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ONE PROBLEM CONNECTEDWITH THE HELGASON SUPPORT PROBLEM

V. V. Volchkov, Vit. V. Volchkov, and I. N. Savost’yanova UDC 517.5

We solve the problem of description of the set of continuous functions in annular subdomains of the
n-dimensional sphere with zero integrals over all (n− 1)-dimensional spheres covering the inner spher-
ical cap. As an application, we establish a spherical analog of the Helgason support theorem and new
uniqueness theorems for functions with zero spherical means.

1. Introduction

Let Rn be a real Euclidean space of dimension n ≥ 2 with Euclidean norm | · |. According to the well-known
Helgason support theorem [1], any function f 2 C(Rn

) that satisfies the estimates

sup

x2Rn
|x|k|f(x)| < 1, k = 1, 2, . . . , (1)

and has zero integrals over all hyperplanes in Rn disjoint with a certain compact convex set K is equal to zero
in Rn \ K. Examples (see [1], [2], Chap. 1, [3], Chap. 1.8) show that the rapid decrease in f specified in this
statement cannot be omitted or essentially weakened. Various modifications and generalizations of this result can
be found in [2, 3].

The key point in the proof of the Helgason theorem is the following lemma on functions with zero spherical
means:

Lemma A [1]. Let a function f 2 C(Rn
) be such that condition (1) is satisfied and the integral of f over

any sphere containing a ball |x|  1 is equal to zero. Then f(x) = 0 for |x| > 1.

In view of the importance of this fact in the study of the Radon transform, Helgason [4] proposed to generalize
Lemma A to an arbitrary complete simply connected Riemann manifold M of negative curvature. For mani-
folds M satisfying an additional condition of analyticity, this was done by Grinberg and Quinto in [5] who used
the technique of microlocal analysis and analytic wave front.

On the other hand, in view of the necessity of condition (1) in Lemma A, we encounter a problem of description
of continuous functions in the domain ↵ < |x| < β with zero integrals over all spheres covering the ball |x|  ↵.

The statement and solution of its two-dimensional version belongs to Globevnik [6]. The generalizations to the
n-dimensional case were studied by Epstein and Kleiner in [7] and V. V. Volchkov in [8]. Later, the corresponding
analogs were established for classical hyperbolic spaces [9, 10]. For compact symmetric spaces, which are also
natural for the analyzed class of problems, similar investigations have not been performed yet. In the present paper,
we determine the solution of the Globevnik problem for an n-dimensional sphere (see Theorem 1 in what follows).
By using this result, we obtain a spherical analog of the Helgason theorem formulated above and new uniqueness
theorems for functions with spherical means equal to zero (see Theorems 2–4).
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2. Statement of the Main Results

As usual, by N, Z, Z+, and C we denote the sets of natural, integer, integer nonnegative, and complex
numbers, respectively.

Let n ≥ 2, let Sn be a unit sphere in Rn+1 centered at zero, and let d be an interior measure on Sn, i.e.,

d(⇠, ⌘) = arccos(⇠1⌘1 + . . .+ ⇠n+1⌘n+1), ⇠, ⌘ 2 Sn,

where ⇠1, . . . , ⇠n+1 and ⌘1, . . . , ⌘n+1 are the Cartesian coordinates of the points ⇠ and ⌘, respectively. For 0 <

r  ⇡ and 0  a < b  ⇡, we set

Br(⌘) = {⇠ 2 Sn : d(⇠, ⌘) < r}, Br = Br(o)
�

o = (0, . . . , 0, 1)
�

,

Sr(⌘) = {⇠ 2 Sn : d(⇠, ⌘) = r}, Sr = Sr(o),

Ba,b = {⇠ 2 Sn : a < d(o, ⇠) < b}.

