DOI 10.1007/s11253-017-1376-9
Ukrainian Mathematical Journal, Vol. 69, No. 3, August, 2017 (Ukrainian Original Vol. 69, No. 3, March, 2017)

NEW FRACTIONAL INTEGRAL INEQUALITIES FOR DIFFERENTIABLE
CONVEX FUNCTIONS AND THEIR APPLICATIONS

K.-L. Tseng and K.-C. Hsu UDC 517.5

We establish some new fractional integral inequalities for differentiable convex functions and give several
applications for the Beta-function.

1. Introduction

Throughout this paper, we assume that a < b in R.
The inequality

which holds for all convex functions f: [a,b] — R, is known in the literature as the Hermite—Hadamard inequal-

ity [7].
For some results generalizing, improving, and extending the inequality (1.1), see [1-6] and [8-17].
In [14], Tseng, et al. established the following Hermite—-Hadamard-type inequality refining inequality (1.1).

Theorem A. Suppose that f: [a,b] — R is a convex function on [a,b]. Then

)40 52)

o /bf(m)dxgé{f<a;b)+<a>+2f<b>] flo) ) 02

IN

b—a
The third inequality in (1.2) is known in the literature as the Bullen inequality.
In [4], Dragomir and Agarwal established the following results connected with the second inequality in (1.1).

Theorem B. Let f: [a,b] — R be a differentiable function on (a,b) with a < b. If |f'| is convex on [a, ],
then

b
P IO L [ swyan] < 252 (@] + 17 0)

which is the trapezoid inequality provided that |f'| is convex on [a, b].
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In [11], Kirmaci and Ozdemir established the following results connected with the first inequality in (1.1):

Theorem C. Under the assumptions of Theorem B, the following inequality is true:

b
i [t 1(“57) | < 5 (@l + o).

which is the midpoint inequality provided that | f'| is convex on [a, b].

In [12], Pearce and Pecari¢ established the following Hermite-Hadamard-type inequalities for differentiable
functions:

Theorem D. If f: I° C R — R is a differentiable mapping on 1°, a,b € I° with
a<b, f'€Lia,b], q>1,

and |f'|9 is convex on [a,b], then the following inequalities are true:

b
fl@+sb) 1 b—a [If @I+ /O]

blaa/bf(a:)dxf<a;b> oo Pf’(a)‘?;ﬂf'(b)w]”%

We now recall the following definition [13]:

Definition 1.1. Let f € Ly[a,b]. The Riemann—Liouville integrals
JNf and Jy f

of order o« > 0 with a > 0 are defined by

T

T t@) = g [ @0 0 2>
and
1 b
Bef@) = g [ =2 0 <,

respectively. Here, I'(«) is the Gamma-function and

Jorf(x) = Jy- f(x) = f(2).
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In [13], Sarikaya, et al. established the following Hermite—Hadamard-type inequalities for the fractional inte-
grals:

Theorem E. Ler f: [a,b] — R be positive with 0 < a < b and f € Lila,b]. If fis a convex function
on la,bl, then

fla) + f(b)
2

f <a . b> < ;éo‘fa;i T2 F(b) + J& f(a)] <

for a > 0.

Theorem F. Under the assumptions of Theorem B, the following inequality is true:

(b=a) (| (@] +[£®)])

‘f(a) —2% f) ;((b“ja;)l [T f(b) + J5 f(a)]] < pia(;il)

for a > 0.
In [9], Hwang, et al. established the following fractional integral inequalities:

Theorem G. Under the assumptions of Theorem B, the following Hermite—Hadamard-type inequality is true
for fractional integrals:

Ia+1)
2(b—a)>

210+ 5 ) - 1 (257 )|

< o <a - 2a1—1> ([ (@)|+ [ ®)])

for a > 0.

Theorem H. Under the assumptions of Theorem B, the following inequality for fractional integrals is

3a+b a+ 3b
1) ()

true with 5
s e+ g gl - 5 |12 ()
< <; - 3a;+:(iar; L 2<a1+ 1)>(b— a)(|f'(a)| + | f'(b)]) (1.3)
for a> 0.

