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OPTIMAL CONTROL OVER MOVING SOURCES IN THE HEAT EQUATION 

R. A. Teimurov   UDC 517.977 

We study the problem of optimal control over the processes described by the heat equation and a system 
of ordinary differential equations.  For the problem of optimal control, we prove the existence and 
uniqueness of solutions, establish sufficient conditions for the Fréchet differentiability of the purpose 
functional, deduce the expression for its gradient, and obtain necessary conditions of optimality in the 
form of an integral maximum principle. 

1.  Introduction  

Practical examples of moving sources are electron, laser, and ion beams, electric arcs, and inductive currents 
excited by moving inductors.  These sources are used in numerous processes, e.g., in the course of melting and 
refinement of metals in metallurgy, in the processes of thermal processing, welding, microtreatment in machine 
building and instrument making, in the processes of production of semiconductors and resistors in microelec-
tronics, etc.  

As one of the main specific features of systems of optimal control over moving sources, we can mention 
their nonlinear dependence on the control specifying the law of motion of the source.  This is especially clear if 
the problem of control is represented as the problem of moments, which becomes nonlinear.  Hence, the method 
of moments widely used for the determination of optimal controls in linear systems with distributed and concen-
trated parameters becomes unsuitable for the systems of control over moving sources.  

In [1, 2], one can find numerous examples of systems with moving sources of various types together with 
the analysis of their specific features that make the investigation of these systems by the already existing meth-
ods (e.g., by the method of moments) impossible.  In [3, 5–9], the problems of optimal control of point sources 
were considered for a parabolic equation under the condition that the intensity of fixed sources is the sole con-
trolled parameter.  The problems of controllability of linear systems with generalized action were investigated 
in [4].  In [10, 11], the variational method for the solution of the problem of optimal control over moving 
sources is considered for systems described only by the heat equation.  

In addition, the cited works deal only with the systems with distributed parameters.  At the same time, in the 
construction of mathematical models of various dynamical systems, it is necessary to take into account auxiliary 
elements without which it is impossible to realize control over the analyzed process.  As a rule, these elements 
have concentrated parameters. The behavior of these systems is described by a collection of ordinary and partial 
differential equations with initial and boundary conditions.  

In the present paper, we consider the variational method for the solution of the problem of optimal control 
over moving sources in the form of the heat equation and a system of ordinary differential equations with initial 
and boundary conditions.  For this problem, we prove the theorem on existence and uniqueness of the solution, 
establish sufficient conditions for the Fréchet differentiability of the objective functional, and deduce the expres-
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sion for its gradient.  We also establish a necessary condition of optimality in the form of an integral maximum 
principle.  

2.  Statement of the Problem  

Denote  Ωt = (0, l) × (0, t),  Ω = ΩT ,  where  l > 0   and  T > 0   are numbers.  Assume that a controlled 
process is described in the domain  Ω  by the initial boundary-value problem  

 ut = a2uxx + pi (t)δ(x − si (t))
i=1

n

∑ ,    (x, t) ∈Ω, (1) 

 ux x=0 = 0 ,      ux x=l = 0,    0 < t ≤ T , (2) 

 u(x, 0) = φ(x),    0 ≤ x ≤ l , (3) 

where  δ(⋅)  is the Dirac delta function and  a > 0   is a given number.  
Assume that the following condition is satisfied:  

 (A) φ(x) ∈L2(0, l)  is an initial function,  p(t) ∈L2(0, T ; Rn )  is a vector function of the form  p(t) = 
(p1(t), p2(t),… , pn (t)),  and a vector function  s(t) ∈C([0, T ], Rn )   is the solution of the Cauchy 
problem  [12, pp. 91, 92] 

  !s = f (s, q(t), t),    0 < t ≤ T ,      s(0) = s0 , (4) 

  where  s0 ∈[0, l]   is a given number,  q(t) ∈L2(0, T ; Rm )  is a continuously differentiable vector func-
tion such that the following restriction on the position of a moving action is satisfied:  0 ≤ s(t) ≤ l ;  
the vector function  f (s, q(t), t)  is known and, for any   s ,  belongs to the space  L2(0, T ; Rn ).  

