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ALMOST PERIODIC SOLUTIONS OF NONLINEAR EQUATIONS THAT ARE
NOT NECESSARILY ALMOST PERIODIC IN BOCHNER’S SENSE

V. Yu. Slyusarchuk UDC 517.925.52

We introduce a new class of almost periodic operators and establish conditions for the existence of almost
periodic solutions of nonlinear equations that are not necessarily almost periodic in Bochner’s sense.

1. Main Notation and Definitions

Let E be a Banach space with the norm k · k
E

and let L(X,X) be a Banach space of linear continuous
operators A acting in a Banach space X with the norm

kAk
L(X,X) = sup

kxkX=1
kAxk

X

.

Also let C0 be a Banach space of functions x = x(t) bounded and continuous on R with values in E and the
norm

kxk
C

0 = sup

t2R
kx(t)k

E

and let R(x) be the set of values of the function x 2 C0, i.e., the set {x(t) : t 2 R}.
In the space C0, we define a translation operator S

h

, h 2 R, by the formula

(S
h

x)(t) = x(t+ h), t 2 R. (1)

Definition 1. An element y 2 C0 is called almost periodic (in Bochner’s sense; see [1, 2]) if the closure of
the set {S

h

y : h 2 R} in the space C0 is a compact subset of the space.

The set B0 of almost periodic elements of the space C0 is a subspace of this space with the norm

kxk
B

0 = kxk
C

0 .

Definition 2. The operator A 2 L(C0, C0
) is called almost periodic (in Bochner’s sense) if the closure of

the set {S
h

AS−h

: h 2 R} in the space L(C0, C0
) is compact in L(C0, C0

).

In what follows, to study nonlinear equations, we use a new class of almost periodic operators that are not
necessarily almost periodic in Bochner’s sense.

This class of operators is defined as follows: We fix an arbitrary open set D ⇢ E, which may coincide with E.

By K
D

we denote the set of all nonempty compact subsets K ⇢ D. For a set D1 ⇢ D, let D
D1 be the set of all

elements x 2 C0 for each of which R(x) ⇢ D1.
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Definition 3. A mapping F : D
D

! C0 is called almost periodic if, for any set K 2 K
D

and any sequence
(h

k

)

k>1 of real numbers, there exists a subsequence (h
kl
)

l>1 such that

lim

l1!1, l2!1
sup

x2DK

�

�

�

S
hl1

FS−hl1
x− S

hl2
FS−hl2

x
�

�

�

C

0
= 0.

It is clear that every Bochner almost periodic operator A 2 L(C0, C0
) is almost periodic in a sense of

Definition 3. It is also obvious that, in the case D = E, where the space E is finite-dimensional and the operator
H : D

D

! C0 is linear, Definitions 2 and 3 are equivalent. However, if the space E is infinite-dimensional,
then the operator H almost periodic in the sense of Definition 3 is not necessarily almost periodic in the sense of
Definition 2 (an example of operator of this kind is presented in the next section).

2. Example of an Operator Almost Periodic According to Definition 3 but Not Almost Periodic in Bochner’s
Sense

Assume that the set D (see Sec. 1) coincides with the Banach space E and this space is real and infinite-
dimensional. By S0 we denote the set of all elements of the space C0 for each of which the closure of the set of
values in the space E is a compact set. It is clear that B0 ⇢ S0 and x + y,↵x 2 S0 if x, y 2 S0 and ↵ 2 R.
Hence, S0 is a vector space.

We now show that

S0
= S0. (2)

This implies that the vector space S0 is a subspace of the space C0.

Let x be an arbitrary element of the set S0. There exists a sequence (x
m

)

m≥1 of elements of the set S0 for
which

lim

m!1
kx

m

− xk
C

0 = 0. (3)

We fix an arbitrary number " > 0. In view of (3), for a certain number m0 2 N, we get

kx
m0 − xk

C

0 < ". (4)

Since x
m0 2 S0, the set R(x

m0) is compact in E. Hence, for this set, there exists a finite "-grid M. According
to (4), the set M is a (2")-grid for R(x). Thus, in view of the arbitrariness of the choice of the number " > 0 and
the Hausdorff theorem (see [3, p. 47]), the set R(x) is compact.

Hence, equality (2) is true and the vector space S0 is a subspace of the space C0.

