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GENERAL PROXIMAL-POINT ALGORITHM FORMONOTONE OPERATORS

M. Eslamian1 and J. Vahidi2 UDC 517.9

We introduce a new general proximal-point algorithm for an infinite family of monotone operators in
a real Hilbert space and establish strong convergence of the iterative process to a common null point of
the infinite family of monotone operators. Our result generalizes and improves numerous results in the
available literature.

1. Introduction

Let H be a real Hilbert space with scalar product h., .i and let A : D(A) ⇢ H ! H be a set-valued operator.
Recall that A is called monotone if hu− v, x− yi ≥ 0 for any [x, u], [y, v] 2 G(A), where

G(A) =
�
(x, u) : x 2 D(A), u 2 A(x)

 
.

A monotone operator A is called maximal monotone if its graph G(A) is not properly contained in the graph
of any other monotone operator. Monotone operators prove to be a key class of objects in the modern Optimization
and Analysis (see, e.g., the monographs [1–4] and the references therein). On the other hand, a variety of problems,
including convex programming and variational inequalities, can be formulated as the problems of finding zeros of
monotone operators. Hence, the problem of finding a solution z 2 H of 0 2 Az has been investigated by numerous
researchers. A popular method used to solve 0 2 Az by iterations is the proximal-point algorithm proposed by
Rockafellar [5], which is recognized as a powerful and successful algorithm in finding zeros of monotone operators.
Starting from any initial guess x0 2 H, this proximal-point algorithm generates a sequence {x

n

} given by

x
n+1 = JA

cn
(x

n

+ e
n

), (1.1)

where JA

r

= (I + rA)−1 for all r > 0 is the resolvent of A and {e
n

} is a sequence of errors. Rockafellar
proved the weak convergence of algorithm (1.1). However, as shown by Güler [6], the proximal-point algorithm
is not necessarily strongly convergent. Since that time, numerous authors have conducted worthwhile research
aimed at modifying the proximal-point algorithm in order to guarantee its strong convergence (see, e.g., [7–10]).
In particular, Xu [11] introduced the following iterative scheme:

x
n+1 = t

n

x0 + (1− t
n

)JA

rn
x
n

+ e
n

, (1.2)

where x0 is the starting point and {e
n

} is the error sequence. For summable {e
n

} , it was proved that {x
n

} is
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strongly convergent if r
n

! 1 and {t
n

} ⇢ (0, 1) with

lim

n!1
t
n

= 0,
1X

n=0

t
n

= 1.

Boikanyo and Morosanu [12] generalized this algorithm (1.2) with error sequences from lp for 1  p < 2.

Recently, Xu [13] proposed the following regularization for the proximal-point algorithm:

x
n+1 = JA

rn

�
t
n

x0 + (1− t
n

)x
n

+ e
n

�
(1.3)

which essentially includes the so-called prox-Tikhonov algorithm introduced by Lehdili and Moudafi [14] as a spe-
cial case. Boikanyo and Morosanu [15] mentioned that the proximal-point algorithm (1.3) is equivalent to algo-
rithm (1.2). These algorithms were further studied and analyzed by many authors (see [16–23]).

In the present paper, we introduce a general proximal-point algorithm aimed at finding a common null point for
an infinite family of monotone operators. We establish the strong convergence of the iterative process to a common
zero of the family of monotone operators. Our result generalizes some results of Xu [11], Tian and Song [17],
Boikanyo and Morosanu [16], Yao and Noor [23], and many other researchers.

2. Preliminaries

Let H be a real Hilbert space with inner product h., .i and induced norm k.k. We write x
n

* x to indicate
that the sequence {x

n

} weakly converges to x and x
n

! x to indicate that the sequence {x
n

} strongly converges
to x. Let K be a nonempty, closed, and convex subset of H. Then, for any x 2 H, there exists a unique nearest
point in K denoted by P

K

x and such that

kx− P
K

xk  kx− yk 8y 2 K.

The operator P
K

is called the metric projection of H onto K. We also know that, for x 2 H and z 2 K,

z = P
K

x if and only if

hx− z, y − zi  0 8y 2 K.