A pair of functions  ϑ = (p(t), q(t))   is called control.  For the sake of brevity, by   

 H  = L2(0, T ; Rn ) × L2(0, T ; Rm )    

we denote a Hilbert space of pairs  ϑ = (p(t), q(t))  with the scalar product  

 ϑ1, ϑ2
H

= [(p1(t), p2(t)) + (q1(t), q2(t))]dt
0

T

∫  

and the norm  

 ϑ H = ϑ, ϑ H = p L2
2 + q L2

2 ,  

where  ϑk = (pk , qk ) ,  k = 1, 2 .  
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In what follows, to emphasize that the solutions of problems (1)–(3) and (4) depend on control, we some-
times use the notation   u(x, t, ϑ)  and  s(t, q).  

We introduce the set of admissible controls as follows:  

 V = ϑ = (p, q) ∈H : 0 ≤ pi ≤ Ai , q j ≤ Bj , i = 1, n, j = 1, m{ }, (5) 

where  Ai > 0,  i = 1, n,  and  Bj > 0,  j = 1, m,  are given numbers.  
Consider the following problem:  To determine an admissible control  ϑ = (p(t), q(t)) ∈V   and the corre-

sponding solution  (u(x, t), s(t))  of problem (1)–(4) for which the functional  

 J(ϑ) = [u(x, t) − u0(x, t)]2 dx dt
0

T

∫
0

l

∫   

  + 
 
α1 [pi (t) − !pi (t)]2 dt

0

T

∫
i=1

n

∑  + 
 
α2 [q j (t) − !q j (t)]2 dt

0

T

∫
j=1

m

∑ , (6) 

where  u0(x, t) ∈L2(Ω);   ω = ( !p(t), !q(t)) ∈H ,   !p(t) ∈ L2(0, T ; Rn ),  and   !q(t) ∈L2(0, T ; Rm )  are given vector 
functions and  α1, α2 ≥ 0,  α1 + α2 > 0,  are given parameters, takes the minimum possible value.  

In what follows, we use the functional spaces  W2
1,0 (Ω),  W2

1,1(Ω),  and  V2
1,0 (Ω).  For the definitions of the-

se spaces, see, e.g., [13].  

3.  Existence and Uniqueness of the Solution  

Definition 1.  A solution of problem (1)–(4) for a given control  ϑ = (p(t), q(t)) ∈V   is defined as a pair of 
functions  (u, s) = (u(x, t, ϑ), s(t, q)),  where the function  u ∈V21,0 (Ω)  satisfies the integral identity  

 [−uηt + a2uxηx ]dx dt =
0

T

∫
0

l

∫ φ(x)η(x, 0)dx + pi (t)η(si (t), t)dt
0

T

∫
i=1

n

∑
0

l

∫  (7) 

for all  η = η(x, t) ∈W2
1,1(Ω),  η(x, T ) = 0 ,  and the function  s ∈C([0, T ], Rn )  satisfies the integral equation  

 s(t) = f
0

t

∫ (s, q(τ), τ)dτ + s0,    0 ≤ t ≤ T . (8) 

Note that the existence of a unique generalized solution from  V21,0 (Ω),  for fixed control  ϑ ∈V ,  of the 
boundary-value problem (1)–(4) follows from the results in [14, pp. 265–270].  In what follows, we use this fact.  

The aim of the present paper is to study the problem of optimal control (1)–(6).  In what follows, it is al-
ways assumed that the solution of problem (1)–(4) exists and is unique.  As a corollary, we obtain that, under the 
condition (A), problem (1)–(6) has at least one solution.  Note that, in the case where  α j = 0,  j = 1, 2,  prob-
lem (1)–(6) is ill-posed in the classical sense [15].  