Further, we consider a set X = {x1, x2, . . . , x
k

, . . .} ⇢ E whose elements satisfy the relation

�

�

�

�

�

p

X

l=1

β
l

x
kl

�

�

�

�

�

E

=

p

X

l=1

|β
l

| (5)

for any p 2 N, real numbers β1, . . . ,βp, and different natural numbers k1, . . . , kp. The set X with this property
exists if, e.g., E is a Banach space of functions x = x(t) bounded and continuous on R with values in R and the
norm kxk

C

0 = sup

t2R |x(t)| . As elements x1, x2, . . . , x
k

, . . . , we can take the functions sinλ1t, sinλ2t, . . . ,

sinλ
k

t, . . . , respectively, where the numbers λ1,λ2, . . . ,λ
k

, . . . are linearly independent, i.e., for each m 2 N,



ALMOST PERIODIC SOLUTIONS OF NONLINEAR EQUATIONS THAT ARE NOT NECESSARILY ALMOST PERIODIC 269

the equality

n1λ1 + n2λ2 + . . .+ n
m

λ
m

= 0,

where n1, n2, . . . , nm

are integers, implies that n1 = n2 = . . . = n
m

= 0 [2]. It is obvious that the closure of the
set X in the space E is not compact in E.

Consider the sums

S
m

=

m

X

k=1

1

k
, m 2 N.

Since

lim

m!1
S
m

= +1,

we get

R =

1
[

k=1

I
k

,

where I1 = (−1, 1) and I
k

= [S
k−1, Sk

), k > 2. We define an element y = y(t) of the space C0 by the
equality

y =

1
X

k=1

χ
Ik
(t)f

k

(t)x
k

, (6)

where

f1(t) ⌘ 1,

f
k

(t) =

8

>

>

>

>

<

>

>

>

>

:

1 for cos

�

k2k+2⇡(t− S
k−1)

�

> 4

−k,

4

k

cos

�

k2k+2⇡(t− S
k−1)

�

for
�

�

cos

�

k2k+2⇡(t− S
k−1)

�

�

� < 4

−k,

−1 for cos

�

k2k+2⇡(t− S
k−1)

�

6 −4

−k,

k > 2,

and

χ
Ik
(t) =

8

<

:

1 for t 2 I
k

,

0 for t 2 R \ I
k

,
k ≥ 1.

Consider a set

Y = {S
h

y : h 2 R},

where S
h

is the translation operator given by relation (1) and the linear span span(Y ) of this set, i.e., the minimal
vector subspace of the space C0 containing the set Y.

In what follows, we use the following statement:
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Lemma. Let

u =

p

X

l=1

β
l

S
hl
y

be an arbitrary nonzero element of the vector space span(Y ), where p is a natural number, β1, . . . ,βp are real
nonzero numbers, and h1, . . . , hp are real numbers such that h

i

6= h
j

for i 6= j . Then:

(i) for any number " > 0, there exist a number t
"

and a set M
"

⇢ [t
"

,+1) with Lebesgue measure µ(M
"

)

smaller than " such that the relation

�

�

�

�

�

 

p

X

l=1

β
l

S
hl
y

!

(t)

�

�

�

�

�

E

=

p

X

l=1

|β
l

| (7)

is true for all t 2 [t
"

,+1) \M
"

;

(ii) the closure of the set of values of the element u = u(t) in the space E is not compact in this space.

Proof. Note that, for all t 2 R,

u(t) =

 

p

X

l=1

β
l

S
hl
y

!

(t) =

p

X

l=1

β
l

y(t+ h
l

). (8)

It follows from the definitions of the functions y = y(t) and f
k

(t), k ≥ 1, and the conditions imposed
on the numbers h1, . . . , hp that, for any number " > 0, there exist a sufficiently large number t

"

and a set
M

"

⇢ [t
"

,+1) whose Lebesgue measure µ(M
"

) is smaller than " such that, for every t 2 [t
"

,+1) \M
"

, there
are different elements x1,t, . . . , xp,t 2 {x1, x2, . . . , x

k

, . . .} (that do not coincide with each other) such that

y(t+ h
l

) = '(l, t)x
l,t

, l = 1, p, (9)

where the scalar product '(l, t) takes values from the set {−1, 1} (depending on the values of l and t). In view
of (5), (8), and (9), relation (7) is true for all t 2 [t

"

,+1) \M
"

, i.e., the first part of the lemma is proved.
To prove the second part of the lemma, we consider an arbitrary increasing sequence (t

n

)

n≥1 of elements of
the set [t

"

,+1) \M
"

(here, " is the same number as in the proof of the first part of the lemma) such that

t
n+1 − t

n

> max

i 6=j

|h
i

− h
j

|, n ≥ 1.

