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ON THE GROWTH OF MEROMORPHIC SOLUTIONS OF DIFFERENCE EQUATIONS

Sh.-T. Lan1 and Z.-X. Chen2 UDC 517.9

We estimate the order of growth of meromorphic solutions of some linear difference equations and study
the relationship between the exponent of convergence of zeros and the order of growth of the entire
solutions of linear difference equations.

1. Introduction and Results

In the present paper, we use the main notions of Nevanlinna’s theory (see [8, 12, 13]). In addition, we use the
notation σ(f) to denote the order of growth of the meromorphic function f(z) and λ(f) to denote the exponent
of convergence of the roots of f(z).

In recent years, numerous results are rapidly obtained for complex differences and difference equations (see
[1, 10, 9, 3, 2, 5, 7]). Chiang and Feng [7] studied the growth of meromorphic solutions of homogeneous linear
difference equations. In the case where there exists only one coefficient with the maximal order, they obtained the
following result:

Theorem A. Let A0(z), . . . , An(z) be entire functions for which there exists an integer l, 0  l  n, such
that

σ(Al) > max

1jn
j 6=l

{σ(Aj)}.

If f(z) is a meromorphic solution to

An(z)y(z + n) + . . .+A1(z)y(z + 1) +A0(z)y(z) = 0,

then σ(f) ≥ σ(Al) + 1.

Laine and Yang [11] showed that if the leading coefficient depends on the type but not on the order, Theorem A
remains true. Their result can be formulated as follows:

Theorem B. Let A0(z), . . . , An(z) be entire functions of finite order such that, among the coefficients of the
maximal order σ = max{σ(Ak), 0  k  n}, the type of exactly one coefficient is strictly greater than the other
types. If f(z) 6⌘ 0 is a meromorphic solution of the equation

An(z)f(z + !n) + . . .+A1(z)f(z + !1) +A0(z)f(z) = 0, (1.1)

then σ(f) ≥ σ + 1.

Laine and Yang [11] raised the following question.
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Question: Is it true that all meromorphic solutions f(z)( 6⌘ 0) of equation (1.1) satisfy the inequality

σ(f) ≥ 1 + max

0jn
σ(Aj)

if there is no leading coefficient?

We impose certain restrictions on the coefficients of the difference equation to give an answer to the posed
question and obtain the following results:

Theorem 1.1. Let cj , j = 1, . . . , n, be different constants and let

Aj(z) = Pj(z)e
hj(z)

+Qj(z), j = 1, . . . , n,

where hj(z) are polynomials of degree k ≥ 1 and Pj(z)( 6⌘ 0) and Qj(z) are entire functions whose order is
lower than k. Among the leading coefficients of hj(z), j 2 {1, . . . , n}, with the maximal modulus, there exists
a term unequal to the other terms. If f(z)( 6⌘ 0) is a meromorphic solution of equation

An(z)f(z + cn) + . . .+A1(z)f(z + c1) = 0, (1.2)

then σ(f) ≥ k + 1.

Corollary 1.1. Let k and Aj(z), j = 1, . . . , n, be defined as in Theorem 1.1, let Bi(z), i = 1, . . . ,m,

be entire functions whose order is lower than k, and let cj , j = 1, . . . , n + m, be different constants. If f(z)
( 6⌘ 0) is a meromorphic solution of the equation

Bm(z)f(z + cn+m) + . . .+B1(z)f(z + cn+1) +An(z)f(z + cn) + . . .+A1(z)f(z + c1) = 0, (1.3)

then σ(f) ≥ k + 1.

Example 1.1. The function

f(z) = ez
2

satisfies the difference equation

e−2izf(z + i) + e2izf(z − i)− 2e−1f(z) = 0.

Clearly,
σ(f) = 2 = deg h1 + 1 = deg h2 + 1.

This example shows that the equality in Corollary 1.1 can be attained. Hence, the estimate in Corollary 1.1 is sharp.

By using Theorems A, B, and 1.1, we deduce the following corollary:

Corollary 1.2. Let cj , j = 1, 2, be different nonzero constants, let hj(z), j = 1, 2, be polynomials, and
let Aj(z) ( 6⌘ 0), j = 0, 1, 2, be entire functions such that

max{σ(Aj), 0  j  2} < max{deg h1, deg h2}.
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If f(z) ( 6⌘ 0) is a meromorphic solution of the equation

A2(z)e
h2(z)f(z + c2) +A1(z)e

h1(z)f(z + c1) +A0(z)f(z) = 0, (1.4)

then

σ(f) ≥ max{deg h1, deg h2}+ 1.