1094 R. A. TEIMUROV  

The following theorem is true:  

Theorem 1.  Under the condition (A), there exists a dense subset  K   of the space  H   such that, for any  
ω ∈K ,  for  αi > 0,  i = 1, 2 ,  the problem of optimal control (1)–(6) is uniquely solvable.  

Proof.  We prove the continuity of the functional  

 J0(ϑ) = u(x, t) − u0(x, t) L2 (Ω)
2 . 

Let  δϑ = (δp, δq) ∈V   be an increment of control on an element  ϑ ∈V  satisfying the condition  ϑ + δϑ ∈V .  
We denote  

 δu ≡ δu(x, t) = u(x, t; ϑ + δϑ) − u(x, t; ϑ), 

 δsi ≡ δsi (t) = si (t; q + δq) − si (t; q). 

It follows from (1)–(4) that the function  δu  is a generalized solution of the boundary-value problem  

 δut = a2δuxx + [(pi + δpi )δ(x − (si + δsi )) − piδ(x − si )]
i=1

n

∑ ,    (x, t) ∈Ω, (9) 

 δux x=0 = δux x=l = 0,    t ∈[0, T ], (10) 

 δu t=0 = 0,    x ∈[0, l], (11) 

and the functions  δsi,  i = 1, n,  are the solutions of the Cauchy problem  

  !δsi (t) = δfi (s, q, t),      δsi (0) = 0,    i = 1, n, (12) 

where  

 δfi (s, q, t) = fi (s + δs, q + δq, t) − fi (s, q, t).  

We prove that the function  δu = δu(x, t)  admits the estimate  

 δu V2
1,0 (Ω) ≤ c1 δϑ H , (13) 

where  c1 > 0  is a constant.  
Multiplying both sides of Eq. (9) by  η = η(x, t)  and integrating over the domain  Ω  by parts, we arrive at 

the relation  

 δutη+ a2δuxηx( )
0

T

∫ dx dt = (pi + δpi )η(si + δsi , t) − piη(si , t)[ ]
0

T

∫
i=1

n

∑
0

l

∫ dt. (14) 
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Let  t1, t2 ∈[0, T ]  be such that  t1 ≤ t2.  In identity (14), we set  

 

 

η(x, t) =
δu(x, t), t ∈(t1, t2 ],

0, t ∈[0, t1]∪ (t2, T ].

⎧
⎨
⎪

⎩⎪
 

Applying the formulas of finite increments to the function  δu(si + δsi , t),  i = 1, n,  in the form  

 δu(si + δsi , t) = δu(si , t) + δux (si , t)δsi,      where    si = si + θδsi,    θ ∈[0, 1], 

we obtain the equation of energy balance for problem (9)–(12):  

 1
2

δu(x, t) L2 (0, l )
2

t=t1
t=t2 + a2 δux (x, t) L2 (Ωt )

2
t=t1
t=t2    

  =  [(pi + δpi )δsi δux (si , t) + δpi δu(si , t)]dt
t1

t2

∫
i=1

n

∑ . (15) 

By using the Cauchy–Buniakowski inequality on the right-hand side of this equation, we arrive at the inequality  

 1
2

δu(x, t) L2 (0, l )
2

t=t1
t=t2 + a2 δux (x, t) L2 (Ωt )

2
t=t1
t=t2    

  ≤  pi L2 (t1,t2 )
+ δpi L2 (t1,t2 )( )⎡

⎣
i=1

n

∑ max
t1≤t≤t2

δsi (t) δux (si , t) L2 (t1, t2 )
  

   + δpi L2 (t1,t2 )
δu(si , t) L2 (t1,t2 )

⎤⎦ . (16) 

The functions  δsi (t),  i = 1, n,  as solutions of the Cauchy problem (12), satisfy the inequality [12, p. 94]  