Then the relation

{x1,ti , . . . , xp,ti} \ {x1,tj , . . . , xp,tj} = ?

is true for i 6= j. Hence, for any natural i and j (i 6= j ) and a nonzero element u = u(t), the following relations
are true:

ku(t
i

)− u(t
j

)k
E

=

�

�

�

�

�

p

X

l=1

β
l

y(t
i

+ h
l

)−
p

X

l=1

β
l

y(t
j

+ h
l

)

�

�

�

�

�

E
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=

�

�

�

�

�

p

X

l=1

β
l

'(l, t
i

)x
l,ti

−
p

X

l=1

β
l

'(l, t
j

)x
l,tj

�

�

�

�

�

E

= 2

p

X

l=1

|β
l

| > 0.

This means that the closure of the set of values of the element u = u(t) in the space E is not a compact set.
The lemma is proved.

We continue the construction of the operator required for our example.
By the lemma, the set of values of each nonzero element

u =

p

X

l=1

β
l

S
hl
y

of the vector subspace span(Y ) is not a precompact set, i.e., u 62 S0 for u 6= 0.

It is clear that there exists a limit

lim

t!−1
u(t) =

 

p

X

l=1

β
l

!

x1.

We now show that nonzero elements of the closure span(Y ) of the vector subspace span(Y ) in the space C0

have similar properties.
Let z be an arbitrary element from span(Y ) \ span(Y ) and let (z

k

)

k>1 be a sequence of elements from
span(Y ) for which

lim

k!1
kz

k

− zk
C

0 = 0. (10)

Further, we show that the relation

lim

t!−1
z(t) = ↵x1 (11)

is true for some number ↵ 2 R . Indeed, let

lim

t!−1
z
k

(t) = ↵
k

x1, (12)

where ↵
k

2 R, k > 1, and the sequence (↵
k

)

k>1 is convergent (this requirement does not decrease the generality
of our considerations), i.e., for a certain number ↵ 2 R,

lim

k!1
↵
k

= ↵. (13)

It is clear that, for all t 2 R and k > 1,

z(t) = (z(t)− z
k

(t)) + (z
k

(t)− ↵
k

x1) + (↵
k

a− ↵x1) + ↵x1.

Hence,

kz(t)− ↵x1kE 6 kz(t)− z
k

(t)k
E

+ kz
k

(t)− ↵
k

x1kE + k↵
k

x1 − ↵x1kE , t 2 R, k > 1.
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In view of (12), this yields

0 6 lim sup

t!−1
kz(t)− ↵x1kE

6 lim sup

t!−1
kz(t)− z

k

(t)k
E

+ lim sup

t!−1
kz

k

(t)− ↵
k

x1kE + lim sup

t!−1
k↵

k

x1 − ↵x1kE

6 kz − z
k

k
C

0 + k(↵
k

− ↵)x1kE .

Since these relations hold for all k > 1, by virtue of (10) and (13), relation (11) is true.
Further, we show that, for an element

z 2 span(Y ) \ span(Y ),

the set R(z) is not compact in E. Let (z
k

)

k>1 be a sequence of elements from span(Y ) for which relation (10)
is true. Note that, for any k > 1, there exist numbers p

k

2 N, δ1,k, . . . , δpk,k 2 R, and h1,k, . . . , hpk,k 2 R (the
numbers h1,k, . . . , hpk,k are pairwise different) such that the element z

k

= z
k

(t) can be rewritten in the form

z
k

(t) =

pk
X

l=1

δ
l,k

y(t+ h
l,k

).

Hence, by virtue of the lemma,

kz
k

k
C

0 =

pk
X

l=1

|δ
l,k

|, k > 1.