It is known that H satisfies Opial’s condition, i.e., for any sequence {x
n

} with x
n

* x, the inequality

lim inf

n!1
kx

n

− xk < lim inf

n!1
kx

n

− yk

holds for every y 2 H with y 6= x. In what follows, we use the following notions on S : K ! H.

(i) S is nonexpansive if

kSx− Syk  kx− yk 8x, y 2 K.

(ii) S is firmly nonexpansive if

kSx− Syk2  kx− yk2 −
��
(x− Sx)− (y − Sy)

��2 8x, y 2 K.

It is well known that P
K

is a nonexpansive mapping.
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The resolvent operator has the following properties:

Lemma 2.1 [1]. For a λ > 0,

(i) A is monotone if and only if the resolvent JA

λ

of A is single-valued and firmly nonexpansive;

(ii) A is maximal monotone if and only if JA

λ

of A is single-valued and firmly nonexpansive and its domain
is the entire H;

(iii) 0 2 A(x?) () x? 2 Fix(JA

λ

), where Fix(JA

λ

) denotes the fixed-point set of JA

λ

.

Since the fixed-point set of a nonexpansive operator is closed and convex, the projection onto the solution set
Z = A−1

(0) = {x 2 D(A) : 0 2 Ax} is well defined whenever Z 6= ?. For more details, see [24].

Lemma 2.2 [1] (The resolvent identity). For λ, µ > 0, the following identity holds:

JA

λ

x = JA

µ

⇣µ
λ
x+

⇣
1− µ

λ

⌘
JA

λ

x
⌘
, x 2 H.

Let B be a strongly positive bounded linear operator on H, i.e., there is a constant γ > 0 such that

hBx, xi ≥ γ kxk2 8x 2 H.

A typical problem is to minimize a quadratic function over the set of fixed points of a nonexpansive mapping S :

min

x2F (S)

1

2

hBx, xi − hx, bi.

Marino and Xu [25] introduced the following iterative process for finding a fixed point of a nonexpansive
mapping based on the viscosity approximation method introduced by Moudafi [26]:

x
n+1 = a

n

γf(x
n

) + (I − a
n

B)Sx
n

8n ≥ 0. (2.1)

They proved that, under some appropriate condition imposed on the parameters, the sequence {x
n

} generated
by (2.1) strongly converges to the unique solution of the variational inequality

⌦
(B − γf)x?, x− x?

↵
≥ 0 8x 2 F (S),

which is the optimality condition for the minimization problem

min

x2F (S)

1

2

hBx, xi − h(x),

where h is a potential function for γf
�
i.e., h0(x) = γf(x) 8x 2 H

�
.

Lemma 2.3 [25]. Assume that B is a strongly positive bounded linear operator on a Hilbert space H with
a coefficient γ > 0 and 0 < ⇢  kBk−1. Then

kI − ⇢Bk  1− ⇢γ.
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Lemma 2.4. The following inequality holds in a Hilbert space H:

kx+ yk2  kxk2 + 2hy, x+ yi, 8x, y 2 H.

Lemma 2.5 [27]. Let H be a Hilbert space and let {x
n

} be a sequence in H. Then, for any given

{λ
n

}1
n=1 ⇢ (0, 1) with

1X

n=1

λ
n

= 1

and for any positive integers i, j with i < j,

�����

1X

n=1

λ
n

x
n

�����

2


1X

n=1

λ
n

kx
n

k2 − λ
i

λ
j

kx
i

− x
j

k2.

Lemma 2.6 [11]. Assume that {↵
n

} is a sequence of nonnegative real numbers such that

↵
n+1  (1− γ

n

)↵
n

+ γ
n

δ
n

+ β
n

, n ≥ 0,

where {γ
n

}, {β
n

} and {δ
n

} satisfy the conditions:

(i) γ
n

⇢ [0, 1],
X1

n=1
γ
n

= 1,

(ii) lim sup

n!1 δ
n

 0 or
X1

n=1
|γ

n

δ
n

| < 1,

(iii) β
n

≥ 0 for all n ≥ 0 with
X1

n=0
β
n

< 1.

Then lim

n!1 ↵
n

= 0.