Chen [6] studied complex oscillation problems for the entire solutions f(z) of homogeneous and inhomo-
geneous linear difference equations respectively, and obtained certain relations between λ(f) and σ(f). These
results can be formulated as follows:

Theorem C. Let Aj(z), j = 1, . . . , n, be entire functions such that there exists at least one transcenden-
tal Aj and let cj , j = 1, . . . , n, be constants unequal to each other. Suppose that f(z) is a finite-order transcen-
dental entire solution of the homogeneous linear difference equation (1.2) satisfying the inequality

σ(f) > max{σ(Aj) : 1  j  n}+ 1.

Then λ(f) ≥ σ(f)− 1. Moreover, if n = 2, then λ(f) = σ(f).

Theorem D. Let F (z), Aj(z), j = 1, . . . , n, be entire functions such that F (z)An(z) 6⌘ 0 and let ck,
k = 1, . . . , n, be constants unequal to each other. Suppose that f(z) is a finite-order entire solution of the
nonhomogeneous linear difference equation

An(z)f(z + cn) + . . .+A1(z)f(z + c1) = F (z).

If

σ(f) > max{σ(F ),σ(Aj) : 1  j  n},

then λ(f) = σ(f).

In what follows, we continue to study complex oscillation problems for the entire solutions of linear difference
equations (1.2) and (1.4), and obtain the following results, extending Theorems C and D:

Theorem 1.2. Let cj , j = 1, . . . , n, be different constants and let Aj(z) ( 6⌘ 0), j = 1, . . . , n, be entire
functions of finite order. Suppose that f(z) is a finite-order entire solution of equation (1.2) such that

σ(f) > max{σ(Aj) : 1  j  n}+ 1.

Then f(z) takes every finite value d infinitely often and λ(f − d) = σ(f).

Example 1.2. The entire function f(z) = ez
2
satisfies the linear difference equation

f(z + 1)− e2z+1f(z) = 0.

Obviously, A2(z) ⌘ 1 and A1(z) = −e2z+1. We see that

σ(f) = 2 = max{σ(A1),σ(A2)}+ 1
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but λ(f) = 0 < σ(f). This example shows that the condition in Theorem 1.2, i.e.,

σ(f) > max{σ(Aj) : 1  j  n}+ 1,

cannot be weakened.

By Theorems D and 1.2, we get the following corollary.

Corollary 1.3. Under the conditions of Theorem 1.2, for any small entire function '(z) (6⌘ 0) satisfying
σ(') < σ(f), we have λ(f − ') = σ(f).

Corollary 1.4. Let h1(z) and h2(z) be polynomials such that

h1(z) = anz
n
+ . . .+ a0 and h2(z) = bmzm + . . .+ b0,

where anbm 6= 0, let Aj(z) ( 6⌘ 0), j = 0, 1, 2, be entire functions whose order is lower than max{n,m}, and
let ck, k = 1, 2, be different nonzero constants such that c2an − c1bm 6= 0, while n = m. If f(z) ( 6⌘ 0) is
a finite-order entire solution of (1.4), then

λ(f) = σ(f) ≥ max{n,m}+ 1.

Example 1.1 shows that the condition c2an − c1bm 6= 0 for n = m in Corollary 1.4 cannot be weakened.

2. Proofs of the Theorems and Corollaries

We need the following lemmas to prove the formulated theorems and corollaries:

Lemma 2.1 [4]. Suppose that f(z) is a meromorphic function with σ(f) = σ < 1. Then, for any given
" > 0, one can find a set E ⇢ (1,1) of finite linear measure or finite logarithmic measure such that

|f(z)|  exp{rσ+"}

for all z satisfying the relation |z| = r 62 [0, 1] [ E as r ! 1.

Lemma 2.2 [7]. Let ⌘1 and ⌘2 be two arbitrary complex numbers and let f(z) be a meromorphic function of
finite order σ. For given " > 0, there exists a subset E ⇢ (0,1) of finite logarithmic measure such that, for all z
satisfying the relation |z| = r 62 E [ [0, 1], the following inequality is true:

exp{−rσ−1+"} 
����
f(z + ⌘1)

f(z + ⌘2)

����  exp{rσ−1+"}.