As in the proof of the second part of the lemma, for any k > 1, there exists an increasing sequence (t
k,n

)

n>1

for which lim

n!1 t
k,n

= +1 such that

�

�z
k

(t
k,i

)− z
k

(t
k,j

)

�

�

E

> 2kz
k

k
C

0

for all natural different natural numbers i and j. It follows from these inequalities that

kz(t
k,i

)− z(t
k,j

)k
E

> kz
k

(t
k,i

)− z
k

(t
k,j

)k
E

− k(z(t
k,i

)− z
k

(t
k,i

))− (z(t
k,j

)− z
k

(t
k,j

))k
E

> kz
k

(t
k,i

)− z
k

(t
k,j

)k
E

− kz(t
k,i

)− z
k

(t
k,i

)k
E

− kz(t
k,j

)− z
k

(t
k,j

)k
E

> 2kz
k

k
C

0 − 2kz − z
k

k
C

0 , k > 1, i 6= j.

Hence, these inequalities, the inclusion

z 2 span(Y ) \ span(Y ),

and relation (10), imply that, for some number γ > 0 and a sufficiently large natural number k0, the following
inequality is true:

kz(t
k0,i)− z(t

k0,j)kE > γ,

which means that the set R(z) is not compact in the space E.
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Hence, span(Y ) is a subspace of the space C0.

Further, we consider a subspace L = S ⊕ span(Y ) of the space C0. Note that every element x 2 L can be
uniquely represented in the form x = u+v, where u 2 S0 and v 2 span(Y ). Indeed, if there exist two mappings
such that

x = u1 + v1,

x = u2 + v2

⇣

u1, u2 2 S0, v1, v2 2 span(Y )

⌘

,

then u1 + v1 = u2 + v2 and, hence, for u1 = u2, we obtain v1 = v2 and, for u1 6= u2, we get the equality
u1 − u2 = v2 − v1, which contradicts the inclusion u2 − u1 2 S because

v2 − v1 2 span(Y ) \ {0}

and the set S0 \
⇣

span(Y ) \ {0}
⌘

is empty.
We consider a linear continuous functional

 : span ({x
k

: k 2 N}) ! R

for which  (x1) = 1 and k k = 1. This functional exists (see, e.g., [4, pp. 176, 177]).
We define a linear functional ' : L ! R as follows: every element x = u + v 2 L, where u 2 S0 and

v 2 span(Y ), is associated with the number

'(x) = '(u) + '(v),

where

'(u) = 0

and

'(u) =  

✓

lim

t!−1
u(t)

◆

.

This functional is continuous in view of the continuity of the functional  .
By the Hahn–Banach theorem on the extension of linear continuous functional [4], there exists a linear con-

tinuous functional l : C0 ! R such that l(x) = '(x) for all x 2 L and klk = k'k.
We fix an arbitrary element s 2 C0 \B0 and define a linear continuous operator C : C0 ! C0 by the formula

Cx = l(x)s, x 2 C0. (14)

We now show that this operator is almost periodic in the sense of Definition 3 and is not almost periodic in the
sense of Definition 2.

In view of (14),

S
h

CS−h

x = l(S−h

x)S
h

s, h 2 R, (15)
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for every x 2 C0 and

l(S−h

x) = 0, h 2 R,

for every x 2 S0. Therefore, for any compact set K ⇢ E, the closure of the set {S
h

CS−h

x : h 2 R, x 2 D
K

}
in the space C0 is compact in C0 because this set converges to {0}. This implies that the operator C is almost
periodic in the sense of Definition 3. However, the closure of the set {S

h

CS−h

: h 2 R} in the space L(C0, C0
)

is not compact in L(C0, C0
). Indeed, by virtue of (14) and (15), the element y defined by (6) satisfies the relation

S
h

CS−h

y = S
h

s, h 2 R,

and, hence,

{S
h

CS−h

: h 2 R}y = {S
h

s : h 2 R}. (16)

If the operator C is almost periodic in the sense of Definition 2, i.e., {S
h

CS−h

: h 2 R} is a precompact set
in the space L(C0, C0

), then the set {S
h

CS−h

: h 2 R}y is precompact in the space C0. By virtue of equality
(16), the set {S

h

s : h 2 R} is also precompact in the space C0. However, this is not true for {S
h

s : h 2 R}
because the element s is not almost periodic (see Definition 1).

