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ONWEAKLY PERIODIC GIBBS MEASURES FOR THE POTTS MODEL
WITH EXTERNAL FIELD ON THE CAYLEY TREE

M. M. Rakhmatullaev UDC 517.98+530.1

We study the Potts model with external field on a Cayley tree of order k ≥ 2. For the antiferromagnetic
Potts model with external field and k ≥ 6 and q ≥ 3, it is shown that the weakly periodic Gibbs measure,
which is not periodic, is not unique. For the Potts model with external field equal to zero, we also study
weakly periodic Gibbs measures. It is shown that, under certain conditions, the number of these measures
cannot be smaller than 2q − 2.

1. Introduction

The notion of Gibbs measure for the Potts model on a Cayley tree is introduced in the ordinary way (see
[1, 2, 3, 4]). The ferromagnetic Potts model with three components on the Cayley tree of the second order was
studied in [5]. It was shown that there exists a critical temperature T

c

such that, for T < T
c

, one can find three
translation-invariant Gibbs measures and an uncountably many Gibbs measures that are not translation invariant.
The results obtained in [5] were generalized in [6] for the Potts model with finitely many states on the Cayley tree
of any (finite) order.

In [7], the uniqueness of translation-invariant Gibbs measure on the Cayley tree was proved for the antifer-
romagnetic Potts model with external field. The work [8] is devoted to the investigation of the Potts model with
countably many states and a nonzero external field on the Cayley tree. It was proved that this model possesses
a unique translation-invariant Gibbs measure.

All translation-invariant Gibbs measures were determined in [9]. In particular, it was shown that, for suffi-
ciently low temperatures, their number is equal to 2

q − 1. It was proved that there exist [q/2] critical temperatures
and the exact number of translation-invariant Gibbs measures was found for each intermediate temperature. More-
over, there are works generalizing the Potts model to the case of competing interactions (see [14, 20, 21]).

The notion of weakly periodic Gibbs measure was introduced and some measures of this kind were obtained
for the Ising model in [10, 11]. In [19], we also studied weakly periodic Gibbs measures for the Ising model and
determined weakly periodic Gibbs measures different from the measures obtained in [10, 11]. In [12], for the Potts
model, we studied weakly periodic ground states and weakly periodic Gibbs measures. The weakly periodic Gibbs
measures obtained in [12] were also translation-invariant.

In [13], we proved the existence of weakly periodic Gibbs measures for the Potts model that are not translation
invariant.

The present paper is devoted to the investigation of weakly periodic (nonperiodic) Gibbs measures for the
Potts model with external field on the Cayley tree. In Sec. 2, we present the main definitions and known facts.
The results obtained for weakly periodic Gibbs measures are presented in Sec. 3. The proofs of all results can be
found in Sec. 4.
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Fig. 1. Cayley tree ⌧2 and elements of the group representation of the vertices.

2. Definitions and Known Facts

Let ⌧k = (V, L), k ≥ 1, be a Cayley tree of order k, i.e., an infinite tree in which exactly k + 1 edges leave
every vertex; here, V is the set of vertices and L is the set of edges ⌧k.

Let G
k

be the free product of k + 1 cyclic groups {e, a
i

} of order two with generators a1, a2, . . . , a
k+1,

respectively, i.e., a2
i

= e.

There exists a one-to-one correspondence between the set of vertices V of the Cayley tree of order k and the
group G

k

(see [7, 15, 16]).
This correspondence is constructed as follows: Every fixed vertex x0 2 V is associated with the identity

element e of the group G
k

. Since, without loss of generality, we can assume that the analyzed graph can be
regarded as plane, every neighboring vertex of the point x0 (i.e., e) is associated with the generator a

i

, i =

1, 2, . . . , k + 1, in the positive direction (see Fig. 1).
At each vertex a

i

, we now define a word of length two a
i

a
j

for the neighboring vertices of a
i

. Since one
of the neighboring vertices of a

i

is e, we set a
i

a
i

= e. Then the remaining vertices neighboring with a
i

can
be enumerated in a unique way following the rule of enumeration presented above. Further, for the neighboring
vertices of the vertex a

i

a
j

, we define a word of length three as follows: Since one of the vertices neighboring with
a
i

a
j

is a
i

, we set a
i

a
j

a
j

= a
i

. Then the enumeration of the other neighboring vertices is unique and has the form
a
i

a
j

a
l

, i, j, l = 1, 2, . . . , k + 1. This agrees with the previous step because

a
i

a
j

a
j

= a
i

a2
j

= a
i

.

