alpha}{2(b-a)^{\alpha}} \int_{a}^{b} \left[(x-a)^{\alpha-1} + (b-x)^{\alpha-1} \right] f(x) dx$$
$$-\frac{f\left(\frac{3a+b}{4}\right) + f\left(\frac{a+3b}{4}\right)}{2}$$

$$= \frac{\alpha\Gamma(\alpha)}{2(b-a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha}(a) \right] - \frac{f\left(\frac{3a+b}{4}\right) + f\left(\frac{a+3b}{4}\right)}{2}$$

$$= \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} \left[J_{a^{+}}^{\alpha} f(b) + J_{b^{-}}^{\alpha}(a) \right] - \frac{1}{2} \left[f\left(\frac{3a+b}{4}\right) + f\left(\frac{a+3b}{4}\right) \right]. \tag{2.9}$$

As a result of simple computation, we arrive at the identities

$$\int_{a}^{3a+b} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$+ \int_{\frac{a+3b}{4}}^{b} [(b-x)^{\alpha} - (x-a)^{\alpha} + (b-a)^{\alpha}] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$= \int_{a}^{3a+b} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$+ \int_{a}^{3a+b} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] \frac{x-a}{b-a} |f'(a)|^{q} dx$$

$$= |f'(a)|^{q} \int_{a}^{3a+b} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] dx := N_{1}, \qquad (2.10)$$

$$\int_{a}^{3a+b} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] \frac{x-a}{b-a} |f'(b)|^{q} dx$$

$$+ \int_{\frac{a+3b}{4}}^{b} [(b-x)^{\alpha} - (x-a)^{\alpha} + (b-a)^{\alpha}] \frac{x-a}{b-a} |f'(b)|^{q} dx$$

$$= \int_{a}^{3a+b} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] \frac{x-a}{b-a} |f'(b)|^{q} dx$$

$$+ \int_{a}^{3a+b} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] \frac{x-a}{b-a} |f'(b)|^{q} dx$$

$$+ \int_{a}^{3a+b} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] \frac{b-x}{b-a} |f'(b)|^{q} dx$$

$$= |f'(b)|^q \int_a^{\frac{3a+b}{4}} [(b-a)^\alpha - (b-x)^\alpha + (x-a)^\alpha] dx := N_2, \tag{2.11}$$

$$\int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} \right] \frac{b-x}{b-a} \left| f'(a) \right|^q dx$$

$$+ \int_{\frac{a+b}{2}}^{\frac{a+3b}{4}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} \right] \frac{b-x}{b-a} \left| f'(a) \right|^{q} dx$$

$$= \int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} \right] \frac{b-x}{b-a} \left| f'(a) \right|^{q} dx$$

$$+ \int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} \right] \frac{x-a}{b-a} \left| f'(a) \right|^{q} dx$$

$$= \left| f'(a) \right|^q \int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} \left[(b-x)^\alpha - (x-a)^\alpha \right] dx := N_3, \tag{2.12}$$

$$\int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} \right] \frac{x-a}{b-a} \left| f'(b) \right|^{q} dx$$

$$+ \int_{\frac{a+b}{2}}^{\frac{a+3b}{4}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} \right] \frac{x-a}{b-a} \left| f'(b) \right|^{q} dx$$

$$= \int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} \right] \frac{x-a}{b-a} \left| f'(b) \right|^q dx$$

$$+ \int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} [(b-x)^{\alpha} - (x-a)^{\alpha}] \frac{b-x}{b-a} |f'(b)|^{q} dx$$

$$= |f'(b)|^q \int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} [(b-x)^\alpha - (x-a)^\alpha] dx := N_4, \tag{2.13}$$

$$\int_{a}^{b} |h_{2}(x)| dx = 2 \left[\int_{a}^{\frac{3a+b}{4}} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] dx + \int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} [(b-x)^{\alpha} - (x-a)^{\alpha}] dx \right].$$
 (2.14)

