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DETERMINATION OF THE LOWER COEFFICIENT IN A PARABOLIC
EQUATIONWITH STRONG POWER DEGENERATION

N. M. Huzyk UDC 517.95

We establish conditions for the existence and uniqueness of the classical solution to the inverse problem of
identification of the time-dependent lowest coefficient of the first derivative in a one-dimensional degener-
ate parabolic equation. The Dirichlet boundary conditions and the integral condition of overdetermination
are imposed. We study the case of strong power degeneration.

Introduction

In the present paper, we study the coefficient inverse problem for a one-dimensional parabolic equation with
strong power degeneration. In addition to the solution of the direct problem, the time-dependent coefficient of the
first derivative of an unknown function with respect to the space variable is also regarded as unknown.

The inverse problems of determination of the time-dependent lowest coefficient in a one-dimensional parabolic
equation without degeneration were studied in [1–4] in domains with fixed boundaries and in [5–7] in domains
with free boundaries. The conditions of unique solvability of these problems for different collections of boundary
conditions (Dirichlet and Neumann) and conditions of overdetermination were established.

The direct problems for parabolic equations with degeneration are studied fairly completely. At the same
time, the inverse problems for these equations are, in fact, not investigated at all. Thus, we can mention only
the works [8, 9] devoted to the inverse problems for parabolic equations with degeneration caused by a function
depending on the space variable.

The inverse problems of determination of the coefficient

a = a(t), t 2 [0, T ],

in the parabolic equation with power degeneration

u

t

= a(t)t

β

u

xx

+ b(x, t)u

x

+ c(x, t)u+ f(x, t)

were considered by Ivanchov and Saldina [10, 11]. They showed that, unlike the case of weak power degenera-
tion (0 < β < 1), for the solvability of the problem in the case of strong power degeneration (β ≥ 1), certain
conditions should be imposed on the lowest coefficients of the equation as t ! 0.

The conditions of solvability of the inverse problems of determination of the time-dependent lowest coefficient
in a parabolic equation with weak power degeneration were obtained in [12, 13] in the case of domains with fixed
boundaries and in [14, 15] in the case of domains with free boundaries. The well-posedness of the inverse problem
of simultaneous determination of two time-dependent coefficients in a weakly degenerate parabolic equation was
established in [16].

Our aim is to establish conditions for the unique solvability of the inverse problem of determination of the
lowest coefficient in a parabolic equation in the case of strong power degeneration.
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1. Statement of the Problem and Main Results

In a domain Q

T

= {(x, t) : 0 < x < h, 0 < t < T}, we consider the inverse problem of determination of
the coefficient b = b(t) in the equation

u

t

= a(t)t

β

u

xx

+ b(t)u

x

+ c(x, t)u+ f(x, t) (1)

with the initial condition

u(x, 0) = '(x), x 2 [0, h], (2)

the Dirichlet boundary conditions

u(0, t) = µ1(t), u(h, t) = µ2(t), t 2 [0, T ], (3)

and the integral condition of overdetermination

hZ

0

u(x, t)dx = µ3(t), t 2 [0, T ]. (4)

We study the case of strong degeneration where β ≥ 1.

The following theorem establishes the conditions required for the existence and uniqueness of the solution of
problem (1)–(4):

Theorem 1. Assume that the following conditions are satisfied:

(i) ' 2 C

1
[0, h], a 2 C[0, T ], µ

i

2 C

1
[0, T ], i = 1, 2, 3, and c, f 2 C(Q

T

) and satisfy the Hölder
condition with respect to the variable x with exponent ↵, 0 < ↵ < 1;

(ii) a(t) > 0, µ2(t) − µ1(t) 6= 0, t 2 [0, T ], |f(x, t)|  A1t
γ

, |c(x, t)|  A2t
γ

, (x, t) 2 Q

T

, and

|µ0
3(t)|  A3t

γ

, t 2 [0, T ], where A

i

, i = 1, 2, 3, are positive constants and γ >

β − 1

2

is an arbitrary
fixed number;

(iii) µ1(0) = '(0), µ2(0) = '(h), and
Z

h

0
'(x)dx = µ3(0).