We define the class Z(Ba,b) by the equality

Z(Ba,b) =

8

>

<

>

:

f 2 C(Ba,b) :

Z

Sr(⌘)

f(⇠)d!(⇠) = 0 8r 2 (a, b), ⌘ 2 Bmin{r−a,b−r}

9

>

=

>

;

(2)

[d! is an (n − 1)-dimensional Euclidean measure]. The integral condition in (2) can be rewritten in the form
(f ⇥ σr)(⌘) = 0, where σr is the surface delta-function concentrated on Sr, and “⇥” is the sign of convolution
on Sn (see [11], Introduction, Sec. 3). The class Z(Ba,b) is a spherical analog of classes considered earlier
by Globevnik, Helganson, and others (see Sec. 1). For the description of this class, we need Fourier series of
special type.

Let Hk, k 2 Z+, be a space of spherical harmonics of degree k on Sn−1 (see [12], Chap. 4, Sec. 2).
The dimension ak of the space Hk is calculated by the relation

ak =

8

>

<

>

:

(n+ k − 3)!(n+ 2k − 2)

k!(n− 2)!

, k 2 N,

1, k = 0.

In what follows, we consider Hk as a subspace of L2
(Sn−1, d!). We introduce the spherical coordinates ✓1, . . . , ✓n

on Sn as follows:

⇠1 = sin ✓n . . . sin ✓1, ⇠2 = sin ✓n . . . sin ✓2 cos ✓1, . . . , ⇠n+1 = cos ✓n,

0 < ✓1 < 2⇡, 0 < ✓k < ⇡, k 6= 1.

If ⇠0 = (⇠1, . . . , ⇠n) 6= 0, then the point σ = ⇠0/|⇠0| belongs to Sn−1. We write the action of the function
f 2 C(Ba,b) in the form f(⇠) = f(σ sin ✓n, cos ✓n) and associate it with the Fourier series

1
X

k=0

ak
X

l=1

fk,l(✓n)Y
(k)
l (σ), ✓n 2 (a, b), (3)
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where
n

Y
(k)
l

oak

l=1
is a fixed orthonormal basis in Hk,

fk,l(✓n) =

Z

Sn−1

f(σ sin ✓n, cos ✓n)Y
(k)
l (σ)d!(σ).

In what follows, for n = 2, we assume that

Y
(k)
1 (σ) =

1p
2⇡

ike−ik✓1 , Y
(k)
2 (σ) =

1p
2⇡

(−i)keik✓1 , k 2 N. (4)

For any ✓n 2 (a, b), series (3) converges to f(σ sin ✓n, cos ✓n) in the space L2
(Sn−1, d!) (see [12], Chap. 4,

Sec. 2).
The following result gives the description of the class Z(Ba,b) in terms of decompositions in series in spherical

harmonics:

Theorem 1. Let 0  a < b  ⇡ and f 2 C(Ba,b). In order that a function f belong to Z(Ba,b), it is
necessary and sufficient that the Fourier coefficients of the function f have the form

f0,1(✓n) = 0, (5)

fk,l(✓n) =

k−1
X

m=0

cm,k,l
(cos ✓n)

m

(sin ✓n)n+k−2
, k ≥ 1, 1  l  ak, (6)

where a < ✓n < b and cm,k,l 2 C.

Equalities (5) and (6) show that it is impossible to find a nontrivial function f 2 Z(Ba,⇡) rapidly vanishing
in approaching the pole o⇤ = (0, . . . , 0,−1). More precisely, the following theorem holds:

Theorem 2. Let 0 < a < ⇡. Then the following assertions are true:

1. Let f 2 Z(Ba,⇡) and, for any m 2 Z+, let

sup

⇠2Ba,⇡

(1 + ⇠n+1)
−m|f(⇠)| < 1. (7)

Then f = 0 in Ba,⇡.

2. For any m 2 Z+, there exists a nonzero function f 2 Z(Ba,⇡) with condition (7).

Note that, for b > ⇡, the set Ba,b coincides with geodesic ball B⇡−a(o
⇤
). In this case, any function f 2

C(Ba,b) that satisfies the condition

Z

Sr(⌘)

f(⇠)d!(⇠) = 0 8r 2 (a,⇡), ⌘ 2 Br−a,

is identical zero.
One more application of Theorem 1 is new conditions of uniqueness for functions of the class Z(Ba,b).
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Theorem 3.