Lemma 2.7 [28]. Let {t
n

} be a sequence of real numbers that does not decrease at infinity in a sense that
there exists a subsequence {t

ni} of {t
n

} such that t
ni  t

ni+1 for all i ≥ 0. For sufficiently large numbers
n 2 N, an integer sequence {⌧(n)} is defined as follows:

⌧(n) = max{k  n : t
k

< t
k+1}.

Then ⌧(n) ! 1 as n ! 1 and

max{t
⌧(n), tn}  t

⌧(n)+1.

3. Main Result

We now formulate our main result.

Theorem 3.1. Let A
i

, i 2 N, be an infinite family of monotone operators in a Hilbert space H with Z =T1
i=1A

−1
i

({0}) 6= ?. Assume that K is a nonempty closed convex subset of H such that

1\

i=1

D(A
i

) ⇢ K ⇢
1\

i=1

R(I + rA
i

)
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for all r > 0. Moreover, assume that f is a b-contraction of K into itself and B is a strongly positive bounded
linear operator on H with a coefficient γ and

0 < γ <
γ

b
.

Let {x
n

} be a sequence generated by x0 2 H and

y
n

= ↵
n,0xn +

1X

i=1

↵
n,i

JAi
rn

x
n

, n ≥ 0,

x
n+1 = β

n

γf(x
n

) + (I − β
n

B)y
n

8n ≥ 0,

where
X1

i=0
↵
n,i

= 1 and {↵
n,i

} and {β
n

} satisfy the following conditions:

(i) {β
n

} ⇢ (0, 1), lim
n!1 β

n

= 0,
X1

n=1
β
n

= 1,

(ii) {r
n

} ⇢ (0,1) and lim inf

n!1 r
n

> 0,

(iii) {↵
n,i

} ⇢ (0, 1) and lim inf

n!1 ↵
n,0↵n,i

> 0 for all i 2 N.

Then the sequence {x
n

} strongly converges to z 2 Z, which solves the variational inequality;

h(B − γf)z, x− zi ≥ 0 8x 2 Z.

Proof. Since Z =

T1
i=1A

−1
i

({0}) is closed and convex, we conclude that the projection P
Z

is well defined.
Since lim

n!1 β
n

= 0, we can assume that β
n

2 (0, kBk−1
) for all n ≥ 0. Applying Lemma 2.3, we find

kI − β
n

Bk  1− β
n

γ. (3.1)

Further, we show that {x
n

} is bounded. By Lemma 2.1, the operators JAi
rn

are nonexpansive and, hence, we get

ky
n

− zk  k↵
n,0xn +

1X

i=1

↵
n,i

JAi
rn

x
n

− zk

 ↵
n,0kxn − zk+

1X

i=1

↵
n,i

kJAi
rn

x
n

− zk

 ↵
n,0kxn − zk+

1X

i=1

↵
n,i

kx
n

− zk  kx
n

− zk.

By using inequality (3.1), we obtain

kx
n+1 − zk = kβ

n

(γf(x
n

)−Bz) + ((I − β
n

B)(y
n

− z)k

 β
n

kγf(x
n

)−Bzk+ kI − β
n

Bkky
n

− zk
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 β
n

γkf(x
n

)− f(z)k+ β
n

kγf(z)−Bzk+ (1− β
n

γ)kx
n

− zk

 β
n

γbkx
n

− zk+ β
n

kγf(z)−Bzk+ (1− β
n

γ)kx
n

− zk

 (1− β
n

(γ − γb))kx
n

− zk+ β
n

kγf(z)−Bzk

 max

⇢
kx

n

− zk, 1

γ − γb
kγf(z)−Bzk

�
.

By induction, we conclude that

kx
n

− zk  max

⇢
kx0 − zk, 1

γ − γb
kγf(z)−Bzk

�
8n ≥ 0.

This shows that {x
n

} is bounded and, hence, the same is true for {f(x
n

)}. Further, we show that, for each i 2 N,

lim

n!1

��x
n

− JAi
rn

x
n

��
= 0.