Theorem I. Under the assumptions of Theorem B, the following Bullen-type inequality for fractional inte-
grals is true:

MNa+1)
2(b—a)™

3a_1f<a+b>+4a—30+1f(a)+f(b)”

[T+ f(b) + Ji= f(a)] — [ 1o 2 40 2
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1 20 41 3otl 41 , )
< A (G - S o ads@l+ o) »

for a > 0.

Theorem J. Under the assumptions of Theorem B, the following Simpson-type inequality for fractional inte-
grals is true:
DOt Y o pv) + g £(a)
2(b—a)~ at b=

5—-1 (a+b 6 — 5+ 1 f(a) + f(b)
Le() e

- in 1 <2;L1 B 50;1; 1) 4 (?; Giﬂ (b—a)(|f'(a)| + | ®)]) (1.5)

for a > 0.

Remark 1.1.

(1) The assumption that f: [a,b] — R is positive with 0 < a < b in Theorem E can be weakened as
f:]a,b] = R with a < b.

(2) In Theorem D, let ¢ = 1. Then Theorem D reduces to Theorems B and C.

(3) In Theorems F and G, let o = 1. Then Theorems F and G reduce to Theorems B and C, respectively.
(4) In Theorem H, let &« = 1. Then inequality (1.3) is connected with the second inequality in (1.2).

(5) InTheorem I, let & = 1. Then inequality (1.4) is a Bullen-type inequality.

(6) In Theorem J, let o = 1. Then inequality (1.5) is a Simpson-type inequality.

In the present paper, we establish some new Hermite—Hadamard-type inequalities for the fractional integrals
generalizing Theorems D and G-J. Some applications for the Beta-function are given.

2. Main Results

Theorem 2.1. Under the assumptions of Theorem D, the following Hermite—Hadamard-type inequality for
fractional integrals is true:

Ma+1) ., o a+b
W (o f(b) + Ji= f(a)] _f< 9 )'
b—a 1 [If/ @7+ £/ (B)[1]*
<serm (o tre)[FUS e

for a > 0.
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Proof. In [9], we assume that

OT(@) o pr o e atb
— s e 0+ ) - (15
_ Tla+1) [, o a+b
e s+ - (450,

As aresult of simple computation, we arrive at the following identities:

b—ma+x—a
b—a b—a

x = b, x € [a,b],

/ (b= a) — (b= 2)* + (2~ 0)] | (@) do

b
+ [1b-2) =@+ -0 | (@) do

= [1b-a = =)+ -0 |f @) do

+ / (b=a)" = (b—2)" + (z - a)*] T— |f'(a)|" de

2.2)

(2.3)

2.4)
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[ o0 ==+ @0 =2 |70 do

+/b (b= 2)° — (2= )" + (b )] =2 | (8)|"da
- :;b[(ba)a — (=) + (@ —a)") T |F(0)|"da
+ ?Kb S ATl
—1r®) 7[@ )~ (b= )" + (& — @)°] dz i= M, @3
, s
a/]hl(x)dm:2 / [(b—a)® — (b—2)° + (z — a)°] da. 2.6)

Further, by using the power mean inequality, identities (2.3)—(2.6) and the convexity of |f’|?, we obtain the
inequality

b b
/ (@) /() da| < / Il ()] | ()| e

r b 1% o 1/a
< /|h1($)!d$ /hl(af)f/(fﬂ)!qdfﬂl
r b 1 [ e
_ /]hl(a:)]da; /[(b—a)a—(b—x)a+(x—a)o‘]‘f’(x)‘qda:

1/q

b
+ / [(b—2)*—(x—a)*+ (b—a)?] ‘f’(x)‘qu
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q—1

q

b
< /!hl(l’)!dl’ (My + Mp)'/

a+b
2

"(a / 1/q
:2/“b—@‘“—(b—w)%(z—a)a]dx[lf( >Iq;|f<b>|1

a

_ (b—a)t! 1[I/ @)+ |f/(0)]17*
B G | e I e

Inequality (2.1) follows from identity (2.2) and inequality (2.7).
Theorem 2.1 is proved.

Remark 2.1. In Theorem 2.1, let ¢ = 1. Then Theorem 2.1 reduces to Theorem G.