Then there exists a unique solution

(b, u) 2 C[0, T0]⇥ C

2,1
(Q

T0) \ C(Q

T0
), |b(t)|  M0t

⌘

,

of problem (1)–(4) with ⌘ = min

⇢
γ,

β + 1

2

�
, where the numbers M0 > 0 and T0, 0 < T0  T, are determined

by the initial data of this problem.

2. Reduction of Problem (1)–(4) to an Equivalent System of Equations

We temporarily assume that the function b = b(t) is known.
To reduce the direct problem (1)–(3) to a system of integral equations for the functions u = u(x, t) and

v = v(x, t), where v(x, t) ⌘ u

x

(x, t), we use the Green functions G

k

(x, t, ⇠, ⌧), k = 1, 2, of the first (k = 1)
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and second (k = 2) boundary-value problems for the heat-conduction equation

u

t

= a(t)t

β

u

xx

. (5)

It is known [17, p. 12] that these functions are given by the formulas

G

k

(x, t, ⇠, ⌧) =

1

2

p
⇡(✓(t)− ✓(⌧))

+1X

n=−1

✓
exp

✓
−(x− ⇠ + 2nh)

2

4(✓(t)− ✓(⌧))

◆

+(−1)

k

exp

✓
−(x+ ⇠ + 2nh)

2

4(✓(t)− ✓(⌧))

◆◆
, (6)

0  x, ⇠  h, 0  ⌧ < t  T, k = 1, 2,

where

✓(t) =

tZ

0

a(σ)σ

β

dσ.

As a result, we obtain

u(x, t) =

hZ

0

G1(x, t, ⇠, 0)'(⇠)d⇠ +

tZ

0

G1⇠(x, t, 0, ⌧)a(⌧)⌧
β

µ1(⌧)d⌧

−
tZ

0

G1⇠(x, t, h, ⌧)a(⌧)⌧
β

µ2(⌧)d⌧ +

tZ

0

hZ

0

G1(x, t, ⇠, ⌧)f(⇠, ⌧)d⇠d⌧

+

tZ

0

hZ

0

G1(x, t, ⇠, ⌧)(b(⌧)v(⇠, ⌧) + c(⇠, ⌧)u(⇠, ⌧))d⇠d⌧ =

5X

i=1

I

i

, (7)

v(x, t) =

hZ

0

G2(x, t, ⇠, 0)'
0
(⇠)d⇠ −

tZ

0

G2(x, t, 0, ⌧)µ
0
1(⌧)d⌧

+

tZ

0

G2(x, t, h, ⌧)µ
0
2(⌧)d⌧ +

tZ

0

hZ

0

G1x(x, t, ⇠, ⌧)f(⇠, ⌧)d⇠d⌧

+

tZ

0

hZ

0

G1x(x, t, ⇠, ⌧)(b(⌧)v(⇠, ⌧) + c(⇠, ⌧)u(⇠, ⌧))d⇠d⌧ =

5X

i=1

J

i

. (8)
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Note that Eq. (8) is derived from Eq. (7) as a result of differentiation with respect to the space variable.
Moreover, we use the relations

G1x(x, t, ⇠, ⌧) = −G2⇠(x, t, ⇠, ⌧) and G2⌧ (x, t, ⇠, ⌧) = −a(⌧)⌧

β

G2⇠⇠(x, t, ⇠, ⌧),

which can be easily verified with the help of relation (6).
To obtain an equation for the function b = b(t), we integrate Eq. (1). By using (2)–(4), we get

b(t) =

0

@
µ

0
3(t)− a(t)t

β

(v(h, t)− v(0, t))−
hZ

0

(f(x, t) + c(x, t)u(x, t)) dx

1

A
(µ2(t)− µ1(t))

−1
, (9)

t 2 [0, T ].