Further, by using the power mean inequality, identities (2.3), (2.10)–(2.14), and the convexity of $|f'|^q$, we get the inequality

$$\left| \int_{a}^{b} h_{2}(x)f'(x) dx \right| \leq \int_{a}^{b} |h_{2}(x)| |f'(x)| dx$$

$$\leq \left[\int_{a}^{b} |h_{2}(x)| dx \right]^{\frac{q-1}{q}} \left[\int_{a}^{b} |h_{2}(x)| |f'(x)|^{q} dx \right]^{1/q}$$

$$= \left[\int_{a}^{b} |h_{2}(x)| dx \right]^{\frac{q-1}{q}} \left[\int_{a}^{\frac{3a+b}{4}} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] |f'(x)|^{q} dx \right]$$

$$+ \int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} [(b-x)^{\alpha} - (x-a)^{\alpha}] |f'(x)|^{q} dx$$

$$+ \int_{\frac{a+b}{2}}^{b} [(x-a)^{\alpha} - (b-x)^{\alpha}] |f'(x)|^{q} dx$$

$$+ \int_{\frac{a+b}{2}}^{b} [(b-x)^{\alpha} - (x-a)^{\alpha} + (b-a)^{\alpha}] |f'(x)|^{q} dx$$

$$\leq \left[\int_{a}^{b} |h_{2}(x)| dx\right]^{\frac{q-1}{q}} (N_{1} + N_{2} + N_{3} + N_{4})$$

$$= 2 \left[\int_{a}^{\frac{3a+b}{4}} [(b-a)^{\alpha} - (b-x)^{\alpha} + (x-a)^{\alpha}] dx\right]$$

$$+ \int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} [(b-x)^{\alpha} - (x-a)^{\alpha}] dx \left[\left[\frac{|f'(a)|^{q} + |f'(b)|^{q}}{2}\right]^{1/q}\right]$$

$$= \left(\frac{1}{2} + \frac{3^{\alpha+1} - 2^{\alpha+1} + 1}{4^{\alpha}(\alpha+1)} - \frac{2}{\alpha+1}\right)(b-a)^{\alpha+1} \left[\frac{|f'(a)|^{q} + |f'(b)|^{q}}{2}\right]^{1/q}. \tag{2.15}$$

Inequality (2.8) follows from identity (2.9) and inequality (2.15). Theorem 2.2 is proved.

Remark 2.2.

- (1) In Theorem 2.2, let q = 1. Then Theorem 2.2 reduces to Theorem H.
- (2) In Theorems 2.1 and 2.2, let $\alpha = 1$. Then Theorems 2.1 and 2.2 reduce to Theorem D.

Theorem 2.3. *Under the assumptions of Theorem D, the following Bullen-type inequality for fractional integrals is true:*

$$\left| \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} \left[J_{a+}^{\alpha} f(b) + J_{b-}^{\alpha} f(a) \right] - \left[\frac{3^{\alpha}-1}{4^{\alpha}} f\left(\frac{a+b}{2}\right) + \frac{4^{\alpha}-3^{\alpha}+1}{4^{\alpha}} \frac{f(a)+f(b)}{2} \right] \right| \\
\leq \frac{1}{\alpha+1} \left(\frac{2^{\alpha}+1}{2^{\alpha}} - \frac{3^{\alpha+1}+1}{2\cdot 4^{\alpha}} \right) (b-a) \left[\frac{|f'(a)|^q + |f'(b)|^q}{2} \right]^{1/q} \tag{2.16}$$

for $\alpha > 0$.