 δsi (t) C[t1,t2 ]
≤ c2 δq(t) L2 (t1,t2 )

,    i = 1, n, 

for sufficiently small values of the quantity  ε = t2 − t1, 
It is easy to see that the following inequality is true for the function  u(x, t):  

 δu(si , t) L2 (t1, t2 )
≤ c3 δu V2

1,0 (Ω),      δux (si , t) L2 (t1, t2 )
≤ c4 δu V2

1,0 (Ω), 

where  c2 > 0,  c3 > 0,  and  c4 > 0  are constants.  
Hence, as   

 δϑ L2 (t1,t2 )
→ 0 , 

inequality (16) yields the following inequality:  
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 1
2

δu(x, t) L2 (0, l )
2

t=t1
t=t2 + a2 δux (x, t) L2 (Ωt )

2
t=t1
t=t2 ≤ c5 δϑ L2 (t1, t2 )

δu V2
1,0 (Ω) , (17) 

where  c5 > 0  is a constant.  
By analogy with [16, pp. 166–168], for any  t ∈[0, T ],  we split  [0, t]  into finitely many intervals of suffici-

ently small length such that an inequality of the form (17) holds in each of these intervals.  We now add these 
inequalities (for each interval).  This yields  

 1
2

δu(x, t) L2 (0, l )
2 + a2 δux (x, t) L2 (Ω)

2 ≤ c5 δϑ H δu V2
1,0 (Ω)  

and, hence, we immediately arrive at inequality (13).  
Thus, we get   

 δu V2
1,0 (Ω) → 0     as    δϑ H → 0 .  

By using this result and the theorem on traces [17], we conclude that  

 δu(x, t) L2 (Ω) → 0      as     δϑ H → 0 .  

Since the increment of the functional  J0(ϑ)  can be represented in the form  

 δJ0(ϑ) = J0(ϑ + δϑ) − J0(ϑ)    

  =  2 [u(x, t) − u0(x, t)]δu(x, t)dx dt + δu(x, t) L2 (Ω)
2

0

T

∫
0

l

∫ , 

the continuity of the functional  J0(ϑ)  is proved.  
Further, since the functional  J0(ϑ)   is bounded below and continuous in  V   and  H   is a uniformly convex 

reflexive Banach space [18], by the Bidaut theorem  [19], there exists a dense subset  K   of the space  H   such 
that, for any   ω = ( !p(t), !q(t)) ∈H   and  αi > 0 ,  i = 1, 2 ,  the problem of optimal control (1)–(6) is uniquely 
solvable.  

Theorem 1 is proved.  

4.  Necessary Condition of Optimality  

For the problem of optimal control (1)–(6), we introduce the dual state  ψ = ψ(x, t)  as a solution of the 
problem  

  ψ t + a2ψ xx = − 2[u(x, t) − !u(x, t)],    (x, t) ∈Ω, (18) 

 ψ x x=0 = ψ x x=l = 0 ,    0 ≤ t < T , (19) 

 ψ(x, T ) = 0 ,    0 ≤ x ≤ l ,  (20) 
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and functions  ξi (t),  i = 1, n ,  as solutions of the dual system of equations  

 
 

!ξi (t) = − ∂ fk
∂si

ξk (t)
k=1

n

∑ + pi (t)ψ x (si (t), t) ,      0 ≤ t < T ,    ξi (T ) = 0 ,    i = 1, n . (21) 

The dual problems (18)–(20) and (21) are obtained according to the ordinary scheme [12, pp. 91–93, 
128, 129].  