Theorem 2.2. Under the assumptions of Theorem D, the following inequality for fractional integrals is

3a+b a+ 3b
() ()

true with 5
MNa+1) , o 1 3a+0b a+ 3b
'2(ba)a[Ja+f(b)+Jb—f(a)]—2[f< ) (2 )H
N e S S £ (@)l + 11 B
§<4+ 2 49(o + 1) _a+1>(b_a)[ 2 ] 8

for a > 0.

Proof. In[9], let

[ b
(b—2) (-~ (b—a), wela 0T )
[ b b
ha(a) = (b—2)° - (& — )2, re |20t 7”3’),
4 4
[ b
b—2)*=(xr—a)*+(b—a)*, =x€ az3 ,b].

Then the following identities hold:

3a+b a+3b
1) (57)
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—“T@’[@ﬁﬂm+J5mn—f<%:b>+f<az%>

2(b—a)~ 2
s () ()] e
As aresult of simple computation, we arrive at the identities
J A e R O D e T O
/ b
+ [ 6=~ @0+ -0 = | (@) d
= [ 0= - -0+ - | @) da
L O A N RN e AV O
= |f'(a)|" / [(b—a)*—(b—2)*+ (z —a)*]dz := Ny, (2.10)

b
b [ 0=~ @0+ -0 2 |0 d
= [ (b= = (b= + (@~ a)") 57— |7/(0)|"de
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= | (0] ?b[(b —a)* — (b— )" + (z — a)*] dz := Ny, 2.11)
/ b= 2)" ~ (e —a)") =2 | (@) da
+ /[(ac o) = b= ) | @) e
/ (b—2)" (2 —a)*) =2 | /(@) da
+/ (b—2)" = (r = a)*] 5— | ()| "do
= f’(a)q3j: [(b—2)* — (x — a)*] dz := N3, (2.12)
/ (b—2)" — (@ —a)] T | ()| da

= [ (b-2 —@-a T |10 e
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=F®|* [ [(b—2)* = (z—a)*]dz = Ny, 2.13)

b =
/]hg(a:)]d:c:2 / [(b—a)* = (b—2)*+ (r —a)*]dx

[(b—2)* = (x —a)*]dx|. (2.14)

+
g

Q
i{-\”‘i

S

Further, by using the power mean inequality, identities (2.3), (2.10)—(2.14), and the convexity of | f’|?, we get
the inequality

b

/ x)dx </]h2 )| f/ ()] d

M b T ¢ [ b

1/q
[Im@lde| | [Ihe@]]7@ qda:]

a

IN

_ 41 r 3a+b
q 4

= /|h2(m)|dm /[(b—a)a—(b—x)a~|— x—a) ’f ‘qdl'

+ / [(b—2)* = (z—a)?]|f(z ‘qu

+ [ le=ar = -o0)|f @] d




488 K.-L. TSENG AND K.-C. HSU

q—1
q

b
< /|h2<x>yd:c (N1 + N + N3 + Ny)

+ /2[(17— ) — (z —a)] dz [‘f’(a)\q _2|- f/(b)’q]yq

) <1 gatl _gatl 1 9 >(b_a)a+1[|f’(a)lq+If’(b)lT/q‘ (2.15)

2" 19(a+1) a+l 2

Inequality (2.8) follows from identity (2.9) and inequality (2.15).
Theorem 2.2 is proved.

Remark 2.2.

(1) In Theorem 2.2, let ¢ = 1. Then Theorem 2.2 reduces to Theorem H.

(2) In Theorems 2.1 and 2.2, let o = 1. Then Theorems 2.1 and 2.2 reduce to Theorem D.

Theorem 2.3. Under the assumptions of Theorem D, the following Bullen-type inequality for fractional inte-
grals is true:

Fa+1) , N
'Q(b_a)a [Te £(b) + Ji- f(a)]
3*—1 . [fa+b 49 — 3%+ 1 f(a) + £(b)
_{ o f( 5 >+ o 5 H
1 2% 4+ 1 3a+1+1 ‘f’(a)‘q-l-‘f’(b)’q 1/q
_a—i—l( 20 .40 >(b_a){ 5 ] (2.16)
for a > 0.
Proof. Let

(b—IL‘)O‘—(m—a)O‘_3a4;1(b_a)a, xe[a,a;—b>,

hg(l'):