Hence, we can establish the one-to-one correspondence between the set of vertices of the Cayley tree ⌧k and the
group G

k

.

The representation constructed above is called a right representation because, in this case, if x and y are
neighboring vertices and g and h 2 G

k

are the corresponding elements of the group, then either g = ha
i

or
h = ga

j

for some i or j. A left representation is defined in a similar way.
In the group G

k

(respectively, in the Cayley tree), we consider a transformation of left (right) shift defined as
follows: For g 2 G

k

, we set

T
g

(h) = gh, (T
g

(h) = hg) 8h 2 G
k

.

The collection of all left (right) shifts on G
k

is isomorphic to the group G
k

.



600 M. M. RAKHMATULLAEV

Any transformation S of the group G
k

induces a transformation bS on the set of vertices V of the Cayley
tree ⌧k. Therefore, we identify V with G

k

.

Theorem 1. A group of left (right) shifts on the right (left) representation of the Cayley tree is a translation
group (see [7, 16]).

For any point x0 2 V, we set

W
n

= {x 2 V | d(x0, x) = n}, V
n

=

n[

m=0

W
m

, and L
n

=

�
hx, yi 2 L | x, y 2 V

n

 
,

where d(x, y) is the distance between x and y on the Cayley tree, i.e., the number of edges in the path connecting
x and y.

By S(x) we denote the set of “direct descendants” of the point x 2 G
k

, i.e., if x 2 W
n

, then

S(x) = {y 2 W
n+1 : d(x, y) = 1}.

We now consider a model in which the spin variables take values from the set Φ = {1, 2, . . . , q}, q ≥ 2, and
are located on the vertices of the tree. Then the configuration σ on V is defined as a function

x 2 V ! σ(x) 2 Φ.

The configurations σ
n

and !
n

on V
n

and W
n

, respectively, are defined in a similar way. The set of all con-
figurations on V (respectively, on V

n

and W
n

) coincides with ⌦ = Φ

V

�
respectively, with ⌦

Vn = Φ

Vn and
⌦

Wn = Φ

Wn
�
. It is easy to see that

Φ

Vn
= Φ

Vn−1 ⇥ Φ

Wn .

The union of configurations σ
n−1 2 Φ

Vn−1 and !
n

2 Φ

Wn is defined by the following relation (see [14]):

σ
n−1 _ !

n

=

�
{σ

n−1(x), x 2 V
n−1}, {!n

(y), y 2 W
n

}
 
.

The Hamiltonian of the Potts model with external field ↵ is defined as follows:

H(σ) = −J
X

hx,yi2L

δ
σ(x)σ(y) − ↵

X

x2V
δ1σ(x), (1)

where J, ↵ 2 R.
We define the finite-dimensional distribution of the probability measure µ in the volume V

n

as follows:

µ
n

(σ
n

) = Z−1
n

exp

(
−βH

n

(σ
n

) +

X

x2Wn

h
σ(x),x

)
, (2)

where β = 1/T, T > 0 is temperature, Z−1
n

is the normalization factor,
�
h
x

= (h1,x, . . . , hq,x) 2 Rq, x 2 V
 

is a collection of vectors, and

H
n

(σ
n

) = −J
X

hx,yi2Ln

δ
σ(x)σ(y) − ↵

X

x2Vn

δ1σ(x).
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We say that the probability distribution (2) is consistent if, for all n ≥ 1 and σ
n−1 2 Φ

Vn−1 ,

X

!n2ΦWn

µ
n

(σ
n−1 _ !

n

) = µ
n−1(σn−1). (3)

Here, σ
n−1 _ !

n

is the union of configurations, i.e., σ
n−1 _ !

n

2 Φ

Vn such that

(σ
n−1 _ !

n

) |
Vn−1 = σ

n−1 and (σ
n−1 _ !

n

) |
Wn = !

n

.