By using Lemma 2.5, for any i 2 N we get

ky
n

− zk2  k↵
n,0xn +

1X

i=1

↵
n,i

JAi
rn

x
n

− zk2

 ↵
n,0kxn − zk2 +

1X

i=1

↵
n,i

kJAi
rn

x
n

− zk2 − ↵
n,0↵n,i

��JAi
rn

x
n

− x
n

��2

 ↵
n,0kxn − zk2 +

1X

i=1

↵
n,i

kx
n

− zk2 − ↵
n,0↵n,i

��JAi
rn

x
n

− x
n

��2

 kx
n

− zk2 − ↵
n,0↵n,i

��JAi
rn

x
n

− x
n

��2. (3.2)

Consequently, we obtain

kx
n+1 − zk2 =

��β
n

(γf(x
n

)−Bz) + (I − β
n

B)(y
n

− z)
��2


��β

n

(γf(x
n

)−Bz) + (I − β
n

B)(y
n

− z)
��2

 β2
n

kγf(x
n

)−Bzk2 + (1− β
n

γ)2ky
n

− zk2

+ 2β
n

(1− β
n

γ)kγf(x
n

)−Bzkky
n

− zk

 β2
n

kγf(x
n

)−Bzk2 + 2β
n

(1− β
n

γ)kγf(x
n

)−Bzkkx
n

− zk

+ (1− β
n

γ)2kx
n

− zk2 − (1− β
n

γ)2↵
n,0↵n,i

kJAi
rn

x
n

− x
n

k2. (3.3)
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Thus, for every i 2 N, we get

(1− β
n

γ)2↵
n,0↵n,i

��JAi
rn

x
n

− x
n

��2

 kx
n

− zk2 − kx
n+1 − zk2 + 2β

n

(1− β
n

γ)kγf(x
n

)

−Bzkkx
n

− zk+ β2
n

kγf(x
n

)−Bzk2. (3.4)

Note that the Banach contraction-mapping principle guarantees that PZ(I−B+γf) has a unique fixed point
z, which is the unique solution of the variational inequality

⌦
(B − γf)z, x− z

↵
≥ 0 8x 2 Z.

We finally analyze inequality (3.4) by considering the following two cases:

Case 1. Assume that
�
kx

n

− zk
 

is a monotone sequence. In other words, for sufficiently large n0,

{kx
n

−zk}
n≥n0 is either nondecreasing or nonincreasing. Since kx

n

−zk is bounded, we conclude that kx
n

−zk
is convergent. Moreover, since lim

n!1 β
n

= 0, and {f(x
n

)} and {x
n

} are bounded, it follows from (3.4) that

lim

n!1
(1− β

n

γ)2↵
n,0↵n,i

��JAi
rn

x
n

− x
n

��2
= 0.

This implies that

lim

n!1

��JAi
rn

x
n

− x
n

��
= 0.

By using the resolvent identity (Lemma 2.2), for any r > 0, we conclude that

��x
n

− JAi
r

x
n

�� 
��x

n

− JAi
rn

x
n

��
+

��JAi
rn

x
n

− JAi
r

x
n

��


��x

n

− JAi
rn

x
n

��
+

����J
Ai
r

✓
r

r
n

x
n

+

✓
1− r

r
n

◆
JAi
rn

x
n

◆
− JAi

r

x
n

����

 kx
n

− JAi
rn

x
n

k+
����
r

r
n

x
n

+

✓
1− r

r
n

◆
JAi
rn

x
n

− x
n

����


��x

n

− JAi
rn

x
n

��
+

����1−
r

r
n

����
��JAi

rn
x
n

− x
n

�� ! 0, n ! 1.

Further, we show that

lim sup

n!1
h(B − γf)z, z − x

n

i  0.

We can choose a subsequence {x
ni} of {x

n

} such that

lim

i!1
(hB − γf)z, z − x

nii = lim sup

n!1
(hB − γf)z, z − x

n

i.

Since {x
ni} is bounded, there exists a subsequence {x

nij
} of {x

ni} weakly convergent to x⇤. Without loss of
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generality, we can assume that x
ni * x⇤. We now show that x⇤ 2 Z. Indeed,

��x
ni − JAi

r

x⇤
�� 

��x
ni − JAi

r

x
ni

��
+

��JAi
r

x
ni − JAi

r

x⇤
��


��x

ni − JAi
r

x
ni

��
+ kx

ni − x⇤k.

This yields

lim sup

i!1

��x
ni − JAi

r

x⇤
��  lim sup

i!1
kx

ni − x⇤k.