1. Let E be an infinite set on the interval (a, b), let f 2 Z(Ba,b), and let f(⇠) = 0 for d(o, ⇠) 2 E.

Then f = 0 in Ba,b.

2. For any finite set E ⇢ (0,⇡), there exists a nonzero function f 2 Z(B0,⇡) such that f(⇠) = 0

for d(o, ⇠) 2 E.

Theorem 4.

1. Let f belong to Z(Ba,b) and to the class C1 in a certain neighborhood of a sphere Sr ⇢ Ba,b. Let all
derivatives of the function f be equal to zero on Sr. Then f = 0 in Ba,b.

2. For any s 2 Z+ and r 2 (0,⇡), there exists a nonzero function f 2 Z1
(B0,⇡) such that all its

derivatives on Sr are nonzero up to the order s, inclusively.

For the other results connected with the injectivity of the operator of spherical mean, see [2, 13, 14] and the
references therein.

3. Auxiliary Statements

We use the standard notation Pµ
⌫ and Qµ

⌫ presented below for the Legendre functions of the first and second
kind on (−1, 1), respectively. These functions are connected with the Gauss hypergeometric function by the
equalities

(1− x2)
µ
2 Pµ

⌫ (x)

2

µ
p
⇡

=

F

✓

−⌫ + µ

2

,
1 + ⌫ − µ

2

;

1

2

;x2
◆

Γ

✓

1− ⌫ − µ

2

◆

Γ

✓

1 +

⌫ − µ

2

◆

−
2xF

✓

1− ⌫ − µ

2

, 1 +
⌫ − µ

2

;

3

2

;x2
◆

Γ

✓

1 + ⌫ − µ

2

◆

Γ

✓

−⌫ + µ

2

◆ , ⌫, µ 2 C, (8)

(1− x2)
µ
2Qµ

⌫ (x)

2

µ⇡3/2
= cot

⇣⇡

2

(⌫ + µ)
⌘

xF

✓

1− ⌫ − µ

2

,
⌫ − µ

2

+ 1;

3

2

;x2
◆

Γ

✓

1 + ⌫ − µ

2

◆

Γ

✓

−⌫ + µ

2

◆

− 1

2

tan

⇣⇡

2

(⌫ + µ)
⌘

F

✓

−⌫ + µ

2

,
1 + ⌫ − µ

2

;

1

2

;x2
◆

Γ

✓

1− ⌫ − µ

2

◆

Γ

✓

1 +

⌫ − µ

2

◆ , −⌫ − µ 62 N, (9)

where Γ is the gamma function {see [15], Chap. 3, Sec. 3.4, relations (11) and (12)}. For ✓ 2 (0,⇡), we set

 ⌫,k(✓) = (sin ✓)1−n/2P
−n/2−k+1
⌫+n/2−1 (cos ✓), ⌫ 2 C,
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 ⌫,k(✓) =

8

>

<

>

:

(sin ✓)1−n/2Q
n/2+k−1
⌫+n/2−1(cos ✓) if n is even, 2− n− k − ⌫ 62 N,

(sin ✓)1−n/2P
n/2+k−1
⌫+n/2−1 (cos ✓) if n is odd, ⌫ 2 C.

For fixed r 2 (0,⇡) and k 2 Z+, the function  ⌫,k(r) has infinitely many zeros ⌫. All zeros are real, simple
and symmetric about the point (1 − n)/2 (see [16], the proof of Lemma 3.4). In addition,  ⌫,k(r) > 0 for any
⌫ 2 [−k − n+ 1, k]. Denote N (r) = {⌫ > 0:  ⌫,0(r) = 0}.

Let L = Ln be the Laplacian on Sn, i.e.,

L =

1

sin

n−1 ✓n

@

@✓n
sin

n−1 ✓n
@

@✓n
+

1

sin

2 ✓n sin
n−2 ✓n−1

@

@✓n−1
sin

n−2 ✓n−1
@

@✓n−1

+

1

sin

2 ✓n sin
2 ✓n−1 sin

n−3 ✓n−2

@

@✓n−2
sin

n−3 ✓n−2
@

@✓n−2

+ . . .+
1

sin

2 ✓n sin
2 ✓n−1 . . . sin

2 ✓3 sin
2 ✓2

@2

@✓21
.