(b—:z:)o‘—(:c—a)o‘—l—3a4;1(b—a)0‘, e [“*b,b}
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Then the following identities are true:

B [3“—1f<a+b> n 4« —4?;éa+1f(a)—21—f(b)}

B [3"‘—1f<a+b> N 4« —4?:)éa+1f(a)—21—f(b)}

B [30‘—1f<a~l—b> +4a—4?;“+1f(a);rf(b)]

As a result of simple computations, we arrive at the following identities:

7[(5 R I A a)a] T ) d

" /b [(x—a)a—(b—x)a—3a4;1(b—a)a]Z:Zu’(a)\qu

o O A e e (e LI

3¢ -1 T—a

+?[(b_$)a_($_a)a_ O e T OI

489

2.17)
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N }f’(a)‘q / [(b —2)% = (@ —a)* - 3a4; 1(b —a)*|dx = Py,

(2.18)

(2.19)



NEW FRACTIONAL INTEGRAL INEQUALITIES FOR DIFFERENTIABLE CONVEX FUNCTIONS AND THEIR APPLICATIONS 491

= [f'(a)|* {(a: —a)*—(b—x)*+ 3a4; ! (b—a)*|dx := Ps, (2.20)

+7 (-0 -0+ 0| S o)
- 7[@—@&— R e U e OIR

= |f’(b)}q [(x —a)* = (b—x)*+ 1 (b— a)o‘] dr := Py, (2.21)

atb
+ / [(x —a)*—(b—x)* + 30; ! (b— a,)o‘} dr|. (2.22)
3a+b

Thus, by using the power mean inequality, identities (2.3) and (2.18)—(2.22), and the convexity of |f/|?, we es-
tablish the inequality

b b

/ ha(2) f/(2)da| < / Iha(@)] | /()| de

a a
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IN
>
w
&
ey
8
_
e
Q\c_‘
=
w
—~
&
=
—~
8
~—
T
U
8
S —
—
S~
LS

/4 [(b— z)*—(x—a)* — 3a4; 1} (b—a)® |f'(2)|" da

+ / [(w —a)t =) a)a} /()| da

* / R e (O I

1/q

+ /b [(x—a)a—(b—x)a—32;1(5—@)&}\]0’(@}%

b o
< |:/h3(«73)d=’13 (PL+ P+ Ps+ Py)

a

w

a+b

=2 /4[(b—@a—(x—a)a—3“4;1@_@)&]@
+/ o—ar = 0-oe+ E - a0 o[ O |f'<b>rq]”q

1 (2941 3% 41 a1 [1F/ @)+ | f/(B)[1]"9
a+1<2a_1_ >(b_a)+1[|f(a)l If(” |

2.2

Inequality (2.16) follows from identity (2.17) and inequality (2.23).
Theorem 2.3 is proved.

Remark 2.3. In Theorem 2.3, let ¢ = 1. Then Theorem 2.3 reduces to Theorem I.
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Theorem 2.4. Under the assumptions of Theorem D, the following Simpson-type inequality for fractional
integrals is true:
LOX D (e £6) + - (@)
2(b—a)> " b

5—1_.(a+b 6% —5%+1 f(a) + f(b)
() e

Lo(2l 5Ly (0] (@l + 1B
S[a—i—l( 20 3.6 >+<6a+1 )](b—a){ 5 ] (2.24)

for a > 0.

Proof. In[9], let

b2 (r—aP— > L _a)e, ze [a,“;b>,

B [5“ — 1f<a+b> N 6~ —65aa+1f(a);f(b)]

_ ol(a) | a
= W [Jo+ f(b) + Jp-(a)]

B [5“—1f<a+b> +6a—5a+1f(a)+f(b)]

6< 2 6 2
_Ple+1) g a
= W [Jo+ f(b) + Jp-(a)]

(2.25)

5—1 . (a+b 6% — 5%+ 1 f(a) + f(b)
[ () =
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As a result of simple computations, we arrive at the following identities:

5a+b

/6 [(b R (I L (8 a)a] P ) d

+ /b [(x—a)a—(b—x)a—5a6;1(b—a)a]Z:z(f’(a)\qu

= 7@ / O e eUM LIS 2.26)