Proof of Theorem 1.1. Contrary to our assertion, we assume that σ(f) < k + 1. Let

hj(z) = ajkz
k
+ h⇤j (z), (2.1)

where ajk 6= 0 are constants and h⇤j (z) are polynomials with deg h⇤j  k − 1, j = 1, . . . , n.
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We set

I =

⇢
i : |aik| = max

1jn
|ajk|

�
, ✓j = arg ajk 2 [0, 2⇡), j 2 I.

There exists l 2 I such that alk 6= ajk, j 2 I \{l}. This fact and the definitions of I and ✓j , enable us to conclude
that

|ajk| = |alk|, ✓j 6= ✓l, j 2 I \ {l}.

We now choose ✓ such that

cos(k✓ + ✓l) = 1. (2.2)

Thus, by ✓j 6= ✓l, j 2 I \ {l}, we find

cos(k✓ + ✓j) < 1, j 2 I \ {l}. (2.3)

Denote

a = max

1jn
{|ajk|}, b = max

j 62I
{|ajk|} c = max

�
b, a cos(k✓ + ✓j), j 2 I \ {l}

 
< a, (2.4)

and

σ = σ(f) < k + 1, β = max

1jn
{σ(Pj),σ(Qj)} < k. (2.5)

Clearly,

σ

✓
Pj

Pl

◆
 max{σ(Pj),σ(Pl)}  β, 1  j  n, j 6= l,

σ

✓
Qj

Pl

◆
 max{σ(Qj),σ(Pl)}  β, 1  j  n.

By Lemma 2.1, for any given ",

0 < 2" < min{1, k + 1− σ, k − β, a− c},

there is a set E1 ⇢ (1,1) with finite logarithmic measure such that, for all z satisfying |z| = r 62 E1 [ [0, 1], we
obtain

����
Pj(z)

Pl(z)

����  exp{rβ+"}, 1  j  n, j 6= l;

����
Qj(z)

Pl(z)

����  exp{rβ+"}, 1  j  n. (2.6)

It is clear that exp{−h⇤l (z)} is of regular order deg h⇤l and exp{h⇤j (z)}, 1  j  n, j 6= l, is of regular
order deg h⇤j . Note that deg h

⇤
j  k − 1, 1  j  n. Thus, for all large z, |z| = r, we get

|exp{−h⇤l (z)}|  exp{rk−1+"},
��
exp{h⇤j (z)}

��  exp{rk−1+"}, 1  j  n, j 6= l. (2.7)
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Applying Lemma 2.2 to f(z), we conclude that there is a set E2 ⇢ (1,1) with finite logarithmic measure
such that, for all z satisfying |z| = r 62 E2 [ [0, 1], we can write

����
f(z + cj)

f(z + cl)

����  exp{rσ−1+"}, 1  j  n, j 6= l. (2.8)

By using (1.2) and (2.1), we obtain

−exp{alkzk} =

X

j2I\{l}

exp{−h⇤l (z)}
f(z + cj)

f(z + cl)

✓
Pj(z)

Pl(z)
exp{ajkzk} exp{h⇤j (z)}+

Qj(z)

Pl(z)

◆

+

X

j 62I
exp{−h⇤l (z)}

f(z + cj)

f(z + cl)

✓
Pj(z)

Pl(z)
exp{ajkzk} exp{h⇤j (z)}+

Qj(z)

Pl(z)

◆

+ exp{−h⇤l (z)}
Ql(z)

Pl(z)
. (2.9)

Let z = rei✓, where r 62 E1 [ E2 [ [0, 1]. Substituting (2.2)–(2.4), (2.6)–(2.8) in (2.9), we find

exp{ark} 
X

j2I\{l}

exp{rk−1+"
+ rσ−1+"

+ rβ+"}
⇣
exp{a cos(k✓ + ✓j)r

k
+ rk−1+"}+ 1

⌘

+

X

j 62I
exp{rk−1+"

+ rσ−1+"
+ rβ+"}

⇥
⇣
exp{(b+ ")rk + rk−1+"}+ 1

⌘
+ exp{rk−1+"

+ rβ+"}

 n exp{(c+ ")rk + 2rk−1+"
+ rσ−1+"

+ rβ+"}

 n exp{(c+ 2")rk}. (2.10)

Dividing both sides of (2.10) by exp{ark} and letting r ! 1, we get 1  0. A contradiction. Hence,
σ(f) ≥ k + 1.