For any m 2 Z, consider the differential operator Dm defined on the space C1
(0,⇡) as follows:

(Dmu)(✓) = (sin ✓)m
d

d✓

✓

u(✓)

(sin ✓)m

◆

, u 2 C1
(0,⇡).

The equality

Ln−1Y
(k)
l = −k(n+ k − 2)Y

(k)
l

(see [17], Chap. 9, Sec. 5.1) shows that if f 2 C2
(Ba,b) has the form f(⇠) = u(✓n)Y

(k)
l (σ), then

(Lf)(⇠) + k(n+ k − 1)f(⇠) =
⇣

D1−k−nDku
⌘

(✓n)Y
(k)
l (σ). (10)

We also note the following formulas:

Dk  ⌫,k = (k − ⌫)(k + ⌫ + n− 1) ⌫,k+1, Dk  ⌫,k =  ⌫,k+1, (11)

D1−k−n  ⌫,k+1 =  ⌫,k, D1−k−n ⌫,k+1 = (k − ⌫)(k + ⌫ + n− 1) ⌫,k, (12)

(L+ ⌫(⌫ + n− 1)Id)

�

 ⌫,k(✓n)Y
(k)
l (σ)

�

= (L+ ⌫(⌫ + n− 1)Id)

�

 ⌫,k(✓n)Y
(k)
l (σ)

�

= 0 (13)

(Id is the identity operator). To prove (11) and (12), it suffices to use the definitions of  ⌫,k and  ⌫,k and recurrence
relations for the Legendre functions {see [15], Chap. 3, Sec. 3.8, relations (15), (17), and (19)}. Equality (13)
follows from (10)–(12). For −⌫ 62 N, the functions  ⌫,k and  ⌫,k form a fundamental system of solutions of the
equation

⇣

D1−k−nDku
⌘

(✓) = (k − ⌫)(k + ⌫ + n− 1)u(✓), ✓ 2 (0,⇡).

We set

Sk,l
⌫ (⇠) =  ⌫,k(✓n)Y

(k)
l (σ), ⇠ 2 B⇡.
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Lemma 1. Let 0  r < ⇡, t 2 (0,⇡ − r), and ⌘ 2 Sr. Then

Z

St(⌘)

Sk,l
⌫ (⇠)d!(⇠) = (2⇡)n/2(sin t)n−1 ⌫,0(t)Sk,l

⌫ (⌘).

Proof. In view of (13), by the Pizzetti formula (see, e.g., [18]), we get

Z

St(⌘)

Sk,l
⌫ (⇠)d!(⇠) =

!(St)
✓

cos

t

2

◆n−2

0

B

B

@

Sk,l
⌫ (⌘) + Γ

⇣n

2

⌘

1
X

m=1

✓

sin

t

2

◆2m

⇥

✓✓

L− (n− 2)n

4

Id

◆

. . .

✓

L− (n− 2m)(n+ 2m− 2)

4

Id

◆

Sk,l
⌫

◆

(⌘)

m!Γ

⇣n

2

+m
⌘

1

C

C

A

=

!(St)
✓

cos

t

2

◆n−2Sk,l
⌫ (⌘)

0

B

B

@

1 + Γ

⇣n

2

⌘

1
X

m=1

✓

sin

t

2

◆2m

⇥

✓

⌫(1− n− ⌫)− (n− 2)n

4

◆

. . .

✓

⌫(1− n− ⌫)− (n− 2m)(n+ 2m− 2)

4

◆

m!Γ

⇣n

2

+m
⌘

1

C

C

A

=

!(St)
✓

cos

t

2

◆n−2Sk,l
⌫ (⌘)F

✓

−⌫ − n

2

+ 1, ⌫ +

n

2

,
n

2

; sin

2 t

2

◆

.