— £ )" / [(b R P L O a)o‘] P— 2.27)
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/ [(a: —a)*—(b—x)*+ 506; 1(1) - a)o‘] H | f/(a)|" dx

+ / [(b —)*—(x—a)*+ 5a6; 1(b — a)o‘] l;:iz !f’(a)‘qu

+ / [(b—x)a—(x—a)u52;1(6—@)&]‘Z’ =1 0) da
+ 7[<x—a>a—<b— ) 2 <b—a>a]‘g 1) de
+ / R e A P MG

495

(2.28)

(2.29)
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b]h4(m)]da;—2 n (b—x)o‘—(aj—a)“—f)a_l(b—a)a dx
/ [

(b— a)a} da | . (2.30)

Further, by using the power mean inequality, identities (2.3) and (2.26)—(2.30), and the convexity of |f’|7,
we get the inequality

b
/h4(:c)f’(x)d$

b
< / ha(@)] | £/(2)| de

IN

r b 17 o 1/q
/|h4($)|dl‘ /h4($)|f/(ﬂf)qd$]

- _/b|h4<x>|dx_ q / [(b—x>“—<x—a>a—5a6‘l<b— >a}\f’<x>|"dx
+ a/z[@—a)a—(b—x)aﬁaﬁ L= a7 o
+a/6 O e e ORI

|
-

q

b
< |:/h4(x)dx] (Q1+ Q2+ Q3+ Qy)

= ‘

5a+b
6

_p / [(b—x)o‘—(x—a)a—5a_1(b—a)°‘ do

6a

a



NEW FRACTIONAL INTEGRAL INEQUALITIES FOR DIFFERENTIABLE CONVEX FUNCTIONS AND THEIR APPLICATIONS 497

a+b
+ / [(x—a) —(b—x)*+ 5046; 1(b—a)°‘]da¢
5a+b
y [If’(a)lq + |f’<b>|T/q
2

1 241 50ty 5% — 1
_[a+1<w4‘_9ﬁw4)+<3ﬁaﬂ

‘(b a) [|f'<a>|q —; If’(b)\q} v 231

Inequality (2.24) now follows from identity (2.25) and inequality (2.31).
Theorem 2.4 is proved.

Remark 2.4. In Theorem 2.4, let ¢ = 1. Then Theorem 2.4 reduces to Theorem J.
3. Applications for the Beta-functions
Throughout this section, let
a>0, p>1, ¢g>1, a=0, b=1,

let I'(a) be the Gamma-function, and let

Then |f’| is convex on [0, 1].
We now recall the definition of the Beta-function

1
B(p,r) = /:Jcp_1 (1—2)"tdz (p,r>0).
0

Remark 3.1. By using Theorems 2.1-2.4, we get

1

F(a+1) o al 1,

m o J (b 2/1_95 o’ dw = 5 B(p,a)
0

and

Tla+1) 1)

oH-p 2d _
30— a)e v

2(a+p-1)

|
| R
O\H
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By virtue of Theorems 2.1-2.4 and Remark 3.1, we arrive at the following propositions:

Proposition 3.1. In Theorem 2.1, the following inequality is true:

1 2% — 1 p—1
<[ -=-— .
“\2 2¢(a+1)/) 24

Proposition 3.2. In Theorem 2.2, the following inequality holds:

a lo% 1
B —
(p, ) + Sty D) 2

« « 3141
=B —
(p,a)+2(a+p_1) T

2

S Bter 1 20+1 Jp-d
(24 (a+1) 4 22(a+1)] 2Va°

Proposition 3.3. In Theorem 2.3, the following inequality is true:

aB( )+ Qo 30‘—1+4"‘—30‘—|—1
— a J—
2PV T Yl p—1)  \ 20140 2. 4o
1 2041 3t 41\ p—1
“a+1\ 20 240 ) oljq

Proposition 3.4. In Theorem 2.4, the following inequality holds:

« o b —1 6% —5%+1
—B —
2 (P’O‘)+2(a—|—p—1) (2916a+ 2.6 >‘
1 20 +1 5ot 41 5 —1\] p—1
< — + .
“la+1 20 3.6 6o+l 21/q
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