In this case, there exists a unique measure µ on Φ

V such that, for all n and σ
n

2 Φ

Vn , we get

µ
�
{σ |

Vn = σ
n

}
�
= µ

n

(σ
n

).

This measure is called a split Gibbs measure corresponding to Hamiltonian (1) and the vector-valued function h
x

,

x 2 V.

The following assertion describes the condition for h
x

guaranteeing the consistency of µ
n

(σ
n

) :

Theorem 2 [7]. The probability distribution

µ
n

(σ
n

), n = 1, 2, . . . ,

in (2) is consistent if and only if, for any x 2 V ,

h
x

=

X

y2S(x)

F (h
y

, ✓,↵), (4)

where

F : h = (h1, . . . , hq−1) 2 Rq−1 ! F (h, ✓,↵) = (F1, . . . , Fq−1) 2 Rq−1

is defined as

F
i

= ↵βδ1i + ln

0

B@
(✓ − 1)ehi

+

X
q−1

j=1
ehj

+ 1

✓ +
X

q−1

j=1
ehj

1

CA , ✓ = exp(Jβ),

and S(x) is the set of direct descendants of the point x.

Let G
k

/G⇤
k

= {H1, . . . , Hr

} be a quotient group, where G⇤
k

is a normal divisor of finite index r ≥ 1.

Definition 1. A collection of vectors h = {h
x

, x 2 G
k

} is called G⇤
k

-periodic if h
yx

= h
x

8x 2 G
k

,

y 2 G⇤
k

; the G
k

-periodic collections are called translation invariant.

For x 2 G
k

, we denote x# = {y 2 G
k

: hx, yi}\S(x).

Definition 2. A collection of vectors h = {h
x

, x 2 G
k

} is called G⇤
k

-weakly periodic if h
x

= h
ij

for
x 2 H

i

, x# 2 H
j

8x 2 G
k

.

Definition 3. A measure µ is called G⇤
k

-periodic (weakly periodic) if it corresponds to a G⇤
k

-periodic
(weakly periodic) collection of vectors h.
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3. Weakly Periodic Measures

The level of difficulty of the problem of description of weakly periodic Gibbs measures depends on the struc-
ture and index of the normal divisor used to impose the condition of periodicity. In [17], it is shown that the group
G

k

does not have normal divisors of odd index other than 1. Therefore, we consider normal divisors of even index.
In the present paper, we restrict ourselves to the case of index 2.

Let q be arbitrary, i.e., σ : V ! Φ = {1, 2, 3, . . . , q}. In the present paper, we consider the case q ≥ 2. Let
A ⇢ {1, 2, . . . , k + 1}. It is known that any normal divisor of index 2 of the group G

k

has the form

H
A

=

(
x 2 G

k

:
X

i2A
w
x

(a
i

) is even

)
,

where w
x

(a
i

) is the number of letters a
i

in the word x 2 G
k

[7]. Note that, in the case |A| = k + 1, where
|A| denotes the number of elements in the set A, i.e., A = N

k

, the notion of weak periodicity coincides with the
notion of ordinary periodicity. Indeed, for |A| = k + 1, we get

H
A

=

(
x 2 G

k

:
X

i2A
w
x

(a
i

) is even

)
=

�
x 2 G

k

: |x| is even
 
= G

(2)
k

.

Thus, x# 2 G
k

\G(2)
k

for x 2 G
(2)
k

and x# 2 G
(2)
k

for x 2 G
k

\G(2)
k

. In view of Definitions 1–3, this implies that,
in this case, the notion of weak periodicity coincides with the notion of ordinary periodicity. Hence, we consider
A ⇢ N

k

such that A 6= N
k

.