By using the equality

 ⌫,0(t) =
2

1−n/2

Γ

⇣n

2

⌘

✓

cos

t

2

◆n−2F

✓

−⌫ − n

2

+ 1, ⌫ +

n

2

,
n

2

; sin

2 t

2

◆

[see [15], Chap. 3, Sec. 3.5, relation (9)], we obtain the required result.
Let f be a continuous radial (i.e., depending only on ✓n ) function in the ball BR. By f0 we denote a function

defined on [0, R) and satisfying the relation f(⇠) = f0(✓n), ⇠ 2 BR.

Lemma 2. Let 0 < r < R  ⇡ and let f(⇠) = f0(✓n) 2 C1
(BR). Then the equality

⇣

�

Dk−1 . . . D0 f0
�

(✓n)Y
(k)
l (σ)⇥ σr

⌘

(⇠) =
⇣

Dk−1 . . . D0(f ⇥ σr)0

⌘

(✓n)Y
(k)
l (σ) (14)

is true for k 2 N and ⇠ 2 BR−r.
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Proof. We fix ⌘ 2 BR−r and " 2 (0, R−r−d(o, ⌘)). Consider a function w" with the following properties:

(i) w" 2 C1
[0,⇡];

(ii) w" = 1 on [0, R− "] and w" = 0 on [R− "/2,⇡].

For ✓ 2 [0, R), we set h(✓) = f0(✓)w"(✓). Repeating the reasoning from the proofs of Lemma 4.3 and Theo-
rem 2.1 in [16], we obtain

h(✓) =
X

⌫2N (R−"/3)

c⌫ ⌫,0(✓), c⌫ 2 C, 0  ✓  R− "

3

,

in addition, c⌫ = O(⌫−c
), ⌫ ! +1, for any fixed c > 0. Then [see (11)]

�

Dk−1 . . . D0 f0
�

(✓n)Y
(k)
l (σ) =

X

⌫2N (R−"/3)

c⌫b⌫,kSk,l
⌫ (⇠), ⇠ 2 BR−",

where

b⌫,k = (−⌫)(⌫ + n− 1) . . . (k − 1− ⌫)(k + ⌫ + n− 2). (15)

By Lemma 1, we get

⇣

�

Dk−1. . . . D0 f0
�

(✓n)Y
(k)
l (σ)⇥ σr

⌘

(⌘) =

Z

Sr(⌘)

⇣

Dk−1 . . . D0 f0

⌘

(✓n)Y
(k)
l (σ)d!(⇠)

= (2⇡)n/2(sin r)n−1
X

⌫2N (R−"/3)

c⌫b⌫,k ⌫,0(r)Sk,l
⌫ (⌘). (16)

On the other hand, we similarly obtain

(f ⇥ σr)(⌘) =

Z

Sr(⌘)

f0(✓n)d!(⇠) = (2⇡)n/2(sin r)n−1
X

⌫2N (R−"/3)

c⌫ ⌫,0(r) ⌫,0(arccos ⌘n+1)

and
⇣

Dk−1 . . . D0 (f ⇥ σr)0

⌘

(✓)

= (2⇡)n/2(sin r)n−1
X

⌫2N
�

R−"/3
�

c⌫b⌫,k ⌫,0(r) ⌫,k(✓), 0  ✓ < R− r − ". (17)

Comparing (16) and (17), we arrive at (14).

Lemma 3. Let k 2 N, m 2 {0, . . . , k − 1},

f(⇠) =
(cos ✓n)

m

(sin ✓n)n+k−2
Y

(k)
l (σ), ⇠ 2 B0,⇡.

Then f ⇥ σr = 0 in Bmin{⇡−r,r} for any r 2 (0,⇡).
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Proof. For " 2 (0, r), we consider the function v" with the following properties:

(i) v" 2 C1
[0,⇡]; (ii)

(ii) v" = 0 on [0, "/2] and v" = 1 on [",⇡].

We set

H(⌘) =
�

 ⌫,0 · v"
�

(arccos ⌘n+1), ⌘ 2 B⇡.