Proof of Corollary 1.1. Assume that σ(f) < k+1. By using the same method as in the proof of Theorem 1.1,
we also obtain (2.1)–(2.7).

By Lemma 2.1, there is a set E3 ⇢ (1,1) with finite logarithmic measure such that, for all z satisfying

|z| = r 62 E3 [ [0, 1],

we get

|Bj(z)|  exp{rβ1+"}, 1  j  m, (2.11)

where β1 = max{σ(Bj), 1  j  m} < k.
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Applying Lemma 2.2 to f(z), we conclude that there is a set E4 ⇢ (1,1) with finite logarithmic measure
such that, for all z satisfying |z| = r 62 E4 [ [0, 1], we have

����
f(z + cj)

f(z + cl)

����  exp{rσ−1+"}, 1  j  n+m, j 6= l. (2.12)

By virtue of (1.3) and (2.1), we find

− exp{alkzk} =

X

j2I\{l}

exp{−h⇤l (z)}
f(z + cj)

f(z + cl)

✓
Pj(z)

Pl(z)
exp{ajkzk} exp{h⇤j (z)}+

Qj(z)

Pl(z)

◆

+

X

j 62I
exp{−h⇤l (z)}

f(z + cj)

f(z + cl)

✓
Pj(z)

Pl(z)
exp{ajkzk} exp{h⇤j (z)}+

Qj(z)

Pl(z)

◆

+

n+mX

j=n+1

Bj(z)
f(z + cj)

f(z + cl)
+ exp{−h⇤l (z)}

Ql(z)

Pl(z)
. (2.13)

Let z = rei✓, where r 62 E1 [ E2 [ E3 [ E4 [ [0, 1]. Substituting (2.2)–(2.7), (2.11) and (2.12) in (2.13),
we obtain

exp{ark} 
X

j2I\{l}

exp{rk−1+"
+ rσ−1+"

+ rβ+"}
⇣
exp{a cos(k✓ + ✓j)r

k
+ rk−1+"}+ 1

⌘

+

X

j 62I
exp{rk−1+"

+ rσ−1+"
+ rβ+"}

⇣
exp{(b+ ")rk + rk−1+"}+ 1

⌘

+m exp{rβ1+"
+ rσ−1+"}+ exp{rk−1+"

+ rβ+"}

 n exp{(c+ ")rk + 2rk−1+"
+ rσ−1+"

+ rβ+"}+m exp{rβ1+"
+ rσ−1+"}

 n exp{(c+ 2")rk}+m exp{rβ1+"
+ rσ−1+"}. (2.14)

Dividing both sides of (2.14) by exp{ark} and letting r ! 1, we conclude that 1  0. This is a contradic-
tion. Hence, σ(f) ≥ k + 1 is true.

Proof of Theorem 1.2. Consider the following two cases:

Case 1: d = 0.

Contrary to our assertion, suppose that λ(f) < σ(f). Then f(z) can be represented as

f(z) = H(z)eh(z), (2.15)

where H(z)( 6⌘ 0) is the canonical product (or polynomial) formed by the roots of f(z) such that

λ(H) = σ(H) = λ(f) < σ(f)
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and

h(z) = akz
k
+ ak−1z

k−1
+ . . .+ a0; (2.16)

here, k 2 N+ satisfies k = σ(f) > λ(f) and ak( 6= 0), ak−1, . . . , a0 are constants.
Substituting (2.15) in (1.2), we obtain

An(z)H(z + cn) exp{h(z + cn)}+ . . .+A1(z)H(z + c1) exp{h(z + c1)} = 0,

or

An(z) exp{h(z + cn)− h(z + c1)}H(z + cn)

. . .+A2(z) exp{h(z + c2)− h(z + c1)}H(z + c2) +A1(z)H(z + c1) = 0. (2.17)

Since σ(f) > max{σ(Aj) : 1  j  n}+ 1, we conclude that deg h(z) = k ≥ 2. By virtue of (2.16), we get

h(z + cj)− h(z + c1) = kak(cj − c1)z
k−1

+ h⇤j (z), (2.18)

where h⇤j (z) are polynomials with deg h⇤j  k − 2, j = 2, . . . , n.