Let

G
k

/H
A

= {H
A

, G
k

\H
A

}

be a quotient group. For simplicity, we denote H0 = H
A

and H1 = G
k

\H
A

. The H
A

-weakly periodic collections
of the vectors h = {h

x

2 Rq−1 : x 2 G
k

} have the form

h
x

=

8
>>>>>>><

>>>>>>>:

h1 for x# 2 H0, x 2 H0,

h2 for x# 2 H0, x 2 H1,

h3 for x# 2 H1, x 2 H0,

h4 for x# 2 H1, x 2 H1.

Here, h
i

= (h
i1, hi2, . . . , hiq−1), i = 1, 2, 3, 4. Thus, by virtue of (4), we get

h1 = (k − |A|)F (h1, ✓) + |A|F (h2, ✓),

h2 = (|A|− 1)F (h3, ✓) + (k + 1− |A|)F (h4, ✓),

(5)
h3 = (|A|− 1)F (h2, ✓) + (k + 1− |A|)F (h1, ✓),

h4 = (k − |A|)F (h4, ✓) + |A|F (h3, ✓).



ON WEAKLY PERIODIC GIBBS MEASURES FOR THE POTTS MODEL WITH EXTERNAL FIELD ON THE CAYLEY TREE 603

We introduce the following notation:

ehij
= z

ij

, i = 1, 2, 3, 4, j = 1, 2, . . . , q − 1.

Then the last system of equations can be rewritten in the form

z1j = exp (↵βδ1j)

0

@
(✓ − 1)z1j +

X
q−1

i=1
z1i + 1

X
q−1

i=1
z1i + ✓

1

A

k−|A|0

@
(✓ − 1)z2j +

X
q−1

i=1
z2i + 1

X
q−1

i=1
z2i + ✓

1

A

|A|

,

z2j = exp (↵βδ1j)

0

@
(✓ − 1)z3j +

X
q−1

i=1
z3i + 1

X
q−1

i=1
z3i + ✓

1

A

|A|−10

@
(✓ − 1)z4j +

X
q−1

i=1
z4i + 1

X
q−1

i=1
z4i + ✓

1

A

k+1−|A|

,

(6)

z3j = exp (↵βδ1j)

0

@
(✓ − 1)z2j +

X
q−1

i=1
z2i + 1

X
q−1

i=1
z2i + ✓

1

A

|A|−10

@
(✓ − 1)z1j +

X
q−1

i=1
z1i + 1

X
q−1

i=1
z1i + ✓

1

A

k+1−|A|

,

z4j = exp (↵βδ1j)

0

@
(✓ − 1)z4j +

X
q−1

i=1
z4i + 1

X
q−1

i=1
z4i + ✓

1

A

k−|A|0

@
(✓ − 1)z3j +

X
q−1

i=1
z3i + 1

X
q−1

i=1
z3i + ✓

1

A

|A|

,

where j = 1, 2, 3, . . . , q − 1.

Consider a mapping A : R4(q−1) ! R4(q−1) defined as follows:

z01j = exp (↵βδ1j)

0

@
(✓ − 1)z1j +

X
q−1

i=1
z1i + 1

X
q−1

i=1
z1i + ✓

1

A

k−|A|0

@
(✓ − 1)z2j +

X
q−1

i=1
z2i + 1

X
q−1

i=1
z2i + ✓

1

A

|A|

,

z02j = exp (↵βδ1j)

0

@
(✓ − 1)z3j +

X
q−1

i=1
z3i + 1

X
q−1

i=1
z3i + ✓

1

A

|A|−10

@
(✓ − 1)z4j +

X
q−1

i=1
z4i + 1

X
q−1

i=1
z4i + ✓

1

A

k+1−|A|

,

(7)

z03j = exp (↵βδ1j)

0

@
(✓ − 1)z2j +

X
q−1

i=1
z2i + 1

X
q−1

i=1
z2i + ✓

1

A

|A|−10

@
(✓ − 1)z1j +

X
q−1

i=1
z1i + 1

X
q−1

i=1
z1i + ✓

1

A

k+1−|A|

,

z04j = exp (↵βδ1j)

0

@
(✓ − 1)z4j +

X
q−1

i=1
z4i + 1

X
q−1

i=1
z4i + ✓

1

A

k−|A|0

@
(✓ − 1)z3j +

X
q−1

i=1
z3i + 1

X
q−1

i=1
z3i + ✓

1

A

|A|

,

where j = 1, 2, 3, . . . , q − 1.