We now analyze the behavior of the integrals on the right-hand sides of relations (7) and (8). Since

hZ

0

G1(x, t, ⇠, 0) d⇠ +

tZ

0

G1⇠(x, t, 0, ⌧)a(⌧)⌧
β

d⌧ −
tZ

0

G1⇠(x, t, h, ⌧)a(⌧)⌧
β

d⌧ = 1,

we have
3X

i=1

|I
i

|  C1, (10)

where C1 is a positive constant depending on the estimates for the functions '(x), µ1(t), and µ2(t). In view of
the fact that

G1(x, t, ⇠, ⌧)  G2(x, t, ⇠, ⌧),

hZ

0

G2(x, t, ⇠, 0) d⇠ = 1, (11)

we obtain

|I4|  C2, |J1|  C3, (x, t) 2 Q

T

, (12)

where C2 and C3 are positive constants determined by the initial data of the problem.
To estimate the other integrals on the right-hand sides of equalities (7) and (8), we use the following estimates

for the Green functions [17, p. 12]:

G2(x, t, ⇠, ⌧)  C4

 
1 +

1p
✓(t)− ✓(⌧)

!
,

hZ

0

G1x(x, t, ⇠, ⌧) d⇠  C5p
✓(t)− ✓(⌧)

. (13)

By using the definition of the function ✓ = ✓(t), we establish the behavior of the expression

I ⌘
tZ

0

d⌧p
✓(t)− ✓(⌧)

=

tZ

0

d⌧sZ
t

⌧

a(σ)σ

β

dσ


r

1 + β

A0

tZ

0

d⌧p
t

1+β − ⌧

1+β

,
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where A0 ⌘ min[0,T ] a(t) as t ! 0. In the last integral, we perform the change of variables z =

⌧

t

and obtain

I 
r

1 + β

A0
t

1−β

2

1Z

0

dzp
1− z

1+β


r

1 + β

A0
t

1−β

2

1Z

0

dzp
1− z

 C6t
1−β

2
. (14)

This means that the integrals J2, J3, and J4 behave as t
1−β

2 when t ! 0.

Denote

U(t) = max

x2[0,h]
|u(x, t)| and V (t) = max

(x,⌧)2[0,h]⇥[0,t]
|v(x, ⌧)|, t 2 [0, T ].

By using (11), (13), and the conditions of the theorem, we obtain the following inequalities from relations (7)–(9):

U(t)  C7 + C8

tZ

0

(|b(⌧)|V (⌧) + ⌧

γ

U(⌧)) d⌧, t 2 [0, T ], (15)

V (t)  C9

t

β−1
2

+ C10

tZ

0

|b(⌧)|V (⌧) + ⌧

γ

U(⌧)p
t

β+1 − ⌧

β+1
d⌧, t 2 (0, T ], (16)

|b(t)|  C11t
γ

+ C12t
β

V (t) + C13t
γ

U(t), t 2 [0, T ]. (17)

It follows from relations (15)–(17) that the function u = u(x, t) is continuous in Q

T

, the function v = v(x, t)

behaves as t
1−β

2 when t ! 0, and b(t) tends to zero as t ! 0 as the power function t

⌘

.

We solve the system of inequalities (15)–(17). Denote

e
b(t) = max

0⌧t

|b(⌧)|.

It is clear that this function satisfies inequality (17). Since the functions eb = eb(t) and V = V (t) are nondecreasing,
we rewrite

U(t)  C7 + C8T
e
b(t)V (t) + C8

tZ

0

⌧

γ

U(⌧) d⌧, t 2 [0, T ].