Proof. Let

$$h_3(x) = \begin{cases} (b-x)^{\alpha} - (x-a)^{\alpha} - \frac{3^{\alpha} - 1}{4^{\alpha}} (b-a)^{\alpha}, & x \in \left[a, \frac{a+b}{2}\right), \\ (b-x)^{\alpha} - (x-a)^{\alpha} + \frac{3^{\alpha} - 1}{4^{\alpha}} (b-a)^{\alpha}, & x \in \left[\frac{a+b}{2}, b\right]. \end{cases}$$

Then the following identities are true:

$$\frac{1}{2(b-a)^{\alpha}} \int_{a}^{b} h_{3}(x)f'(x) dx$$

$$= \frac{\alpha}{2(b-a)^{\alpha}} \int_{a}^{b} \left[(x-a)^{\alpha-1} + (b-x)^{\alpha-1} \right] f(x) dx$$

$$- \left[\frac{3^{\alpha}-1}{4^{\alpha}} f\left(\frac{a+b}{2}\right) + \frac{4^{\alpha}-3^{\alpha}+1}{4^{\alpha}} \frac{f(a)+f(b)}{2} \right]$$

$$= \frac{\alpha\Gamma(\alpha)}{2(b-a)^{\alpha}} \left[J_{a+}^{\alpha} f(b) + J_{b-}^{\alpha}(a) \right]$$

$$- \left[\frac{3^{\alpha}-1}{4^{\alpha}} f\left(\frac{a+b}{2}\right) + \frac{4^{\alpha}-3^{\alpha}+1}{4^{\alpha}} \frac{f(a)+f(b)}{2} \right]$$

$$= \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} \left[J_{a+}^{\alpha} f(b) + J_{b-}^{\alpha}(a) \right]$$

$$- \left[\frac{3^{\alpha}-1}{4^{\alpha}} f\left(\frac{a+b}{2}\right) + \frac{4^{\alpha}-3^{\alpha}+1}{4^{\alpha}} \frac{f(a)+f(b)}{2} \right].$$
(2.17)

As a result of simple computations, we arrive at the following identities:

$$\int_{a}^{\frac{3a+b}{4}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$+ \int_{\frac{a+3b}{4}}^{b} \left[(x-a)^{\alpha} - (b-x)^{\alpha} - \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$= \int_{a}^{\frac{3a+b}{4}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$+ \int_{a}^{\frac{3a+b}{4}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] \frac{x-a}{b-a} |f'(a)|^{q} dx$$

$$= |f'(a)|^q \int_a^{\frac{3a+b}{4}} \left[(b-x)^\alpha - (x-a)^\alpha - \frac{3^\alpha - 1}{4^\alpha} (b-a)^\alpha \right] dx := P_1, \tag{2.18}$$

$$\int_{a}^{\frac{3a+b}{4}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] \frac{x-a}{b-a} |f'(b)|^{q} dx$$

$$+ \int_{\frac{a+3b}{4}}^{b} \left[(x-a)^{\alpha} - (b-x)^{\alpha} - \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] \frac{x-a}{b-a} |f'(b)|^{q} dx$$

$$= \int_{a}^{\frac{3a+b}{4}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] \frac{x-a}{b-a} |f'(b)|^{q} dx$$

$$+ \int_{a}^{\frac{3a+b}{4}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(b)|^{q} dx$$

$$= |f'(b)|^{q} \int_{a}^{\frac{3a+b}{4}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] dx := P_{2}, \tag{2.19}$$

$$\int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$+ \int_{\frac{a+b}{2}}^{\frac{a+3b}{4}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} + \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$= \int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$+ \int_{\frac{a+b}{2}}^{\frac{a+b}{2}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] \frac{x-a}{b-a} |f'(a)|^{q} dx$$

$$= |f'(a)|^q \int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] dx := P_3, \tag{2.20}$$

$$\int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] \frac{x-a}{b-a} \left| f'(b) \right|^{q} dx$$

$$+ \int_{\frac{a+b}{2}}^{\frac{a+3b}{4}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} + \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] \frac{x-a}{b-a} |f'(b)|^{q} dx$$

$$= \int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] \frac{x-a}{b-a} |f'(b)|^q dx$$

$$+ \int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(b)|^{q} dx$$

$$= \left| f'(b) \right|^q \int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} \left[(x-a)^\alpha - (b-x)^\alpha + \frac{3^\alpha - 1}{4^\alpha} (b-a)^\alpha \right] dx := P_4, \tag{2.21}$$

$$\int_{a}^{b} |h_3(x)| dx = 2 \left[\int_{a}^{\frac{3a+b}{4}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] dx \right]$$

$$+\int_{\frac{3a+b}{4}}^{\frac{a+b}{2}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha} \right] dx$$
 (2.22)