Let ⇠ 2 Bmin{⇡−r,r−"}. Since (L+ ⌫(⌫ + n− 1)Id)(H) = 0 in B",⇡ [see (13)] and Sr(⇠) ⇢ B",⇡, we have

(L+ ⌫(⌫ + n− 1)Id)(H ⇥ σr)(⇠) = (L+ ⌫(⌫ + n− 1)Id)(H)⇥ σr(⇠) = 0. (18)

Taking into account that H⇥σr is a smooth radial function in B⇡−r, we obtain (H⇥σr)(⇠) = c  ⌫,0(✓n), where

c = (2⇡)n/2(sin r)n−1
 ⌫,0(r),

from (18), (13), and (10). Then, by Lemma 2, we get

⇣

�

Dk−1 . . . D0 H0

�

(✓n)Y
(k)
l (σ)⇥ σr

⌘

(⇠) = c
⇣

Dk−1 . . . D0  ⌫,0

⌘

(✓n)Y
(k)
l (σ).

With regard for (11) and (15), this equality takes the form

�

 ⌫,k(✓n)Y
(k)
l (σ)

�⇥ σr(⇠) = c b⌫,kSk,l
⌫ (⇠).

In particular,

�

 ⌫,k(✓n)Y
(k)
l (σ)

�⇥ σr(⇠) = 0 for ⌫ = 0, 1, . . . , k − 1.

Therefore, since " can be arbitrarily chosen on (0, r), by using (8) and (9), we obtain the assertion of Lemma 3.

4. Properties of the Class Z(Ba,b)

For s 2 Z+ [ {1}, we set Zs
(Ba,b) = Z(Ba,b) \ Cs

(Ba,b).

Lemma 4. Let f 2 Z(Ba,b), k 2 Z+, 1  l, and p  ak. Then:

(i) fk,l(✓n)Y
(k)
l (σ) 2 Z(Ba,b);

(ii) if n ≥ 3, then fk,l(✓n)Y
(k)
p (σ) 2 Z(Ba,b).

Similar assertions are also true for the class Zs
(Ba,b).

Proof. The set {⌧ 2 SO(n + 1): ⌧o = o}, where SO(n + 1) is a rotation group of Rn+1, which is a
subgroup in SO(n + 1) isomorphic to the group SO(n). By d⌧ we denote a normed Haar measure on SO(n).

Let T k
(⌧) be a contraction of a quasiregular representation of the group SO(n) to the space Hk [17] (Chap. 9,

Sec. 2.7) and let
�

tkl,p(⌧)
 

be a matrix of the representation T k
(⌧) in the basis

�

Y
(k)
l

 

, i.e.,

�

T k
(⌧)Y

(k)
l

�

(σ) = Y
(k)
l (⌧−1σ) =

ak
X

p=1

tkl,p(⌧)Y
(k)
p (σ), ⌧ 2 SO(n), σ 2 Sn−1. (19)
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If n = 2 and ⌧ is a rotation by angle ✓ in R2, then

tk1,1(⌧) = e−ik✓, tk2,2(⌧) = eik✓, and tk1,2(⌧) = tk2,1(⌧) = 0

[see (4)]. Moreover, for terms of series (3), we have the equality

fk,l(✓2)Y
(k)
l (σ) =

Z

SO(2)

f(⌧−1⇠)tkl,l(⌧)d⌧. (20)

For n ≥ 3, by using (19) and the irreducibility of the representations T k
(⌧) [17] (Chap. 9, Sec. 2.10), we obtain

fk,l(✓n)Y
(k)
p (σ) = ak

Z

SO(n)

f(⌧−1⇠)tkl,p(⌧)d⌧. (21)

By using (20), (21) and the above-indicated imbedding SO(n) in SO(n+ 1), we obtain the required statements.

Lemma 5. Let s 2 N, f 2 Zs
(Ba,b), and

f◦
(✓1, . . . , ✓n) = f(sin ✓n . . . sin ✓1, sin ✓n . . . sin ✓2 cos ✓1, . . . , cos ✓n).

Then

−sin ✓n−1 cot ✓n
@f◦

@✓n−1
+ cos ✓n−1

@f◦

@✓n
2 Zs−1

(Ba,b).