By using Lemma 2.2.2 in [17, p. 23], for the last inequality, we get

U(t)  C14

⇣
1 +

e
b(t)V (t)

⌘
, t 2 [0, T ]. (18)

Thus, inequality (17) takes the form

e
b(t)(1− C15t

γ

V (t))  C16t
γ

+ C12t
β

V (t), t 2 [0, T ]. (19)
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In view of the behavior of the function V = V (t) as t ! 0, we can state that there exists a number t1, 0 < t1  T,

such that the inequality

1− C15t
γ

1V (t) ≥ 1

2

(20)

holds. This means that inequalities (18) and (19) can be rewritten in the form

|b(t)|  eb(t)  C17t
γ

+ C18t
β

V (t), t 2 [0, t1], (21)

U(t)  C19

⇣
1 + t

γ

V (t) + t

β

V

2
(t)

⌘
, t 2 [0, t1]. (22)

Substituting (21) and (22) in (16), we arrive at the inequality

V (t)  C20

t

β−1
2

+ C21

tZ

0

⌧

γ

V (⌧) + ⌧

β

V

2
(⌧)p

t

β+1 − ⌧

β+1
d⌧. (23)

Denote

V1(t) = V (t)t

β−1
2
.

We multiply inequality (23) by t

β−1
2
. Since β ≥ 1, we get

1p
t

β+1 − ⌧

β+1
 1

t

β

2

q
t−

�
⌧

t

�
β

⌧

 1

t

β

2
p
t− ⌧

.

As a result, we obtain the following inequality from (23):

V1(t)  C20 +
C21p

t

tZ

0

⌧

γ−β−1
2
V1(⌧) + ⌧V

2
1 (⌧)p

t− ⌧

d⌧, t 2 [0, t1]. (24)

Let γ  β + 1

2

. Then

V1(t)  C20 +
C22p

t

tZ

0

⌧

γ−β−1
2
(V1(⌧) + 1)

2

p
t− ⌧

d⌧.

Thus, we denote

V2(t) = V1(t) + 1

and obtain

V2(t)  C23 +
C22p

t

tZ

0

⌧

γ−β−1
2
V

2
2 (⌧)p

t− ⌧

d⌧, t 2 [0, t1]. (25)



DETERMINATION OF THE LOWER COEFFICIENT IN A PARABOLIC EQUATION WITH STRONG POWER DEGENERATION 1055

Further, we square both sides of (25) and apply the Cauchy and Cauchy–Buniakowski inequalities [18, pp. 49, 382]:

V

2
2 (t)  2C

2
23 + 4C

2
22t

γ−β−2
2

tZ

0

⌧

γ−β+1
2
V

4
2 (⌧)p

t− ⌧

d⌧.

In the last inequality, we replace t by σ, multiply the inequality by
σ

γ−β−1
2

p
t− σ

, and integrate it with respect to σ

from 0 to t. As a result, we get

tZ

0

σ

γ−β−1
2
V

2
2 (σ)p

t− σ

dσ  C24t
γ−β−2

2
+ C25t

2γ−β+ 3
2

tZ

0

⌧

γ−β+1
2
V

4
2 (⌧) d⌧.

By using the last inequality in (25), we obtain

V2(t)  C26 + C27

tZ

0

V

4
2 (⌧)

⌧

β+1
2

−γ

d⌧. (26)

Denote

χ(t) = C26 + C27

tZ

0

V

4
2 (⌧)

⌧

β+1
2

−γ

d⌧. (27)

Thus, it follows from (26) that V2(t)  χ(t) . Differentiating (27) and using the last inequality, we get

χ

0
(t)  C27

t

β+1
2

−γ

χ

4
(t),

whence

χ(t) 
C26

3

q
γ − β−1

2

3

q
γ − β−1

2 − 3C

3
26C27t

γ−β−1
2

.

Taking the number t2, 0 < t2  T, such that

γ − β − 1

2

− 3C

3
26C27t

γ−β−1
2

2 > 0, (28)

we conclude that χ(t)  C28 or

V2(t)  C28, t 2 [0, t2].

In the case where γ >

β + 1

2

, inequality (24) is reduced to the form

V2(t)  C29 + C30

tZ

0

V

2
2 (⌧)p
t− ⌧

d⌧.
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Reasoning as in the solution of (25), we obtain

V2(t)  C31, t 2 [0, t3],

where the number t3, 0 < t3  T, is determined by the constants C29 and C30. Thus,

|v(x, t)|  M1

t

β−1
2

, (x, t) 2 [0, h]⇥ (0, t4], (29)

where M1 = max{C28, C31} and t4 = min{t1, t2, t3}. According to (17) and (22), we find

|u(x, t)|  M2, (x, t) 2 [0, h]⇥ [0, t4], (30)

|b(t)|  M0t
⌘

, t 2 [0, t4]. (31)

This means that we have established the a priori estimates (29)–(31) for the solutions of the system of equa-
tions (7)–(9).