Thus, by using the power mean inequality, identities (2.3) and (2.18)–(2.22), and the convexity of $|f'|^q$, we establish the inequality

$$\left| \int_{a}^{b} h_3(x) f'(x) dx \right| \le \int_{a}^{b} \left| h_3(x) \right| \left| f'(x) \right| dx$$

$$\leq \left[\int_{a}^{b} |h_{3}(x)| dx\right]^{\frac{q-1}{q}} \left[\int_{a}^{b} |h_{3}(x)| |f'(x)|^{q} dx\right]^{1/q} \\
= \left[\int_{a}^{b} |h_{3}(x)| dx\right]^{\frac{q-1}{q}} \left[\int_{a}^{\frac{3a+b}{r}} [(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{3^{\alpha}-1}{4^{\alpha}}] (b-a)^{\alpha} |f'(x)|^{q} dx\right] \\
+ \int_{\frac{a+b}{r}}^{\frac{a+b}{r}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha}] |f'(x)|^{q} dx\right] \\
+ \int_{\frac{a+b}{r}}^{\frac{a+3b}{r}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} + \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha}] |f'(x)|^{q} dx\right] \\
+ \int_{\frac{a+b}{r}}^{b} \left[(x-a)^{\alpha} - (b-x)^{\alpha} - \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha}] |f'(x)|^{q} dx\right] \\
\leq \left[\int_{a}^{b} |h_{3}(x)| dx\right]^{\frac{q-1}{q}} (P_{1} + P_{2} + P_{3} + P_{4}) \\
= 2\left[\int_{a}^{\frac{3a+b}{r}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha}\right] dx\right] \\
+ \int_{\frac{3a+b}{r}}^{\frac{a+b}{r}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{3^{\alpha}-1}{4^{\alpha}} (b-a)^{\alpha}\right] dx \\
= \frac{1}{\alpha+1} \left(\frac{2^{\alpha}+1}{2^{\alpha}-1} - \frac{3^{\alpha+1}+1}{4^{\alpha}}\right) (b-a)^{\alpha+1} \left[\frac{|f'(a)|^{q}+|f'(b)|^{q}}{2}\right]^{1/q}. \quad (2.23)$$

Inequality (2.16) follows from identity (2.17) and inequality (2.23). Theorem 2.3 is proved.

Remark 2.3. In Theorem 2.3, let q = 1. Then Theorem 2.3 reduces to Theorem I.

Theorem 2.4. Under the assumptions of Theorem D, the following Simpson-type inequality for fractional integrals is true:

$$\left| \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} \left[J_{a+}^{\alpha} f(b) + J_{b-}^{\alpha} f(a) \right] - \left[\frac{5^{\alpha}-1}{6^{\alpha}} f\left(\frac{a+b}{2}\right) + \frac{6^{\alpha}-5^{\alpha}+1}{6^{\alpha}} \frac{f(a)+f(b)}{2} \right] \right| \\
\leq \left[\frac{1}{\alpha+1} \left(\frac{2^{\alpha}+1}{2^{\alpha}} - \frac{5^{\alpha+1}+1}{3 \cdot 6^{\alpha}} \right) + \left(\frac{5^{\alpha}-1}{6^{\alpha+1}} \right) \right] (b-a) \left[\frac{|f'(a)|^{q}+|f'(b)|^{q}}{2} \right]^{1/q} \tag{2.24}$$

for $\alpha > 0$.