Definition 2.  A generalized solution of problem (18)–(21) for the control  ϑ = (p(t), q(t)) ∈H   is defined 
as a pair of functions  (ψ, ξ) = (ψ(x, t), ξ(t)),  where the function  ψ ∈W2

1,1(Ω)   satisfies the integral identity  

 ψη1t + a2ψ xη1x( )dx dt
0

T

∫ =
0

l

∫ 2 u(x, t) − u0(x, t)[ ] η1(x, t)dx dt
0

T

∫
0

l

∫  (22) 

for all  η1 = η1(x, t) ∈W2
1,1(Ω) ,  η1(x, 0) = 0,  and the functions  ξi ∈C([0, T ], Rn ),  i = 1, n ,  satisfy the inte-

gral equation  

 
ξi (t) = ∂ fk

∂sik=1

n

∑ ξk (τ) − pi (τ)ψ x (si (τ), τ)
⎡

⎣
⎢

⎤

⎦
⎥

t

T

∫ dτ ,      0 ≤ t ≤ T ,    i = 1, n . (23) 

The function  

 H (t, s, ψ, q, ϑ) = − − fi (s(t), q(t), t)ξi (t) + ψ(si (t), t)pi (t)⎡⎣
i=1

n

∑
⎧
⎨
⎪

⎩⎪
  

  + 
 
α1 pi (t) − !pi (t)( )2 ⎤⎦ + α2 q j (t) − !q j (t)( )2

j=1

m

∑
⎫
⎬
⎪

⎭⎪
 (24) 

is called the Hamilton–Pontryagin function of problem (1)–(6).  

Theorem 2.  Assume that the following conditions are satisfied:  

 (i) a function  f (s, q, t)  is defined and continuous in a collection of its arguments and has continuous 
bounded partial derivatives with respect to the variables  s   and  q   for  (s, q, t) ∈Rn × Rm × [0, T ];  

 (ii) functions   

 f (s, q, t),     fs =
∂ f (s, q, t)

∂s
,    and    fq = ∂ f (s, q, t)

∂q
  

 satisfy the Lipschitz condition with respect to the variables  s   and  q ,  i.e.,  

 f (s + δss , q + δq, t) − f (s, q, t) ≤ L δs + δq( ) , 
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 fs (s + δs, q + δq, t) − fs (s, q, t) ≤ L δs + δq( ) , 

 fq (s + δs, q + δq, t) − fq (s, q, t) ≤ L δs + δq( ) 

  for all  (s + δs, q + δq, t) ,  (s, q, t) ∈Rn × Rm × [0, T ],  where  L = const ≥ 0   and  δs  and  δq   are 
the increments of the variables  s   and  q ,  respectively.  

If  (ψ(x, t), ξ(t))  is a solution of the adjoint problem (18)–(21), then functional (6) is Fréchet differentiable 
on the set  V  and its gradient satisfies the relation  

 ′J (ϑ) = ∂J(ϑ)
∂p

, ∂J(ϑ)
∂q

⎛
⎝⎜

⎞
⎠⎟

= − ∂H
∂p

, − ∂H
∂q

⎛
⎝⎜

⎞
⎠⎟

. (25) 

Proof.  Consider an increment of functional (6).  We have  

 δJ ≡ J(ϑ + δϑ) − J(ϑ)  

  =  2 [u(x, t) − u0(x, t)]δu(x, t)dx dt + δu(x, t) 2 dx dt
0

T

∫
0

l

∫
0

T

∫
0

l

∫   

   + 
 

2α1 pi (t) − !pi (t)[ ]δpi (t)dt + α1 δpi (t)
2 dt

0

T

∫
0

T

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=1

n

∑   

   + 
 

2α2 q j (t) − !q j (t)⎡⎣ ⎤⎦δq j (t)dt + α2 δq j (t)
2 dt

0

T

∫
0

T

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪j=1

m

∑ , (26) 

where  ϑ = (p, q) ∈V ,  ϑ + δϑ ∈V   and  δpi   and  δq j   are the increments of the variables  pi   and  q j ,  respec-
tively.  