By the Opial property of Hilbert space H we obtain x⇤ = JAi
r

x⇤, i 2 N. Hence x⇤ 2 Z. Therefore, it follows
from z = P

Z

(I −B + γf)z and x⇤ 2  that

lim sup

n!1
h(B − γf)z, z − x

n

i = lim

i!1
(hB − γf)z, z − x

nii = (hB − γf)z, z − x⇤i  0.

Since

x
n+1 − z = β

n

(γf(x
n

)−Bz) + (I − β
n

B)(y
n

− z),

by using Lemma 2.4 and the inequality (3.2), we find

kx
n+1 − zk2  k(I − β

n

B)(y
n

− z)k2 + 2β
n

hγf(x
n

)−Bz, x
n+1 − zi

 (1− β
n

γ)2kx
n

− zk2

+ 2β
n

γhf(x
n

)− f(z), x
n+1 − zi+ 2β

n

hγf(z)−Bz, x
n+1 − zi

 (1− β
n

γ)2kx
n

− zk2 + 2β
n

bγkx
n

− zkkx
n+1 − zk

+ 2β
n

hγf(z)−Bz, x
n+1 − zi

 (1− β
n

γ)2kx
n

− zk2 + β
n

bγ(kx
n

− zk2 + kx
n+1 − zk2)

+ 2β
n

hγfz −Bz, x
n+1 − zi


�
(1− β

n

γ)2 + β
n

bγ
�
kx

n

− zk2 + β
n

γbkx
n+1 − zk2

+ 2β
n

hγf(z)−Bz, x
n+1 − zi.

This means that

kx
n+1 − zk2  1− 2β

n

γ + (β
n

γ)2 + β
n

γb

1− β
n

γb
kx

n

− zk2

+

2β
n

1− ⌘
n

γb
hγfz −Bz, x

n+1 − zi
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=

✓
1− 2(γ − γb)β

n

1− β
n

γb

◆
kx

n

− zk2

+

(β
n

γ)2

1− ⌘
n

γb
kx

n

− zk2 + 2β
n

1− β
n

γb
hγfz −Bz, x

n+1 − zi


✓
1− 2(γ − γb)β

n

1− β
n

γb

◆
kx

n

− zk2

+

2(γ − γb)β
n

1− β
n

γb

✓
(β

n

γ2)P

2(γ − γb)
+

1

γ − γb

◆
hγfz −Bz, x

n+1 − zi

= (1− γ
n

)kx
n

− zk2 + γ
n

δ
n

,

where

P = sup{kx
n

− zk2 : n ≥ 0}, γ
n

=

2(γ − γb)β
n

1− β
n

γb
,

and

δ
n

=

(β
n

γ2)P

2(γ − γb)
+

1

γ − γb
hγfz −Bz, x

n+1 − zi.

It is easy to see that

1X

n=1

γ
n

= 1 as γ
n

! 0 and lim sup

n!1
δ
n

 0.

Thus, by applying Lemma 2.6, we conclude that the sequence {x
n

} strongly converges to z.

Case 2. Assume that
�
kx

n

− zk
 

is not a monotone sequence. Then we can define an integer sequence
{⌧(n)} for all n ≥ n0 (for some sufficiently large n0 ) as follows:

⌧(n) = max

�
k 2 N; k  n : kx

k

− zk < kx
k+1 − zk

 
.

Clearly, ⌧(n) is a nondecreasing sequence such that ⌧(n) ! 1 as n ! 1 and, for all n ≥ n0,

kx
⌧(n) − zk < kx

⌧(n)+1 − zk.

Thus, it follows from (3.3) that

kx
n+1 − zk2 − kx

n

− zk2  β2
n

kγf(x
n

)−Bzk2 + ((β
n

γ)2 − 2β
n

γ)kx
n

− zk2

+ 2β
n

(1− β
n

γ)kγf(x
n

)−Bzkkx
n

− zk.