Proof. In [9], let

$$h_4(x) = \begin{cases} (b-x)^{\alpha} - (x-a)^{\alpha} - \frac{5^{\alpha} - 1}{6^{\alpha}} (b-a)^{\alpha}, & x \in \left[a, \frac{a+b}{2}\right), \\ (b-x)^{\alpha} - (x-a)^{\alpha} + \frac{5^{\alpha} - 1}{6^{\alpha}} (b-a)^{\alpha}, & x \in \left[\frac{a+b}{2}, b\right]. \end{cases}$$

Then, the following identities hold:

$$\frac{1}{2(b-a)^{\alpha}} \int_{a}^{b} h_{4}(x)f'(x) dx$$

$$= \frac{\alpha}{2(b-a)^{\alpha}} \int_{a}^{b} \left[(x-a)^{\alpha-1} + (b-x)^{\alpha-1} \right] f(x) dx$$

$$- \left[\frac{5^{\alpha}-1}{6^{\alpha}} f\left(\frac{a+b}{2}\right) + \frac{6^{\alpha}-5^{\alpha}+1}{6^{\alpha}} \frac{f(a)+f(b)}{2} \right]$$

$$= \frac{\alpha\Gamma(\alpha)}{2(b-a)^{\alpha}} \left[J_{a+}^{\alpha} f(b) + J_{b-}^{\alpha}(a) \right]$$

$$- \left[\frac{5^{\alpha}-1}{6^{\alpha}} f\left(\frac{a+b}{2}\right) + \frac{6^{\alpha}-5^{\alpha}+1}{6^{\alpha}} \frac{f(a)+f(b)}{2} \right]$$

$$= \frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} \left[J_{a+}^{\alpha} f(b) + J_{b-}^{\alpha}(a) \right]$$

$$- \left[\frac{5^{\alpha}-1}{6^{\alpha}} f\left(\frac{a+b}{2}\right) + \frac{6^{\alpha}-5^{\alpha}+1}{6^{\alpha}} \frac{f(a)+f(b)}{2} \right].$$
(2.25)

As a result of simple computations, we arrive at the following identities:

$$\int_{a}^{\frac{5\alpha+b}{6}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{5^{\alpha}-1}{6^{\alpha}}(b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$+ \int_{a}^{b} \left[(x-a)^{\alpha} - (b-x)^{\alpha} - \frac{5^{\alpha}-1}{6^{\alpha}}(b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$= \int_{a}^{\frac{5\alpha+b}{6}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{5^{\alpha}-1}{6^{\alpha}}(b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$+ \int_{a}^{\frac{5\alpha+b}{6}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{5^{\alpha}-1}{6^{\alpha}}(b-a)^{\alpha} \right] \frac{x-a}{b-a} |f'(a)|^{q} dx$$

$$= |f'(a)|^{q} \int_{a}^{\frac{5\alpha+b}{6}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{5^{\alpha}-1}{6^{\alpha}}(b-a)^{\alpha} \right] \frac{x-a}{b-a} |f'(b)|^{q} dx$$

$$+ \int_{a}^{b} \left[(x-a)^{\alpha} - (b-a)^{\alpha} - \frac{5^{\alpha}-1}{6^{\alpha}}(b-a)^{\alpha} \right] \frac{x-a}{b-a} |f'(b)|^{q} dx$$

$$+ \int_{a}^{b} \left[(x-a)^{\alpha} - (b-x)^{\alpha} - \frac{5^{\alpha}-1}{6^{\alpha}}(b-a)^{\alpha} \right] \frac{x-a}{b-a} |f'(b)|^{q} dx$$

$$= \int_{a}^{\frac{5\alpha+b}{6}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{5^{\alpha}-1}{6^{\alpha}}(b-a)^{\alpha} \right] \frac{x-a}{b-a} |f'(b)|^{q} dx$$

$$+ \int_{a}^{\frac{5\alpha+b}{6}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{5^{\alpha}-1}{6^{\alpha}}(b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(b)|^{q} dx$$

$$+ \int_{a}^{\frac{5\alpha+b}{6}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{5^{\alpha}-1}{6^{\alpha}}(b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(b)|^{q} dx$$

$$= |f'(b)|^{q} \int_{a}^{\frac{5\alpha+b}{6}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{5^{\alpha}-1}{6^{\alpha}}(b-a)^{\alpha} \right] dx := Q_{2}, \qquad (2.27)$$