Setting  η1 = δu(x, t)   in (22) and  η = ψ(x, t)   in (14) and subtracting the relations obtained as a result, 
we find  

 2 u(x, t) − u0(x, t)[ ]δu(x, t)dx dt
0

T

∫
0

l

∫ = (pi + δpi )ψ(si + δsi , t) − piψ(si , t)[ ]dt
0

T

∫
i=1

n

∑ . (27) 

Problems (12) and (21) can be rewritten in the form of equivalent integral relations  

 
 

δsi (t)!θi (t) + δfi (s(t), q(t), t)θi (t)⎡⎣ ⎤⎦dt = 0
0

T

∫  (28) 

for all  θi (t) ∈L2(0, T ) ,  θi (T ) = 0 ,  i = 1, n ,  and 
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ξi (t)!θ1i (t) −
∂ fk
∂si

ξk (t)
k=1

n

∑ − pi (t)ψ x (si (t), t)
⎛

⎝⎜
⎞

⎠⎟
θ1i (t)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dt

0

T

∫ = 0 (29) 

for all  θ1i (t) ∈L2(0, T ),  θ1i (0) = 0,  i = 1, n .  
Setting   

 θ1i (t) = δsi (t)     and     θi (t) = ξi (t) 

in these relations and finding the sum of these relations, we obtain  

 δsi (t)ξi (t)[ ] t=0
t=T = ∂ fk

∂si
ξk (t)

k=1

n

∑ − pi (t)ψ x (si (t), t)
⎛

⎝⎜
⎞

⎠⎟
δsi (t) − δfiξi (t)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dt

0

T

∫ . 

Since, according to the conditions of Theorem 2, the increment  δfi = δfi (s, q, t)  can be represented in the 
form  

 
δfi = ∂ fi

∂sk
δsk

k=1

n

∑ + ∂ fi
∂qrr=1

m

∑ δqr + R1,  

where  R1 = o δs C[0, T ]
2 + δq L2 (0, T )

2( ), 
the last equality yields the following relation:  

 δsi (t)ξi (t)[ ] t=0
t=T = ∂ fk

∂si
ξk (t)

k=1

n

∑ − pi (t)ψ x (si (t), t))
⎛

⎝⎜
⎞

⎠⎟
δsi (t)

⎡

⎣
⎢
⎢0

T

∫   

  – ∂ fi
∂qr

δqr (t)ξi (t)
r=1

m

∑ − ∂ fi
∂sk

δsk (t)ξi (t)
k=1

n

∑
⎤

⎦
⎥ dt + R1. 

In view of (12) and (21), this is equivalent to the equality  

 pi (t)ψ x (si (t), t)δsi (t)dt
0

T

∫ = − ∂ fi
∂qr

δqr (t)ξi (t)dt
0

T

∫
r=1

m

∑   

  – ∂ fi
∂sk

ξi (t)δsk (t) −
∂ fk
∂si

ξk (t)δsi (t)
⎡
⎣⎢

⎤
⎦⎥0

t

∫
k=1

n

∑ dt + R1. (30) 

According to the Taylor formula, we can write  

 ψ(si + δsi , t) = ψ(si , t) + ψ x (si , t)δsi + o δsi( ). 

By using this relation and  (27), we obtain  
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 2 [u(x, t) − u0(x, t)]δu(x, t)dx dt
0

T

∫
0

l

∫ = (pi (t)ψ x (si (t), t)δsi (t)[
0

T

∫
i=1

n

∑   

  + ψ(si (t), t)δpi (t) + ψ x (si (t), t)δpi (t)δsi (t) + o δsi( ) ] dt . 

Since  

 ∂ fi
∂sk

ξi (t)δsk (t) −
∂ fk
∂si

ξk (t)δsi (t)
⎡
⎣⎢

⎤
⎦⎥k=1

n

∑
i=1

n

∑ = 0, 

we get the following relation from the last equality and relation (30):  

 2 [u(x, t) − u0(x, t)]δu(x, t)dx dt
0

T

∫
0

l

∫   =  
0

T

∫
i=1

n

∑ − ∂ fi
∂qrr=1

m

∑ ξi (t)δqr (t) + ψ(si , t)δpi
⎡

⎣
⎢

⎤

⎦
⎥ dt + R2, (31) 

where  

 R2 = ψ x (si (t), t)δpi (t)δsi (t) + o δsi( )[ ]dt
0

T

∫ + R1
i=1

n

∑ . 