Hence, we constructed the operator that is almost periodic according to Definition 3 but not almost periodic in
Bochner’s sense.

Remark 1. Assume that a Banach space E coincides with the space l1 = l1(N,R) of sequences a =

(a1, a2, . . . , a
k

, . . .) for each of which

1
X

k=1

|a
k

| < 1

with the norm

kak
l1 =

1
X

k=1

|a
k

|. (17)

As the set X = {x1, x2, . . . , x
k

, . . .} ⇢ E used in the construction of the presented example, we can take the
set ˜X of sequences

x
k

= (δ
k1, δk2, δk3, . . .), k 2 N,

where δ
kl

is the Kronecker delta: δ
kl

= 1 for k = l and δ
kl

= 0 for k 6= l.

It is obvious that, according to (17), the elements of the set ˜X satisfy relation (5).

3. Main Object of Investigations

Let ⌦ be an arbitrary domain in the space E. Consider a mapping F : D⌦ ! C0 such that, for any K 2 K⌦,

the closure of the set {S
h

FS−h

x : h 2 R, x 2 D
K

} in the space C0 is compact in C0 , i.e., the mapping F is
almost periodic in the sense of Definition 3.

It is clear that, for each K 2 K and a sequence (h
k

)

k>1 of elements of the set R, there exists a subsequence
(h

kl
)

l>1 such that the subsequence
⇣

S
hkl

FS−hkl
x
⌘

l>1
uniformly converges on D

K

.
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The aim of the present paper is to establish conditions for the existence of periodic solutions of the equation

Fx = 0. (18)

To study this equation, we use a functional defined on the set of solutions of the equation with precompact sets of
values.

Note that the following nonlinear equations are special cases of Eq. (18):

x(t+ 1) = f(t, x(t)), t 2 R, (19)

f(t, x(t)) = 0, t 2 R. (20)

In [5, 6], for these equations, we establish the existence of solutions continuous and almost periodic on R .

4. Functional δ. Isolated and Strongly Isolated Solutions of Eq. (18)

We fix an arbitrary set K 2 K. By N (F,K) we denote the set of all solutions x of Eq. (18) for each of which
R(x) ⇢ K and R(x) 6= K.

We fix an arbitrary element x⇤ 2 N (F,K) (under the assumption that N (F,K) 6= ?) and set

r(x⇤,K) = sup

n

ku− vk
E

: u 2 R(x⇤), v 2 K
o

. (21)

By virtue of the inequality R(x) 6= K, we get

r(x⇤,K) > 0.

We also fix an arbitrary number " 2 [0, r(x⇤,K)]. By ⌦(x⇤,K, ") we denote the set of all elements y 2 C0

for each of which

R(x⇤ + y) ⇢ K (22)

and

kyk
C

0 > ". (23)

Similarly, we can define the set ⌦(z,K, ") for any other element z 2 C0 for which R(z) ⇢ K.

Consider a functional

δ(x⇤,K, ") = inf

y2⌦(x⇤
,K,")

kF (x⇤ + y)k
C

0 . (24)

Definition 4. A solution z 2 N (F,K) of Eq. (18) is called isolated in the set R ⇥K if either this solution
is unique in the set R⇥K or, for any other solution u = u(t) with values in K, the following inequality is true:

inf

t2R
kz(t)− u(t)k

E

> ⇢,

where ⇢ is a positive constant that depends only on z.
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Definition 5. A solution z 2 N (F,K) of Eq. (18) is called strongly isolated in the set R⇥K if

δ(z,K, ") > 0

for each " 2 (0, r(z,K)).

It is clear that each solution z 2 N (F,K) of Eq. (18) strongly isolated in the set R⇥K is a solution of this
equation isolated in the set R ⇥ K. However, the solution z 2 N (F,K) of Eq. (18) isolated in the set R ⇥ K

can be not strongly isolated in the set R ⇥ K (the corresponding example for difference equations with discrete
argument is constructed in [7]).

In the next sections, we apply the functional δ to the investigation of the nonlinear equation (18) and a similar
linear equation.

In [5, 6, 8], we use similar functionals for the investigation of the nonlinear equations (19), (20), and

dx(t)

dt
= f(t, x(t)), t 2 R, (25)

with continuous mapping f : R⇥ ⌦ ! E, where ⌦ is an arbitrary domain of the space E.