Thus, problem (1)–(4) is reduced to the equivalent system of equations (7)–(9). We understand the indicated
equivalence as follows: if a pair of functions (b, u) is a solution of problem (1)–(4) for (x, t) 2 [0, h] ⇥ [0, t4],

then the triple of functions

(u, v, b) 2 C(Q

t4
)⇥ C([0, h]⇥ (0, t4])⇥ C[0, t4], |b(t)|  M0t

⌘

, t 2 [0, t4],

satisfies equality (7)–(9) and, conversely, if (u, v, b) is a solution of system (7)–(9), then (b, u) belongs to the class
C[0, t4]⇥ C

2,1
(Q

t4) \ C(Q

t4
) and satisfies problem (1)–(4) and the estimate |b(t)|  M0t

⌘

, t 2 [0, t4].

Indeed, the first part of this assertion follows from the procedure used to deduce the system of equations (7)–(9).
To prove the converse assertion, we differentiate both sides of equality (7) and obtain

u

x

(x, t) =

hZ

0

G2(x, t, ⇠, 0)'
0
(⇠) d⇠ −

tZ

0

G2(x, t, 0, ⌧)µ
0
1(⌧) d⌧

+

tZ

0

G2(x, t, h, ⌧)µ
0
2(⌧) d⌧ +

tZ

0

hZ

0

G1x(x, t, ⇠, ⌧)f(⇠, ⌧) d⇠ d⌧

+

tZ

0

hZ

0

G1x(x, t, ⇠, ⌧)(b(⌧)v(⇠, ⌧) + c(⇠, ⌧)u(⇠, ⌧)) d⇠ d⌧.

Since the right-hand sides of the obtained equality and equality (8) coincide, we get

v(x, t) ⌘ u

x

(x, t), (x, t) 2 [0, h]⇥ (0, t4].

Moreover, the established behavior of the functions b = b(t) and v = v(x, t) implies that the product b(t)v(x, t)
is a continuous function in Q

t4
. By using this result in equality (7), we arrive at an integrodifferential equation
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for the function u = u(x, t) and conclude that the function u belongs to the class C

2,1
(Q

t4) \ C(Q

t4
) and is

a solution of problem (1)–(3) [17, p. 49]. Thus, we can rewrite Eq. (9) in the form

a(t)t

β

(u

x

(h, t)− u

x

(0, t) + b(t)(u(h, t)− u(0, t) +

hZ

0

(f(x, t) + c(x, t)u(x, t)) dx = µ

0
3(t)

or
hZ

0

u

t

(x, t) dx = µ

0
3(t), t 2 [0, t4].

By using the consistency condition

hZ

0

'(x) dx = µ3(0),

we arrive at condition (4), which completes the proof of equivalence of problem (1)–(4) and the system of equa-
tions (7)–(9).

3. Proof of Existence of a Solution of Problem (1)–(4)

By using the Schauder theorem on fixed point of a completely continuous operator, we prove the existence of
solution for the system of equations (7)–(9) equivalent to problem (1)–(4).

We introduce new functions

p(t) = b(t)t

−⌘ and w(x, t) = t

β−1
2
v(x, t)

and rewrite the system of equations (7)–(9) in the form

u(x, t) =

4X

i=1

I

i

+

tZ

0

hZ

0

G1(x, t, ⇠, ⌧)

⇥
⇣
⌧

⌘−β−1
2
p(⌧)w(⇠, ⌧) + c(⇠, ⌧)u(⇠, ⌧)

⌘
d⇠ d⌧, (x, t) 2 Q

t4
, (32)

w(x, t) = t

β−1
2

4X

i=1

J

i

+ t

β−1
2

tZ

0

hZ

0

G1x(x, t, ⇠, ⌧)