By using the standard scheme [12, p. 94], we can prove the estimate  

 δs C[0, T ] ≤ c6 δq L2 (0, T ) , (32) 

where  c6 > 0  is a constant.  
This yields the relation   

 R2 = o δϑ H( ). 

On the other hand, inequality (13) implies the equality  

 δu(x, t) L2 (Ω) = O δϑ H( ) .  

Substituting the obtained relations in (26), we find   

 δJ(ϑ) = J1(i) + J2(i, j)
j=1

m

∑
⎛

⎝
⎜

⎞

⎠
⎟

i=1

n

∑ + o δϑ H( )      as    δϑ H → 0 , 

where  

 
 
J1(i) = ψ(si (t), t) + 2α1 pi (t) − !pi (t)( )[ ]δpi (t)dt

0

T

∫ , 
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J2(i, j) = − ∂ fi (s(t), q(t), t)

∂q j
ξi (t) + 2α2 q j (t) − !q j (t)( )⎡

⎣
⎢

⎤

⎦
⎥

0

T

∫ δq j (t)dt ,      i = 1, n ,    j = 1, m . 

In view of (24), we can write  

 δJ(ϑ) = − ∂H
∂ϑ

, δϑ⎛
⎝⎜

⎞
⎠⎟ H

+ o δϑ H( )       as    δϑ H → 0 . 

This proves the Fréchet differentiability of functional (6) and relation (25).  
Theorem 2 is proved.  

Theorem 3.  Assume that all conditions of Theorem 2 are satisfied.  Then, for the optimality of control ϑ* = 
(p*(t), q*(t)) ∈V ,  it is necessary that the conditions  

 
 
〈 ′J (ϑ*), ϑ − ϑ*〉H = ψ*(si*(t), t) + 2α1(pi*(t) − !pi (t)), pi (t) − pi*(t)( )⎡

⎣
⎢
⎢i=1

n

∑
0

T

∫   

  + 
 

− ∂ fi (s*(t), ϑ*(t), t)
∂q j

ξi*(t) + 2α2(q j
*(t) − !q j (t)), q j (t) − q j

*(t)
⎛

⎝⎜
⎞

⎠⎟j=1

m

∑
⎤

⎦
⎥
⎥
dt ≥ 0  

    (33) 

be satisfied for all  ϑ = (p(t), q(t)) ∈V ,  where  ψ*(si*(t), t)  and  ξi*(t)  are the solutions of problems (18)–(20) 
and (21) for  ϑ = ϑ* .  

Proof.  The proof of the theorem does not encounter any serious difficulties.  For the optimality of control  
ϑ* = (p*(t), q*(t)) ∈V ,  it is necessary [12, p. 28] to guarantee the validity of the inequality  

 〈 ′J (ϑ*), ϑ − ϑ*〉H ≥ 0     ∀ϑ ∈V . (34) 

We determine the gradient of functional (6) and then consider inequality (34).  In view of relation (25) and the 
explicit form of the Hamilton–Pontryagin function, this yields inequality (33).  

Theorem 3 is proved.  

5.  Conclusions  

For the problem of optimal control described by the heat equation and a system of ordinary differential 
equations, we prove the theorem on existence and uniqueness of solution, establish the sufficient conditions for 
the Fréchet differentiability of the objective functional, and deduce the explicit expression for its gradient.  We 
also obtain the necessary condition of optimality in the form of the integral maximum principle.  

The present work was supported by the Grant of the Science Foundation of State Oil Company of the Azer-
baijan Republic (SOCAR) for 2014. 
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