5. Main Result

We now present conditions for the existence of almost periodic solutions of Eq. (18), which, unlike the well-
known Amerio theorem on almost periodic solutions of nonlinear differential equations (see [9, 10]), do not use
the H -class of Eq. (18).

Let ⇤ be a bounded subset of the space E. We define the diameter diam ⇤ of the set ⇤ by the equality

diam ⇤ = sup

�kx− yk
E

: x, y 2 ⇤

 

.

Theorem 1. If, for a solution z 2 N (F,K) of Eq. (18), where K 2 K, diam R(z) 6= 0, and

δ(z,K, ") > 0 (26)

for every " 2 (0, r(z,K)), then this solution is almost periodic.

Remark 2. A solution z 2 N (F,K) of Eq. (18) for which diam R(z) = 0 is constant and, hence, almost
periodic.

Proof. Assume that a solution z 2 N (F,K) of Eq. (18) is not an element of the space B0. Then there exists
a sequence

�

S
hpz
�

p>1
each subsequence of which

�

S
kpz
�

p>1
is divergent. Hence, for some sequences (p

r

)

r>1

and (q
r

)

r>1 of natural numbers and a number γ 2 (0, diam R(z)), we find

�

�S
kpr

z − S
kqr

z
�

�

C

0 > γ, r > 1. (27)

Note that diam R(z) 6 r(z,K). Without loss of generality, we can assume that the sequence
�

S
kpFS−kpx

�

p>1
uniformly converges on D

K

. Then

lim

p,q!1
sup

x2DK

�

�S
kpFS−kpx− S

kqFS−kqx
�

�

C

0 = 0. (28)
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We now consider the elements

y
r

= S
kpr

z − S
kqr

z, r > 1,

of the space C0. Clearly,

y
r

2 ⌦(S
kqr

z,K, γ), r > 1. (29)

We show that

δ(z,K, γ) = 0. (30)

By virtue of (24), (29), and the fact that

S
kpr

Fz = 0, r > 1,

for any r > 1, the following relations are true:

δ(z,K, γ) = inf

y2⌦(z,K,γ)
kF (z + y)k

C

0 = inf

y2⌦(Skqr
z,K,γ)

kS
kqr

F (z + S−kqr
y)k

C

0

= inf

y2⌦(Skqr
z,K,γ)

kS
kqr

FS−kqr
(S

kqr
z + y)k

C

0 6 kS
kqr

FS−kqr
(S

kqr
z + y

r

)k
C

0

= kS
kqr

FS−kqr
(S

kqr
z + (S

kpr
z − S

kqr
z))k

C

0 = kS
kqr

FS−kqr
S
kpr

zk
C

0

6 kS
kpr

FS−kpr
S
kpr

zk
C

0 + kS
kqr

FS−kqr
S
kpr

z − S
kpr

FS−kpr
S
kpr

zk
C

0

= kS
kpr

Fzk
C

0 + kS
kqr

FS−kqr
S
kpr

z − S
kpr

FS−kpr
S
kpr

zk
C

0

= kS
kqr

FS−kqr
S
kpr

z − S
kpr

FS−kpr
S
kpr

zk
C

0

6 sup

x2DK

�

�S
kqr

FS−kqr
x− S

kpr
FS−kpr

x
�

�

C

0 .

In view of (28), these estimates imply relation (30), which contradicts (26).
Hence, the assumption that the solution z 2 N (F,K) of Eq. (18) is not almost periodic is not true.
Theorem 1 is proved.

Note that relation (26) means that the solution z 2 N (F,K) of Eq. (18) is strongly isolated in the set R⇥K.

Hence, Theorem 1 can be reformulated as follows:

Theorem 2. Let K 2 K. If a solution z 2 N (F,K) of Eq. (18) is strongly isolated in the set R ⇥K, then
this solution is almost periodic.

Remark 3. The condition of strong isolation of a bounded solution of Eq. (18) is a sufficient but not necessary
condition for this solution to belong to the space B0. The solution of Eq. (18) can be almost periodic but not isolated
in the set R⇥K, which is confirmed by the difference equations

x(t+ 1) = x(t), t 2 R.
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6. The Case of the Linear Equation (18)

Consider an equation

Ax = h, (31)

where A : C0 ! C0 is a linear continuous and almost periodic (in the sense of Definition 3) operator (this operator
can be not almost periodic in Bochner’s sense) and h 2 B0.