604 M. M. RAKHMATULLAEV

We introduce the notation

I
m

=

�
(z1, z2, . . . , zq−1) 2 Rq−1 : z1 = z2 = . . . = z

m

, z
m+1 = . . . = z

q−1 = 1

 
, (8)

M
m

=

�
(z(1), z(2), z(3), z(4)) 2 R4(q−1) : z(i) 2 I

m

, i = 1, 2, 3, 4
 
. (9)

Here, m = 1, 2, . . . , q − 1.

Lemma 1.

1. For ↵ 6= 0, the set M1 is invariant under the mapping A.

2. For ↵ = 0, the sets M
m

, m = 1, 2, . . . , q − 1, are invariant under the mapping A.

We first consider the case ↵ 6= 0. Denote

z
i

= z
i1, i = 1, 2, 3, 4, and λ = exp (↵β).

Then, on the invariant set M1, the system of equations (6) is reduced to the following system of equations:

z1 = λ

✓
✓z1 + q − 1

✓ + q − 2 + z1

◆
k−|A|✓ ✓z2 + q − 1

✓ + q − 2 + z2

◆|A|
,

z2 = λ

✓
✓z3 + q − 1

✓ + q − 2 + z3

◆|A|−1✓ ✓z4 + q − 1

✓ + q − 2 + z4

◆
k+1−|A|

,

(10)

z3 = λ

✓
✓z2 + q − 1

✓ + q − 2 + z2

◆|A|−1✓ ✓z1 + q − 1

✓ + q − 2 + z1

◆
k+1−|A|

,

z4 = λ

✓
✓z4 + q − 1

✓ + q − 2 + z4

◆
k−|A|✓ ✓z3 + q − 1

✓ + q − 2 + z3

◆|A|
.

Further, denote

f(z) =
✓z + q − 1

✓ + q − 2 + z
.

The following lemma is evident:

Lemma 2. The function f(z) is strictly decreasing for 0 < ✓ < 1 and strictly increasing for 1 < ✓.

Proposition 1. Let z=(z1, z2, z3, z4) be a solution of the system of equations (10). If z
i

=z
j

for some i 6=j,

then

z1 = z2 = z3 = z4.

Consider the antiferromagnetic Ising model with external field, i.e., 0 < ✓ < 1. Assume that |A| = k. Then
the system of equations (10) has the form
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z1 = λ
�
f(z2)

�
k

,

z2 = λ
�
f(z3)

�
k−1�

f(z4)
�
,

(11)

z3 = λ
�
f(z2)

�
k−1�

f(z1)
�
,

z4 = λ
�
f(z3)

�
k

.

The investigation of the system of equations (11) is reduced to the investigation of the system of equations

z2 = λ
�
f(z3)

�
k−1

f
⇣
λ(f(z3))

k

⌘
,

z3 = λ
�
f(z2)

�
k−1

f
⇣
λ(f(z2))

k

⌘
.

(12)

Denote

 (z) = λ (f(z))k−1 f
⇣
λ(f(z))k

⌘
. (13)

Then the system of equations (12) can be rewritten in the form

z2 =  (z3),

z3 =  (z2).

(14)

The number of solutions of the system of equations (14) is equal to the number of solutions of the equation
 ( (z)) = z. The following lemma is true:

Lemma 3. Let γ : [0, 1] ! [0, 1] be a continuous function with a fixed point ⇠ 2 (0, 1). Suppose that
the function γ is differentiable at the point ⇠ 2 (0, 1) and γ0(⇠) < −1. Then there exist x0 and x1 such that
0  x0 < ⇠ < x1  1 and γ(x0) = x1, γ(x1) = x0 (see [18, p. 70]).

Note that the equation

z = λfk

(z)

has a unique solution z⇤ (see [4, p. 109]).