(2.27)

(2.29)

$$\int_{\frac{\alpha+b}{6}}^{\frac{a+b}{2}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$+ \int_{\frac{a+b}{6}}^{\frac{a+b}{6}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} + \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$+ \int_{\frac{a+b}{6}}^{\frac{a+b}{6}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(a)|^{q} dx$$

$$+ \int_{\frac{a+b}{6}}^{\frac{a+b}{6}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] \frac{x-a}{b-a} |f'(a)|^{q} dx$$

$$= |f'(a)|^{q} \int_{\frac{b+b}{6}}^{\frac{a+b}{6}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] \frac{x-a}{b-a} |f'(b)|^{q} dx$$

$$+ \int_{\frac{a+b}{6}}^{\frac{a+b}{6}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} + \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] \frac{x-a}{b-a} |f'(b)|^{q} dx$$

$$+ \int_{\frac{a+b}{6}}^{\frac{a+b}{6}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] \frac{x-a}{b-a} |f'(b)|^{q} dx$$

$$+ \int_{\frac{a+b}{6}}^{\frac{a+b}{6}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(b)|^{q} dx$$

$$+ \int_{\frac{a+b}{6}}^{\frac{a+b}{6}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(b)|^{q} dx$$

$$+ \int_{\frac{a+b}{6}}^{\frac{a+b}{6}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] \frac{b-x}{b-a} |f'(b)|^{q} dx$$

 $= |f'(b)|^q \int_{\frac{5a+b}{2}}^{\frac{\alpha-\nu}{2}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] dx := Q_4,$

$$\int_{a}^{b} |h_{4}(x)| dx = 2 \left[\int_{a}^{\frac{5a+b}{6}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] dx + \int_{\frac{5a+b}{6}}^{\frac{a+b}{2}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] dx \right].$$
 (2.30)

Further, by using the power mean inequality, identities (2.3) and (2.26)–(2.30), and the convexity of $|f'|^q$, we get the inequality

$$\begin{split} \left| \int_{a}^{b} h_{4}(x)f'(x)dx \right| &\leq \int_{a}^{b} |h_{4}(x)| \left| f'(x) \right| dx \\ &\leq \left[\int_{a}^{b} |h_{4}(x)| dx \right]^{\frac{q-1}{q}} \left[\int_{a}^{b} |h_{4}(x)| \left| f'(x) \right|^{q} dx \right]^{1/q} \\ &= \left[\int_{a}^{b} |h_{4}(x)| dx \right]^{\frac{q-1}{q}} \left[\int_{a}^{\frac{5\alpha+b}{6}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] \left| f'(x) \right|^{q} dx \\ &+ \int_{\frac{5\alpha+b}{6}}^{\frac{\alpha+b}{6}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] \left| f'(x) \right|^{q} dx \\ &+ \int_{\frac{\alpha+5b}{6}}^{b} \left[(b-x)^{\alpha} - (x-a)^{\alpha} + \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] \left| f'(x) \right|^{q} dx \\ &+ \int_{\frac{\alpha+5b}{6}}^{b} \left[(x-a)^{\alpha} - (b-x)^{\alpha} - \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] \left| f'(x) \right|^{q} dx \\ &\leq \left[\int_{a}^{b} |h_{4}(x)| dx \right]^{\frac{q-1}{q}} \left(Q_{1} + Q_{2} + Q_{3} + Q_{4} \right) \\ &= 2 \left[\int_{a}^{\frac{5\alpha+b}{6}} \left[(b-x)^{\alpha} - (x-a)^{\alpha} - \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] dx \end{split}$$

$$+ \int_{\frac{5\alpha+b}{6}}^{\frac{a+b}{2}} \left[(x-a)^{\alpha} - (b-x)^{\alpha} + \frac{5^{\alpha}-1}{6^{\alpha}} (b-a)^{\alpha} \right] dx$$

$$\times \left[\frac{|f'(a)|^{q} + |f'(b)|^{q}}{2} \right]^{1/q}$$

$$= \left[\frac{1}{\alpha+1} \left(\frac{2^{\alpha}+1}{2^{\alpha-1}} - \frac{5^{\alpha+1}+1}{9 \cdot 6^{\alpha-1}} \right) + \left(\frac{5^{\alpha}-1}{3 \cdot 6^{\alpha}} \right) \right]$$

$$\times (b-a)^{\alpha+1} \left[\frac{|f'(a)|^{q} + |f'(b)|^{q}}{2} \right]^{1/q}. \tag{2.31}$$