⇥
⇣
⌧

⌘−β−1
2
p(⌧)w(⇠, ⌧) + c(⇠, ⌧)u(⇠, ⌧)

⌘
d⇠ d⌧, (x, t) 2 Q

t4
, (33)

p(t) =

0

@
µ

0
3(t)− a(t)t

β+1
2
(w(h, t)− w(0, t))−

hZ

0

(f(x, t) + c(x, t)u(x, t)) dx

1

A

⇥ t

−⌘

(µ2(t)− µ1(t))
−1

, t 2 [0, t4]. (34)
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We take arbitrary (u,w, p) for which inequalities (29)–(31) are true. By using (29)–(31), we estimate the
right-hand sides of equations (32)–(34) as follows:

|P1(u,w, p)| ⌘

������

4X

i=1

I

i

+

tZ

0

hZ

0

G1(x, t, ⇠, ⌧)

⇣
⌧

⌘−β−1
2
p(⌧)w(⇠, ⌧) + c(⇠, ⌧)u(⇠, ⌧)

⌘
d⇠ d⌧

������

 C7 + C32t
⌘−β−3

2
+ C33t

γ+1
,

|P2(u,w, p)| ⌘

�����t
β−1
2

4X

i=1

J

i

+ t

β−1
2

tZ

0

hZ

0

G1x(x, t, ⇠, ⌧)

⇣
⌧

⌘−β−1
2
p(⌧)w(⇠, ⌧) + c(⇠, ⌧)u(⇠, ⌧)

⌘
d⇠ d⌧

�����

 C9 + C34t
⌘−β−1

2
+ C35t

γ

.

Note that the constants C7 and C9 in the obtained estimates are smaller than M2 and M1, respectively.
We choose a number t5, 0 < t5  T, such that the inequalities

C7 + C32t
⌘−β−3

2
5 + C33t

γ+1
5  M2, (35)

C9 + C34t
⌘−β−1

2
4 + C35t

γ

5  M1 (36)

are true. This yields

|P1(u,w, p)|  M2, (x, t) 2 [0, h]⇥ [0, t5], (37)

|P2(u,w, p)|  M1, (x, t) 2 [0, h]⇥ [0, t5]. (38)

In addition, by virtue of (37) and (38), it follows from (34) that

|P3(u,w, p)| ⌘

�����

 
µ

0
3(t)− a(t)t

β+1
2
(w(h, t)− w(0, t))

−
hZ

0

(f(x, t) + c(x, t)u(x, t))dx

!
t

−⌘

(µ2(t)− µ1(t))
−1

�����  M0, t 2 [0, t5]. (39)

In the Banach space

B = (C(Q

T0
))

2 ⇥ (C[0, T0]),

we define a set

N = {(u,w, p) 2 (C(Q

T0
))

2 ⇥ (C[0, T0]) : |u(x, t)|  M2, |w(x, t)|  M1, |p(t)|  M0},
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where T0 = min{t4, t5}. It is clear that the set N is closed and convex. We rewrite system (32)–(34) in the form
of an operator equation

! = P!,

where ! = (u,w, p) and the operator P = (P1, P2, P3) is given by the right-hand sides of equations (32)–(34).
As follows from the reasoning presented above, the operator P maps the set N into itself. The complete continuity
of the operator P is proved in exactly the same way as in [11] and [17, p. 27]. Thus, by virtue of the Schauder
theorem on fixed point of a completely continuous operator, there exists a continuous solution of system (32)–(34)
and, hence, a solution of problem (1)–(4) for x 2 [0, h] and t 2 [0, T0].