Proposition 2. For k ≥ 6 and λ 2 (λ1,λ2), the system of equations (14) has three solutions of the form
(z⇤, z⇤), (z

⇤
2 , z

⇤
3), and (z⇤3 , z

⇤
2), where λ

i

= bk
i

, i = 1, 2, and

b1 =
(k − 1−

p
k2 − 6k + 1)(1− ✓)(✓ + q − 1)z

(k−1)/k
⇤

2(✓ + q − 2 + z⇤)2
,

b2 =
(k − 1 +

p
k2 − 6k + 1)(1− ✓)(✓ + q − 1)z

(k−1)/k
⇤

2(✓ + q − 2 + z⇤)2
.

(15)
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By virtue of Theorem 2, the following theorem is true:

Theorem 3. For |A| = k, k ≥ 6, and ↵ 2 (↵1,↵2), the antiferromagnetic Potts model with external field
has at most two H

A

-weakly periodic (nonperiodic) Gibbs measures, where ↵
i

= kT ln b
i

and T is temperature.

Remark 1.

1. The condition k ≥ 6 is necessary in order that the inequality k2 − 6k + 1 ≥ 0 be true. Hence, for
2  k  5, the method proposed in the present paper cannot be applied and the problem remains open.

2. The problem of investigation of weakly periodic (nonperiodic) Gibbs measures for normal divisors of the
other even indices in the Potts model with nonzero external field remains open.

Consider the case ↵ = 0. Then the system of equations (6) on the invariant set M
m

is reduced to the system
of equations

z1 =

✓
(✓ +m+ 1)z1 + q −m

mz1 + ✓ + q −m− 1

◆
k−|A|✓

(✓ +m+ 1)z2 + q −m

mz2 + ✓ + q −m− 1

◆|A|
,

z2 =

✓
(✓ +m+ 1)z3 + q −m

mz3 + ✓ + q −m− 1

◆|A|−1✓
(✓ +m+ 1)z4 + q −m

mz4 + ✓ + q −m− 1

◆
k+1−|A|

,

(16)

z3 =

✓
(✓ +m+ 1)z2 + q −m

mz2 + ✓ + q −m− 1

◆|A|−1✓
(✓ +m+ 1)z1 + q −m

mz1 + ✓ + q −m− 1

◆
k+1−|A|

,

z4 =

✓
(✓ +m+ 1)z4 + q −m

mz4 + ✓ + q −m− 1

◆
k−|A|✓

(✓ +m+ 1)z3 + q −m

mz3 + ✓ + q −m− 1

◆|A|
.

Denote

f
m

(z) =
(✓ +m+ 1)z + q −m

mz + ✓ + q −m− 1

.

It is easy to see that the function f
m

(z) is strictly decreasing for 0 < ✓ < 1 and strictly increasing for 1 < ✓.

By analogy with Proposition 1, we can prove the following assertion:

Proposition 3. Let z = (z1, z2, z3, z4) be a solution of the system of equations (16). If z
i

= z
j

for some
i 6= j, then z1 = z2 = z3 = z4.

Consider the case where 0 < ✓ < 1 and |A| = k. In this case, the system of equations (16) takes the form

z1 = (f
m

(z2))
k ,

z2 = (f
m

(z3))
k−1

(f
m

(z4)) ,

(17)

z3 = (f
m

(z2))
k−1

(f
m

(z1)) ,

z4 = (f
m

(z3))
k .
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The following theorem is true:

Theorem 4. Let |A| = k and k ≥ 6. If one of the following conditions is satisfied:

(i)
4k

k + 1 +

p
k2 − 6k + 1

 q <
4k

k + 1−
p
k2 − 6k + 1

and 0 < ✓ < ✓2 ;

(ii) q  4k

k + 1 +

p
k2 − 6k + 1

and ✓1 < ✓ < ✓2 ,

then there exist at least 2q − 2 weakly periodic (nonperiodic) Gibbs measures, where

✓1 =
4 k − kq − q − q

p
k2 − 6 k + 1

4k
, ✓2 =

4 k − kq − q + q
p
k2 − 6 k + 1

4k
.