Inequality (2.24) now follows from identity (2.25) and inequality (2.31). Theorem 2.4 is proved.

Remark 2.4. In Theorem 2.4, let q = 1. Then Theorem 2.4 reduces to Theorem J.

3. Applications for the Beta-functions

Throughout this section, let

$$\alpha > 0$$
, $\rho > 1$, $q > 1$, $a = 0$, $b = 1$,

let $\Gamma(\alpha)$ be the Gamma-function, and let

$$f(x) = x^{\rho - 1}$$
 $(x \in [0, 1]).$

Then |f'| is convex on [0, 1].

We now recall the definition of the Beta-function

$$B(p,r) = \int_{0}^{1} x^{p-1} (1-x)^{r-1} dx \quad (p,r>0).$$

Remark 3.1. By using Theorems 2.1–2.4, we get

$$\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} J_{a+}^{\alpha} f(b) = \frac{\alpha}{2} \int_{0}^{1} (1-x)^{\alpha-1} x^{\rho-1} dx = \frac{\alpha}{2} B(\rho, \alpha)$$

and

$$\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}}J_{b^{-}}^{\alpha}f(a) = \frac{\alpha}{2}\int_{0}^{1}x^{\alpha+\rho-2}dx = \frac{\alpha}{2(\alpha+\rho-1)}.$$

By virtue of Theorems 2.1–2.4 and Remark 3.1, we arrive at the following propositions:

Proposition 3.1. *In Theorem 2.1, the following inequality is true:*

$$\left|\frac{\alpha}{2}B\left(\rho,\alpha\right)+\frac{\alpha}{2\left(\alpha+\rho-1\right)}-\frac{1}{2^{\rho-1}}\right|\leq \left(\frac{1}{2}-\frac{2^{\alpha}-1}{2^{\alpha}\left(\alpha+1\right)}\right)\frac{\rho-1}{2^{1/q}}.$$

Proposition 3.2. *In Theorem 2.2, the following inequality holds:*

$$\begin{split} \left| \frac{\alpha}{2} B\left(\rho, \alpha \right) + \frac{\alpha}{2 \left(\alpha + \rho - 1 \right)} - \frac{3^{\rho - 1} + 1}{2 \cdot 4^{\rho - 1}} \right| \\ & \leq \left[\frac{3^{\alpha + 1} + 1}{2 \cdot 4^{\alpha} \left(\alpha + 1 \right)} + \frac{1}{4} - \frac{2^{\alpha} + 1}{2^{\alpha} \left(\alpha + 1 \right)} \right] \frac{\rho - 1}{2^{1/q}}. \end{split}$$

Proposition 3.3. *In Theorem 2.3, the following inequality is true:*

$$\left| \frac{\alpha}{2} B\left(\rho, \alpha\right) + \frac{\alpha}{2\left(\alpha + \rho - 1\right)} - \left(\frac{3^{\alpha} - 1}{2^{\rho - 1} 4^{\alpha}} + \frac{4^{\alpha} - 3^{\alpha} + 1}{2 \cdot 4^{\alpha}} \right) \right|$$

$$\leq \frac{1}{\alpha + 1} \left(\frac{2^{\alpha} + 1}{2^{\alpha}} - \frac{3^{\alpha + 1} + 1}{2 \cdot 4^{\alpha}} \right) \frac{\rho - 1}{2^{1/q}}.$$