Since lim

n!1 β
n

= 0 and {f(x
n

)} and {x
n

} are bounded, we obtain

lim

n!1

�
kx

⌧(n)+1 − zk2 − kx
⌧(n) − zk2

�
= 0. (3.5)
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By using the same argument as in Case 1, we find

lim

n!1

��JAi
rn

x
⌧(n) − x

⌧(n)

��
= 0

and

kx
⌧(n)+1 − zk2  (1− γ

⌧(n))kx⌧(n) − zk2 + γ
⌧(n)δ⌧(n),

where lim sup

n!1 δ
⌧(n)  0. Since kx

⌧(n) − zk  kx
⌧(n)+1 − zk, we have

γ
⌧(n)kx⌧(n) − zk2  γ

⌧(n)δ⌧(n).

Further, since γ
⌧(n) > 0 we deduce

kx
⌧(n) − zk2  δ

⌧(n).

It follows from lim sup

n!1 δ
⌧(n)  0 that lim

n!1 kx
⌧(n) − zk = 0. Together with (3.5), this implies that

lim

n!1 kx
⌧(n)+1 − zk = 0. Thus, by Lemma 2.7, we conclude that

0  kx
n

− zk  max

�
kx

⌧(n) − zk, kx
n

− zk
 
 kx

⌧(n)+1 − zk.

Therefore, {x
n

} strongly converges to z = PZ(I −B + γf)z.

Theorem 3.1 is proved.

Theorem 3.2. Let A
i

, i 2 N, be an infinite family of maximal monotone operators in a real Hilbert space H

with Z =

T1
i=1A

−1
i

({0}) 6= ?. Assume that f is a b-contraction of H into itself and A is a strongly positive
bounded linear operator on H with a coefficient γ and

0 < γ <
γ

b
.

Let {x
n

} be a sequence generated by x0 2 H and

y
n

= ↵
n,0xn +

1X

i=1

↵
n,i

JAi
rn

x
n

, n ≥ 0,

x
n+1 = β

n

γf(x
n

) + (I − β
n

B)y
n

8n ≥ 0,

where

1X

i=0

↵
n,i

= 1

and {↵
n,i

} and {β
n

} satisfy the following conditions:

(i) {β
n

} ⇢ (0, 1), lim
n!1 β

n

= 0, and
X1

n=1
β
n

= 1;
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(ii) {r
n

} ⇢ (0,1) and lim inf

n!1 r
n

> 0;

(iii) {↵
n,i

} ⇢ (0, 1) and lim inf

n!1 ↵
n,0↵n,i

> 0 for all i 2 N.

Then the sequence {x
n

} strongly converges to z 2 Z, which solves the variational inequality

h(B − γf)z, x− zi ≥ 0 8x 2 Z.

Proof. Since A
i

are maximal monotone operators, we conclude that A
i

are monotone and satisfy the condi-
tion R(I + rA

i

) = H for all r > 0. Setting K = H in Theorem 3.1, we obtain the desired result.
Further, setting B = I and γ = 1 in Theorem 3.1, for a finite family of monotone operators, we immediately

arrive at the following result:

Corollary 3.1. Let A
i

, i = 1, 2, . . . ,m, be a finite family of monotone operators in a Hilbert space H with

Z =

m\

i=1

A−1
i

({0}) 6= ?.

Suppose that K is a nonempty closed convex subset of H such that

m\

i=1

D(A
i

) ⇢ K ⇢
m\

i=1

R(I + rA
i

)

for all r > 0. Assume that f is a b-contraction of K into itself. Let {x
n

} be a sequence generated by x0 2 H

and

y
n

= ↵
n,0xn +

mX

i=1

↵
n,i

JAi
rn

x
n

, n ≥ 0,

x
n+1 = β

n

f(x
n

) + (1− β
n

)y
n

8n ≥ 0,

where
mX

i=0

↵
n,i

= 1

and {↵
n,i

} and {β
n

} satisfy the following conditions:

(i) {β
n

} ⇢ (0, 1), lim
n!1 β

n

= 0, and
X1

n=1
β
n

= 1,

(ii) {r
n

} ⇢ (0,1) and lim inf

n!1 r
n

> 0,

(iii) {↵
n,i

} ⇢ (0, 1) and lim inf

n!1 ↵
n,0↵n,i

> 0 for i = 1, 2, . . . ,m.

Then the sequence {x
n

} strongly converges to z 2 Z, which solves the variational inequality

hz − fz, x− zi ≥ 0 8x 2 Z.
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