Proof. Let r 2 (a, b) and ⌘ 2 Bmin{r−a,b−r}. By at we denote the motion of the sphere Sn defined by the
equality

at⇠ = (⇠1, . . . , ⇠n−1, ⇠n cos t+ ⇠n+1 sin t, −⇠n sin t+ ⇠n+1 cos t).

For sufficiently small |t|, we obtain the following relation from the condition of the lemma:

Z

Sr(⌘)

F (at⇠)d!(⇠) = 0,

where F (x) = f
�

x/|x|�. Differentiating with respect to t and setting t = 0, we obtain

Z

Sr(⌘)

h(⇠)d!(⇠) = 0,

where

h(⇠) = ⇠n+1
@F

@xn
(⇠)− ⇠n

@F

@xn+1
(⇠), ⇠ 2 Ba,b.

Hence, h 2 Zs−1
(Ba,b), which completes the proof of Lemma 5 because

h◦(✓1, . . . , ✓n) = − sin ✓n−1 cot ✓n
@f◦

@✓n−1
+ cos ✓n−1

@f◦

@✓n
.
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Lemma 6.

1. Let n ≥ 3, s 2 N, and u(✓n)Y (σ) 2 Zs
(Ba,b) for some Y 2 Hk \ {0}. Then:

(a)
�

Dk u
�

(✓n)Y
(k+1)
l (σ) 2 Zs−1

(Ba,b) for all 1  l  ak+1;

(b) if k 2 N, then
�

D2−k−n u
�

(✓n)Y
(k−1)
l (σ) 2 Zs−1

(Ba,b) for all 1  l  ak−1.

2. Let n = 2, s 2 N, and u(✓2)Y
(k)
l (σ) 2 Zs

(Ba,b) for some k 2 Z+, l 2 {1, . . . , ak}. Then:
(a) if k 2 N, then

�

D±k u
�

(✓2)Y
(k±1)
l (σ) 2 Zs−1

(Ba,b);

(b) if k = 0, then u0(✓2)Y
(1)
p (σ) 2 Zs−1

(Ba,b) for any p 2 {1, 2}.

Proof. 1. Since

sin

k ✓n−1 . . . sin
k ✓2e

ik✓1 2 Hk

(see [17], Chap. 9, Sec. 3.6), by using the condition and Lemma 4 (Sec. 2), we get

u(✓n) sin
k ✓n−1 . . . sin

k ✓2e
ik✓1 2 Zs

(Ba,b).

Then, by Lemma 5,
�

Dk u
�

(✓n) cos ✓n−1 sin
k ✓n−1 . . . sin

k ✓2e
ik✓1 2 Zs−1

(Ba,b).

By using

cos ✓n−1 sin
k ✓n−1 . . . sin

k ✓2e
ik✓1 2 Hk+1

(see [17], Chap. 9, Sec. 3.6) and Lemma 4 (Sec. 2), we obtain assertion (a). We prove assertion (b). As above,

u(✓n)C
n−2
2

k (cos ✓n−1) 2 Zs
(Ba,b),

where C
n−2
2

k is the Gegenbauer polynomial of degree k with index
n− 2

2

. Applying Lemma 5 to this function
and using the relations

d

dt
C↵
m(t) = 2↵C↵+1

m−1(t),

(m+ 1)C↵
m+1(t) = (2↵+m)tC↵

m(t)− 2↵(1− t2)C↵+1
m−1(t)

(see [17], Chap. 9, Sec. 3.2), we obtain

�

D2−k−n u
�

(✓n) cos ✓n−1C
n−2
2

k (cos ✓n−1)− (k + 1)u(✓n) cot ✓nC
n−2
2

k+1 (cos ✓n−1) 2 Zs−1
(Ba,b).

Since

C
n−2
2

k+1 (cos ✓n−1) 2 Hk+1, cos ✓n−1C
n−2
2

k (cos ✓n−1) 2 Hk−1 \ {0}+Hk+1

{see [17], Chap. 9, Sec. 2.3, relation (5)}, by using this relation and Lemma 4 (Sec. 2), we obtain assertion (b).
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2. Setting h(✓1, ✓2) = u(✓2)e
im✓1 , m 2 Z+, we get

cos ✓1
@h

@✓2
− sin ✓1 cot ✓2

@h

@✓1
=

1

2

�

Dm u
�

(✓2)e
i(m+1)✓1

+

1

2

�

D−m u
�

(✓2)e
i(m−1)✓1 .