Remark 2.

1. The H
A

-weak periodic measures appearing in Theorems 1 and 3 are new and enable us to describe
a continuum set of nonperiodic Gibbs measures unknown earlier.

2. If, instead of (9), we consider M
q−1, then Theorem 4 coincides with Theorem 3 in [13].

3. In the case q = 2, the Potts model describes the Ising model. For |A| = k and q = 2, Theorem 4
coincides with Theorem 4 in [19]. The case where |A| = 1 and q = 2 was studied in [10, 11].

4. The problem of investigation of weakly periodic (nonperiodic) Gibbs measures for normal divisors of the
other even indices in the Potts model with zero external field remains open.

4. Proofs

Proof of Lemma 1. 1. Let z = (z(1), z(2), z(3), z(4)) 2 M1. Then

z(i) 2 I1, i = 1, 2, 3, 4.

By definition (8), we obtain z(i) = (z
i

, 1, 1, . . . , 1), where z
i

6= 1, i = 1, 2, 3, 4. In view of this result and (7),
we find

z01j =

✓
✓ + q − 2 + z1
✓ + q − 2 + z1

◆
k−|A|✓✓ + q − 2 + z2

✓ + q − 2 + z2

◆|A|
= 1, j = 2, 3, . . . , q − 1,

z02j =

✓
✓ + q − 2 + z3
✓ + q − 2 + z3

◆|A|−1✓✓ + q − 2 + z4
✓ + q − 2 + z4

◆
k+1−|A|

= 1, j = 2, 3, . . . , q − 1,

z03j =

✓
✓ + q − 2 + z2
✓ + q − 2 + z2

◆|A|−1✓✓ + q − 2 + z4
✓ + q − 2 + z4

◆
k+1−|A|

= 1, j = 2, 3, . . . , q − 1,

z04j =

✓
✓ + q − 2 + z4
✓ + q − 2 + z4

◆
k−|A|✓✓ + q − 2 + z3

✓ + q − 2 + z3

◆|A|
= 1, j = 2, 3, . . . , q − 1.

Hence, A(z) 2 L1.

The second part of the lemma is proved similarly.
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Proof of Proposition 1. We derive the following equalities from the system of equations (10) :

z1
z2

=

✓
f(z1)

f(z4)

◆
k−|A|✓f(z2)

f(z3)

◆|A|−1✓f(z2)

f(z4)

◆
, (18)

z1
z3

=

✓
f(z2)

f(z1)

◆
, (19)

z1
z4

=

✓
f(z1)

f(z4)

◆
k−|A|✓f(z2)

f(z3)

◆|A|
, (20)

z2
z3

=

✓
f(z3)

f(z2)

◆|A|−1✓f(z4)

f(z1)

◆
k−|A|+1

, (21)

z2
z4

=

✓
f(z4)

f(z3)

◆
, (22)

z3
z4

=

✓
f(z1)

f(z4)

◆
k−|A|✓f(z2)

f(z3)

◆|A|−1✓f(z1)

f(z3)

◆
. (23)

Let z = {z1, z2, z3, z4} be the solution of the system of equations (10) and let z1 = z2. In view of the strict
monotonicity of the function f(z) and equality (19), we get z1 = z2 = z3. In this case, we obtain z1 = z4
from (21) and, therefore, z1 = z2 = z3 = z4.

Let z1 = z3. In view of the strict monotonicity of the function f(z) and equality (19), we get z1 = z2 = z3.

In this case, it follows from (21) that z1 = z4 and, thus, z1 = z2 = z3 = z4.

Further, let z1 = z4. Thus, in view of the strict monotonicity of the function f(z) and equality (20), we find
z2 = z3. In this case, it follows from (22) that

z2f(z2) = z4f(z4). (24)

We now consider a function

φ(z) = zf(z) = z
✓z + q − 1

✓ + q − 2 + z

and find its derivative

φ0
(z) =

✓z2 + 2✓(✓ + q − 2)z + (q − 1)(✓ + q − 2)

(✓ + q − 2 + z)2
.