Since Eq. (31) is a special case of Eq. (18)
�

the operator F is given by the formula Fx = Ax− h, x 2 C0
�

,

Theorem 2 implies the following assertion:

Theorem 3. Let K 2 K. A solution z of Eq. (31) strongly isolated in the set R⇥K is almost periodic.

We now present conditions for the strong isolation of the solution z of Eq. (31) on R⇥K .
Consider a linear homogeneous equation

Ax = 0 (32)

for Eq. (31).

Theorem 4. Let K 2 K. A solution z of Eq. (31) with values in K is strongly isolated in R⇥K if and only
if the trivial solution of Eq. (32) is strongly isolated in R⇥K.

Proof. Since z is a solution of Eq. (31), each element u of the space C0 for which

A(z + u) = h

is a solution of Eq. (32), i.e.,

Au = 0,

and vice versa. By the definition of the set ⌦(x⇤,K, ") [see (22) and (23)] and the definition of the functional
δ(x⇤,K, ") [see (24)], for the linear equations, we conclude that [see (21)],

inf

y2⌦(z,K,")
kA(z + y)− hk

C

0 = inf

y2⌦(0,K,")
kAyk

C

0 > 0,

for every " 2 (0, r(z,K)), i.e.,

δ(z,K, ") = δ(0,K, ") > 0

for all " 2 (0, r(z,K)).

This yields the assertion of the theorem.
Theorem 4 is proved.

Theorem 5. If

inf

x2S0
,kxkC0=1

kAxk
C

0 > 0, (33)

then each solution z 2 S0 of Eq. (31) is almost periodic.
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Proof. Since z 2 S0, we conclude that R(z) ⇢ K for some K 2 K. In view of (33) and linearity of the
operator A, we get

inf

x2S0
, R(x)⇢K, kxkC0="

kAxk
C

0 > 0

for any " 2 (µ(z,K), r(z,K)], where

µ(z,K) = inf

n

kx− yk
E

: x 2 R(x⇤), y 2 K
o

and, hence,

inf

x2S0
, R(x)⇢K, kxkC0>"

kAxk
C

0 > 0

for any " 2 (0, r(z,K)]. By virtue of the last relation, the trivial solution of Eq. (32) is strongly isolated in R⇥K.

Hence, by Theorem 4, the solution z 2 S0 of Eq. (31) is also strongly isolated in R⇥K.

Thus, by Theorem 3, the solution z 2 S0 of Eq. (31) is almost periodic.
Theorem 5 is proved.

Remark 4. The set of equations almost periodic in the sense of Definition 3 for which it is possible to apply
the main theorems of Secs. 5 and 6 is nonempty. An element of this set is, e.g., the equation

x+ Cx = h, (34)

where C : C0 ! C0 is a linear continuous operator given by relation (14) and h is an almost periodic element of
the space C0.

It is clear that the operator I + C, where I : C0 ! C0 is the identity operator, is almost periodic in the sense
of Definition 3 but not almost periodic in Bochner’s sense.

Since h 2 S0 and Cy = 0 for any y 2 S0, Eq. (34) possesses a unique solution x in the space S0 that
coincides with h. By virtue of Definition 5 and the definition of the functional ∆ [see (24)], this solution is
strongly isolated in each set R⇥K, where K is an arbitrary compact set in E for which R(h) ⇢ K.

7. Application of Theorem 2

Note that the difference equations with continuous argument and some classes of functional equations are
special cases of Eq. (18). The same is true for the ordinary differential equations. Thus, the results presented above
can be used for the investigation of specific features of the solutions of these equations.

7.1. Difference Equations. We specify the mapping F : C0 ! C0 appearing in Eq. (18) as follows:

(Fx)(t) = G(t, x(t), x(t−∆1), . . . , x(t−∆

m

)), t 2 R, x 2 C0, (35)

where m 2 N, ∆1, . . . ,∆m

are arbitrary real numbers and G : R ⇥ ⌦

m+1 ! E is a continuous mapping (here,
⌦ is the same domain of the space E as in Sec. 3). Assume that the mapping F given by relation (35) is almost
periodic in the sense of Definition 3.
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The mapping F is associated with the difference equation

G(t, x(t), x(t−∆1), . . . , x(t−∆

m

)) = 0, t 2 R. (36)

Since this equation is a special case of the general equation (18), Theorem 2 yields the following assertion:

Theorem 6. Let K 2 K. If a function z with values in K is a solution of the difference equation (36)
strongly isolated in the set R⇥K , then this solution is almost periodic.