4. Proof of Uniqueness of a Solution of Problem (1)–(4)

We prove the uniqueness of solution of problem (1)–(4) by contradiction with the help of the system of equa-
tions (32)–(34). Assume that there are two solutions (u

i

, w

i

, p

i

), i = 1, 2, of the system of equations (32)–(34).
Thus, we get the following system for the differences u = u1 − u2, w = w1 − w2, and p = p1 − p2 :

u(x, t) =

tZ

0

hZ

0

G1(x, t, ⇠, ⌧)

⇥
⇣
⌧

⌘−β−1
2
p1(⌧)w(⇠, ⌧) + ⌧

⌘−β−1
2
w2(⇠, ⌧)p(⌧) + c(⇠, ⌧)u(⇠, ⌧)

⌘
d⇠ d⌧, (x, t) 2 Q

T0
, (40)

w(x, t) = t

β−1
2

tZ

0

hZ

0

G1x(x, t, ⇠, ⌧)

⇥
⇣
⌧

⌘−β−1
2
p1(⌧)w(⇠, ⌧) + ⌧

⌘−β−1
2
w2(⇠, ⌧)p(⌧) + c(⇠, ⌧)u(⇠, ⌧)

⌘
d⇠ d⌧, (x, t) 2 Q

T0
, (41)

p(t) =

0

@
a(t)t

β+1
2
(w(h, t)− w(0, t))−

hZ

0

c(x, t)u(x, t) dx

1

A

⇥ t

−⌘

(µ2(t)− µ1(t))
−1

, t 2 [0, T0]. (42)

Substituting equality (42) in (40) and (41), we obtain

u(x, t) =

tZ

0

hZ

0

G1(x, t, ⇠, ⌧)

 
⌧

⌘−β−1
2
p1(⌧)w(⇠, ⌧) + w2(⇠, ⌧)

 
⌧a(⌧)(w(h, ⌧)− w(0, ⌧))

− ⌧

−β−1
2

hZ

0

c(⇣, ⌧)u(⇣, ⌧)d⇣

!
(µ2(⌧)− µ1(⌧))

−1

!
d⇠ d⌧, (x, t) 2 Q

T0
, (43)
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w(x, t) = t

β−1
2

tZ

0

hZ

0

G1x(x, t, ⇠, ⌧)

 
⌧

⌘−β−1
2
p1(⌧)w(⇠, ⌧) + w2(⇠, ⌧)

 
⌧a(⌧)(w(h, ⌧)− w(0, ⌧))

− ⌧

−β−1
2

hZ

0

c(⇣, ⌧)u(⇣, ⌧)d⇣

!
(µ2(⌧)− µ1(⌧))

−1

!
d⇠ d⌧, (x, t) 2 Q

T0
. (44)

We supplement the system of equations (43), (44) with the following two equations for the functions w(h, t)
and w(0, t) :

w(h, t) = t

β−1
2

tZ

0

hZ

0

G1x(h, t, ⇠, ⌧)

 
⌧

⌘−β−1
2
p1(⌧)w(⇠, ⌧) + w2(⇠, ⌧)

 
⌧a(⌧)(w(h, ⌧)− w(0, ⌧))

− ⌧

−β−1
2

hZ

0

c(⇣, ⌧)u(⇣, ⌧)d⇣

!
(µ2(⌧)− µ1(⌧))

−1

!
d⇠ d⌧, t 2 [0, T0], (45)

w(0, t) = t

β−1
2

tZ

0

hZ

0

G1x(0, t, ⇠, ⌧)

 
⌧

⌘−β−1
2
p1(⌧)w(⇠, ⌧) + w2(⇠, ⌧)

 
⌧a(⌧)(w(h, ⌧)− w(0, ⌧))

− ⌧

−β−1
2

hZ

0

c(⇣, ⌧)u(⇣, ⌧)d⇣

!
(µ2(⌧)− µ1(⌧))

−1

!
d⇠ d⌧, t 2 [0, T0]. (46)

As a result, we arrive at the system of homogeneous integral Volterra equations of the second kind (43)–(46).
In view of (11) and (13), we conclude that the kernels of this system have integrable singularities. Hence, the
system possesses solely the trivial solution.

The theorem is proved.

Remark. It follows from the proof of the theorem that the behavior of the function b = b(t) as t ! 0

guarantees the convergence of the integral J5 and makes it possible to establish the behavior of the function
v = v(x, t) as a solution of the integral equation (8).
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