We set

I =

⇢
i : |ci − c1| = max

2jn
|cj − c1|

�
.

In what follows, we consider two cases:

Case 1.1. I contains exactly one term.

Without loss of generality, assume that I = {n}. By σ(Aj) < σ(f)− 1 = k − 1, j = 1, . . . , n, and (2.18),
we find

σ (Aj exp{h(z + cj)− h(z + c1)}) = deg(h(z + cj)− h(z + c1)) = k − 1, j = 2, . . . , n.

By the definition of I and I = {n}, we conclude that, in Eq. (2.17), the type k |ak(cn − c1)| of the co-
efficient An exp{h(z + cn) − h(z + c1)} is strictly greater than the types k|ak(cj − c1)| of the coefficients
Aj exp{h(z + cj)− h(z + c1)}, j = 2, . . . , n− 1. Therefore, by applying Theorem B to equation (2.17), we get

σ(H) ≥ (k − 1) + 1 = k = σ(f).

Thus, we arrive at a contradiction. Hence, λ(f) = σ(f).

Case 1.2. I contains more than one term.

Without loss of generality, we can assume that I = {s, s+ 1, . . . , n}, 2  s < n. We set

ak = |ak|ei✓0 , ✓j = arg(cj − c1), j = s, . . . , n.
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It follows from the definition of I that

|cj − c1| < |cn − c1|, j = 1, . . . , s− 1,

|cj − c1| = |cn − c1|, j = s, . . . , n.

Since cj are different constants, ✓j are also different constants. Thus, we can choose ✓ 2 [0, 2⇡) such that

cos((k − 1)✓ + ✓0 + ✓n) = 1. (2.19)

By ✓j 6= ✓n, j = s, . . . , n− 1, and (2.19), we conclude that

cos((k − 1)✓ + ✓0 + ✓j) < 1, j = s, . . . , n− 1. (2.20)

Denote

a = |ak(cn − c1)|, β = max

1j<s
{|ak(cj − c1)|},

b = max

sjn−1
{a cos((k − 1)✓ + ✓0 + ✓j),β}, ↵ = max

1jn
{σ(Aj),λ(f)− 1, k − 2}.

(2.21)

Obviously,

β < a, b < a, ↵ < k − 1. (2.22)

By Lemma 2.1, for any given ", 0 < " < min{a− b, 1}, there exists a set E1 ⇢ (1,1) of finite logarithmic
measure such that, for all z satisfying |z| = r 62 [0, 1] [ E1, we can write

����
Aj(z)

An(z)

����  exp{r↵+"}, j = 1, . . . , n− 1. (2.23)

It is known that both exp{−h⇤n} and exp{h⇤j − h⇤n} are of regular order  k − 2  ↵. Then for large z,

|z| = r, we obtain

|exp{−h⇤n}|  exp{r↵+"},
��
exp{h⇤j − h⇤n}

��  exp{r↵+"}, j = 2, . . . , n− 1. (2.24)

Applying Lemma 2.2 to H(z), we conclude that there exists a set E2 ⇢ (1,1) of finite logarithmic measure
such that, for all z satisfying |z| = r 62 [0, 1] [ E2, we get

����
H(z + cj)

H(z + cn)

����  exp{r↵+"}, j = 1, . . . , n− 1. (2.25)

By (2.17), we obtain

−exp{kak(cn − c1)z
k−1} =

n−1X

j=s

Aj

An

H(z + cj)

H(z + cn)
exp{h⇤j − h⇤n} exp{kak(cj − c1)z

k−1}
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+

s−1X

j=2

Aj

An

H(z + cj)

H(z + cn)
exp{h⇤j − h⇤n} exp{kak(cj − c1)z

k−1}

+

A1

An

H(z + c1)

H(z + cn)
exp{−h⇤n}. (2.26)

We take z = rei✓, where r 62 [0, 1] [ E1 [ E2. Substituting (2.19)–(2.25) into (2.26), we find

exp{kark−1}  (n− 2) exp{3r↵+"} exp{kbrk−1}+ exp{3r↵+"}

 (n− 1) exp{kbrk−1
+ 3r↵+"}.