Now assertion 2 of the lemma follows from Lemmas 5 and 4 (Sec. 1) and relations (4).

5. Proofs of the Main Results

Proof of Theorem 1.

Necessity. Let f 2 Z(Ba,b). By using Lemma 4 for k = 0, we obtain f0,1(✓n) 2 Z(Ba,b). Then, by the
definition of the class Z(Ba,b),

Z

Sr

f0,1(✓n)d!(⇠) = 0 for any r 2 (a, b),

which is equivalent to equality (5). By using Lemmas 4 and 6, we easily obtain representation (6) for smooth f.

The general case is reduced to the considered case by smoothing the function f with the help of the convolu-
tions f ⇥ '", where '" is a radial function of the class C1

(Sn) with support in the ball B".

Sufficiency. Let f 2 C(Ba,b) and let the Fourier coefficients of f have the form (5), (6). Then, by Lemma 3,

fk,l(✓n)Y
(k)
l (σ) 2 Z(Ba,b) for all k 2 Z+, 1  l  ak. (22)

For r 2 (a, b), we set

I(⌘) =

Z

Sr(⌘)

f(⇠)d!(⇠), ⌘ 2 Bmin{r−a,b−r}.

By using (20)–(22), we obtain

Z

SO(n)

I(⌧−1⌘)tkl,l(⌧)d⌧ =

Z

SO(n)

Z

Sr(⌘)

f(⌧−1⇠)d!(⇠)tkl,l(⌧)d⌧

=

Z

Sr(⌘)

Z

SO(n)

f(⌧−1⇠)tkl,l(⌧)d⌧d!(⇠) = 0.

In view of the completeness of the system
n

Y
(k)
l

o

in L2
(Sn−1

) (see [12], Chap. 4, Sec. 2), this yields I ⌘ 0.

Hence, f 2 Z(Ba,b).

Proof of Theorem 2. Assume that f satisfies the condition of assertion 1 of the theorem. Then each term of
series (3) has this property because, for any ⇠ 2 Ba,⇡,

(1 + ⇠n+1)
−m

�

�

�

fk,l(✓n)Y
(k)
l (σ)

�

�

�

 ak

Z

SO(n)

(1 + ⇠n+1)
−m

�

�f(⌧−1⇠)
�

�d⌧
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= ak

Z

SO(n)

(1 + (⌧−1⇠)n+1)
−m

�

�f(⌧−1⇠)
�

�d⌧

 ak sup

⌘2Ba,⇡

(1 + ⌘n+1)
−m

�

�f(⌘)
�

�

{see relations (20) and (21) and [17], Chap. 1, Sec. 1.5, relation (3)}. In particular,

sup

✓n2(a,⇡)
(1 + cos ✓n)

−m
�

�fk,l(✓n)
�

� < 1 for any m 2 Z+.

In addition, by Theorem 1, fk,l have the form (5), (6). This implies that all fk,l are equal to zero on (a,⇡) and,
hence, f is a zero function.

Finally, by Lemma 3, the function

f(⇠) =
(1 + cos ✓n)

2m+n−1

(sin ✓n)2m+2n−2
Y

(2m+n)
1 (σ), ⇠ 2 Ba,⇡,

satisfies all requirements of the second assertion of the theorem.

Proof of Theorems 3 and 4. The first assertions of these theorems are established in the same way as in
Theorem 2. The following functions:

f(⇠) =
(cos ✓n − cos r1) . . . (cos ✓n − cos rp)

(sin ✓n)n+p−1
Y

(p+1)
1 (σ), where E = {r1, . . . , rp},

f(⇠) =
(cos ✓n − cos r)s+1

(sin ✓n)n+s
Y

(s+2)
1 (σ),

(see Lemma 3) satisfy all requirements of the second assertion.
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