7.2. Functional Equations. As in the previous section, we consider the mapping F : C0 ! C0 used earlier
in Eq. (18). We specify this mapping by the formula

(Fx)(t) = G(t, x(t), x('1(t)), . . . , x('m

(t)), t 2 R, x 2 C0, (37)

where m 2 N, '1 : R ! R, . . . ,'
m

: R ! R are continuous functions and G : R⇥ ⌦

m+1 ! E is a continuous
mapping (here, ⌦ is the same domain of the space E as in Sec. 3). Assume that the mapping F defined by
relation (37) is almost periodic in the sense of Definition 3

�

the necessary condition for this assertion is the almost
periodicity of the functions '1(t)− t, . . . ,'

m

(t)− t
�

.

The mapping F is associated with the functional equation

G
⇣

t, x(t), x
�

'1(t)
�

, . . . , x
�

'
m

(t)
�

⌘

= 0, t 2 R. (38)

Clearly this equation is a special case of the general equation (18).
Theorem 2 now yields the following statement:

Theorem 7. Let K 2 K. If the function z with values in K is a solution of the functional equation (38)
strongly isolated in the set R⇥K, then this solution is almost periodic.

7.3. Differential Equation. Consider a differential equation

dx

dt
= h(t, x), (39)

where h : R⇥ E ! E is a continuous mapping.
Assume that, for any number t0 2 R and vector x0 2 E, the differential equation (39) possesses a unique

solution x = x(t) satisfying the initial condition

x(t0) = x0. (40)

The conditions under which this requirement is satisfied can be found in [11].
Let x = x(t, t0, x0) denote a solution of problem (39), (40).
Further, we define the mapping U : R⇥ E ! E by the formula

U(t, y) = x(t+ 1, t, y), (t, y) 2 R⇥ E. (41)

Clearly, each solution y = y(t) of the differential equation (39) defined on R satisfies the relation

y(t+ 1) = x(t+ 1, t, y(t)), t 2 R,
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i.e., in view of (41), it is also a solution of the difference equation

x(t+ 1) = U(t, x(t)), t 2 R, (42)

which is a special case of Eq. (18). Hence, Eq. (42) can be used for the investigation of bounded solutions of the
differential equation (39).

Theorem 2 also yields the following assertion:

Theorem 8. Assume that the differential equation (39) possesses a solution z 2 C0 with values in the com-
pact set K 2 K and that z is a solution of the difference equation (42) strongly isolated in R⇥K.

If the mapping U : R⇥E ! E is almost periodic in the sense of Definition 3, then the solution z of Eq. (39)
is almost periodic.

In conclusion, we note that the established conditions for the existence of almost periodic solutions of Eqs. (18)
and (31) are new. Unlike the above-mentioned Amerio theorem, in Theorems 1 and 2, the H -class of Eq. (18) is
not used and the Banach space E can be infinite-dimensional. Similarly, in Theorems 3 and 5, the H -class of
Eq. (31) is also not used and the operator A can be not almost periodic in Bochner’s sense.

We also note that the property of almost periodicity of the solutions of equations is studied in numerous
papers. Here, we mention only some of these works. The first theorems on almost periodic solutions of ordinary
linear differential equations were proved by Favard in [12]. For nonlinear differential equations, the corresponding
theorems were proved by Amerio in [9]. In these papers, the H -classes of the investigated equations are essentially
used. Moreover, an additional condition of isolation of the bounded solutions of equations is also used in [9]. The
Favard results were later generalized by Mukhamadiev in [13, 14]. Numerous papers are devoted to the general-
ization of the Mukhamadiev theorems [15–17]. In this field, important results were also obtained by Levitan [2],
Amerio [18], and Zhikov [19].

The conditions of almost periodicity of bounded solutions were obtained in [5–8] for the nonlinear difference
and differential equations and Eq. (20) without using the H -classes of these equations.
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