Thus,

1  (n− 1) exp{3r↵+"
+ kbrk−1 − kark−1}.

Letting r ! 1, by (2.22), we get 1  0. However, this is impossible. Hence, λ(f) = σ(f).

Case 2: d 6= 0.

We set g(z) = f(z)− d. Then

f(z) = g(z) + d (2.27)

and

σ(g) = σ(f) > max{σ(Aj) : 1  j  n}+ 1. (2.28)

Substituting (2.27) in (1.2), we get

An(z)g(z + cn) + . . .+A1(z)g(z + c1) = −d(An(z) + . . .+A1(z)). (2.29)

If An(z) + . . . + A1(z) 6⌘ 0, by virtue of (2.28), (2.29), and Theorem D, we obtain λ(g) = σ(g), i.e.,
λ(f − d) = σ(f).

If An(z) + . . .+A1(z) ⌘ 0, then g(z) is an entire solution of the difference equation

An(z)g(z + cn) + . . .+A1(z)g(z + c1) = 0.

In view of (2.28) and Case 1 considered above, we conclude that λ(g) = σ(g), i.e., λ(f − d) = σ(f).

The analysis of Cases 1 and 2 demonstrates that f(z) takes every finite value d infinitely many times
and λ(f − d) = σ(f).

Proof of Corollary 1.4. Without loss of generality, we can assume that n ≥ m. By Corollary 1.2, we know
that σ(f) ≥ n+1. If σ(f) > n+1, then, by Theorem 1.2, λ(f) = σ(f). Hence, we can assume that σ(f) = n+1.

Suppose that λ(f) < σ(f), then f(z) can be represented as

f(z) = g(z)eh(z), (2.30)
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where g(z)( 6⌘ 0) is the canonical product (or polynomial) formed by the roots of f(z) such that

σ(g) = λ(g) = λ(f) < σ(f) = n+ 1,

and

h(z) = dn+1z
n+1

+ dnz
n
+ . . .+ d0 (2.31)

is a polynomial, where dn+1 6= 0, dn . . . , d0 are constants.
Substituting (2.30), (2.31) in (1.4) and dividing by eh(z), we obtain

A2(z)e
h(z+c2)−h(z)+h2(z)g(z + c2) +A1(z)e

h(z+c1)−h(z)+h1(z)g(z + c1) +A0(z)g(z) = 0. (2.32)

By virtue of (2.31), we can write

h(z + c1)− h(z) + h1(z) = ((n+ 1)c1dn+1 + an)z
n
+ h⇤1(z),

h(z + c2)− h(z) + h2(z) = (n+ 1)c2dn+1z
n
+ bmzm + h⇤2(z),

(2.33)

where h⇤1(z) and h⇤2(z) are polynomials of degree not greater than n− 1.

Consider the following two cases:

Case 1: n > m.

By (n+ 1)c2dn+1 6= 0, we can write

deg(h(z + c2)− h(z) + h2(z)) = n ≥ deg(h(z + c1)− h(z) + h1(z)).

Combining this with (2.32) and Corollary 1.2, we get σ(g) ≥ n+1. A contradiction. Hence, λ(f) = σ(f) = n+1.

Case 2: n = m.

If (n+ 1)c1dn+1 + an 6= 0, then it follows from (2.33) that

deg(h(z + c1)− h(z) + h1(z)) = n ≥ deg(h(z + c2)− h(z) + h2(z)).

Combining this with (2.32) and Corollary 1.2, we conclude that σ(g) ≥ n+1 = σ(f). A contradiction. Therefore,
λ(f) = σ(f) = n+ 1.

If (n+ 1)c1dn+1 + an = 0, then, for c1 6= 0, we find

(n+ 1)c2dn+1 + bm = −an
c1

c2 + bm =

c1bm − c2an
c1

6= 0.

Hence,

deg(h(z + c2)− h(z) + h2(z)) = n > deg(h(z + c1)− h(z) + h1(z)).

Together with (2.32) and Corollary 1.2, we have σ(g) ≥ n+ 1. A contradiction. Thus, λ(f) = σ(f) = n+ 1.

The present paper was supported by the Natural Science Foundation of the Guangdong Province in China
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