It follows from ✓ > 0, z > 0, and q ≥ 2 that the function φ(z) is strictly increasing. Hence, (24) is true only
for z2 = z4.

The other cases are proved similarly.
The proposition is proved.

Proof of Proposition 2. It is easy to see that function (13) satisfies the following assertions:

(i)  (z⇤) = z⇤,

(ii) the function  (z) is defined on R+,

(iii)  (z) is bounded and differentiable at the point z⇤.
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Hence, by Lemma 1, for  0
(z⇤) < −1, the system of equations (14) has three solutions of the form (z⇤, z⇤),

(z⇤2 , z
⇤
3), and (z⇤3 , z

⇤
2). The inequality  0

(z⇤) < −1 is equivalent to the following inequality:

k
(1− ✓)2(✓ + q − 1)

2z
2
k−1
k⇤

(✓ + z⇤ + q − 2)

4
+ b(k − 1)

(1− ✓)(✓ + q − 1)z
k−1
k⇤

(✓ + z⇤ + q − 2)

2
+ b2 < 0,

where b = k
p
λ. Therefore,

(b− b1)(b− b2) < 0,

where b1 and b2 are given by (15).
Proposition 2 is proved.

Proof of Theorem 4. The investigation of the system of equations (17) is reduced to the investigation of the
system of equations

z2 =
�
f
m

(z3)
�
k−1

f
m

�
(f

m

(z3))
k

�
,

z3 =
�
f
m

(z2)
�
k−1

f
m

�
(f

m

(z2))
k

�
.

(25)

Introducing the notation

'(z) = (f
m

(z))k−1 f
m

((f
m

(z))k), (26)

we reduce the system of equations (25) to the system

z2 = '(z3),

z3 = '(z2).

(27)

It is easy to see that function (26) satisfies the following assertions:

(i) '(1) = 1,

(ii) the function '(z) is defined on R+,

(iii) '(z) is bounded and differentiable at the point z = 1.

Thus, by Lemma 3, for '0
(1) < −1, the system of equations (27) has three solutions of the form (1, 1),

(z⇤2 , z
⇤
3), and (z⇤3 , z

⇤
2). The inequality '0

(1) < −1 is equivalent to the inequality

k
(✓ − 1)

2

(✓ + q − 1)

2
+ (k − 1)

✓ − 1

✓ + q − 1

+ 1 < 0. (28)

Hence,

2k(✓ − ✓1)(✓ − ✓2) < 0,

where ✓1 and ✓2 are given by (12).
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It is clear that if k < 5, then ✓1 and ✓2 are complex. If k = 5, then ✓1 = ✓2 and inequality (28) has no
solutions.

We now consider the case k ≥ 6. Assume that ✓1 and ✓2 are both negative. Then inequality (28) does not
have solutions. If ✓1  0 and 0 < ✓2 < 1, i.e.,

4k

k + 1 +

p
k2 − 6k + 1

 q <
4k

k + 1−
p
k2 − 6k + 1

,

then inequality (28) possesses a solution ✓ 2 (0, ✓2). This proves the first assertion of Theorem 3.
We now prove the second assertion. Let 0  ✓1 < 1 and 0 < ✓2 < 1. Then the following inequality is true:

q  4k

k + 1 +

p
k2 − 6k + 1

.

In this case, inequality (28) possesses a solution ✓1 < ✓ < ✓2. It is easy to see that ✓1 and ✓2 cannot be
greater than 1. By virtue of Theorem 2, for any m, under the conditions of Theorem 4, we get two weakly periodic
(nonperiodic) Gibbs measures. It follows from (8) that m is the number of coordinates of a vector from Rq−1

unequal to 1. It is clear that the number of these vectors is equal to

q−1X

m=1

Cm

q−1 = 2

q−1 − 1.

Hence, under the conditions of Theorem 4, we obtain 2(2

q−1 − 1) = 2

q − 2 weakly periodic (nonperiodic) Gibbs
measures.

Theorem 4 is proved.

The author expresses his deep gratitude to Prof. U. A. Rozikov for the statement of the problem and useful
advice.
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