Proposition 3.4. *In Theorem 2.4, the following inequality holds:*

$$\begin{split} \left| \frac{\alpha}{2} B\left(\rho, \alpha\right) + \frac{\alpha}{2\left(\alpha + \rho - 1\right)} - \left(\frac{5^{\alpha} - 1}{2^{\rho - 1} 6^{\alpha}} + \frac{6^{\alpha} - 5^{\alpha} + 1}{2 \cdot 6^{\alpha}} \right) \right| \\ \leq \left[\frac{1}{\alpha + 1} \left(\frac{2^{\alpha} + 1}{2^{\alpha}} - \frac{5^{\alpha + 1} + 1}{3 \cdot 6^{\alpha}} \right) + \left(\frac{5^{\alpha} - 1}{6^{\alpha + 1}} \right) \right] \frac{\rho - 1}{2^{1/q}}. \end{split}$$

REFERENCES

- 1. M. Alomari and M. Darus, "On the Hadamard's inequality for log-convex functions on the coordinates," *J. Inequal. Appl.*, Article ID 283147, 13 p. (2009).
- 2. S. S. Dragomir, "Two mappings in connection to Hadamard's inequalities," J. Math. Anal. Appl., 167, 49-56 (1992).
- 3. S. S. Dragomir, "On the Hadamard's inequality for convex on the coordinates in a rectangle from the plane," *Taiwan. J. Math.*, 5, No. 4, 775–788 (2001).
- 4. S. S. Dragomir and R. P. Agarwal, "Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula," *Appl. Math. Lett.*, **11**, No. 5, 91–95 (1998).
- 5. S. S. Dragomir, Y.-J. Cho, and S.-S. Kim, "Inequalities of Hadamard's type for Lipschitzian mappings and their applications," *J. Math. Anal. Appl.*, **245**, 489–501 (2000).
- 6. L. Fejér, "Über die Fourierreihen, II," Math. Naturwiss. Anz Ungar. Akad. Wiss., 24, 369–390 (1906).
- 7. J. Hadamard, "Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann," *J. Math. Pures Appl.* (9), **58**, 171–215 (1893).
- 8. S.-R. Hwang, K.-C. Hsu, and K.-L. Tseng, "Hadamard-type inequalities for Lipschitzian functions in one and two variables with their applications," *J. Math. Anal. Appl.*, **405**, 546–554 (2013).

- 9. S.-R. Hwang, K.-L. Tseng, and K.-C. Hsu, "New inequalities for fractional integrals and their applications," *Turk. J. Math.*, **40**, 471–486 (2016).
- U. S. Kirmaci, "Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula," *Appl. Math. Comput.*, 147, 137–146 (2004).
- 11. U. S. Kirmaci and M. E. Özdemir, "On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula," *Appl. Math. Comput.*, **153**, 361–368 (2004).
- 12. C. E. M. Pearce and J. Pečarić, "Inequalities for differentiable mappings with application to special means and quadrature formula," *Appl. Math. Lett.*, **13**, No. 2, 51–55 (2000).
- 13. M. Z. Sarikaya, E. Set, H. Yaldiz, and N. Başak, "Hermite–Hadamard's inequalities for fractional integrals and related fractional inequalities," *Math. Comput. Model.*, **57**, 2403–2407 (2013).
- 14. K.-L. Tseng, S.-R. Hwang, and S. S. Dragomir, "Fejér-type inequalities (I)," J. Inequal. Appl., Article ID 531976, 7 p. (2010).
- 15. K.-L. Tseng, G.-S. Yang, and K.-C. Hsu, "On some inequalities of Hadamard's type and applications," *Taiwan. J. Math.*, **13**, No. 6, 1929–1948 (2009).
- 16. G.-S. Yang and K.-L. Tseng, "On certain integral inequalities related to Hermite–Hadamard inequalities," *J. Math. Anal. Appl.*, **239**, 180–187 (1999).
- 17. G.-S. Yang and K.-L. Tseng, "Inequalities of Hadamard's type for Lipschitzian mappings," *J. Math. Anal. Appl.*, **260**, 230–238 (2001).