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ON THE SOLVABILITY OF ONE CLASS OF NONLINEAR INTEGRAL EQUATIONS
WITH A NONCOMPACT HAMMERSTEIN–STIELTJES-TYPE OPERATOR
ON THE SEMIAXIS

Kh. A. Khachatryan1 and A. S. Petrosyan2 UDC 517.968.4+517.988.63

We study a class of nonlinear integral equations with a noncompact operator of the Hammerstein–Stieltjes-
type on the semiaxis. The existence of positive solutions is proved in various function spaces by using the
factorization methods and specially chosen successive approximations.

1. Introduction

Nonlinear integral equations of the form

'(x) = −
1Z

0

F0(t,'(t))dtF (x− t) + F1(x,'(x)), x ≥ 0, (1)

are used for the description of various problems in contemporary mathematical natural sciences. Thus, in particular,
these equations are encountered in the theory of Markov processes, in the kinetic theory of gases, in economics, etc.
(see [1–3]). An important specific feature of these equations is the noncompactness of the corresponding nonlinear
Hammerstein–Stieltjes operator in natural Banach spaces. Hence, the classical methods of nonlinear analysis for
the determination of fixed points of the operators either cannot be used at all or can be used under fairly severe
restrictions imposed on the functions F0, F1, and F. The fact that the required solution '(x) is defined on the
unbounded set [0,+1) also makes the investigation of this class of equations much more complicated.

The function F in Eq. (1) is defined on the set (−1,+1) and satisfies the following conditions:

(a) F is left-continuous on (−1,+1),

(b) F (−1) = 0 and F (+1) = 1,

(c) F monotonically increases on the set (−1,+1),

i.e., the function F can be regarded as a distribution function of a random variable ⇠. By the Lebesgue theorem,
the function F admits the representation

F = F

A

+ F

D

+ F

S

, (2)

where F
A

is the absolutely continuous component of the function F, F

D

is its discrete component, which is a jump
function with finite sum of the moduli of jumps, and F

S

is a continuous function of bounded variation whose
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derivative is equal to zero almost everywhere. Since F is a monotonically nondecreasing (increasing) function,
by the Lebesgue theorem, its components F

A

, F

D

, and F

S

are also nondecreasing (increasing) functions.
The integral on the right-hand side of (1) is understood in the Lebesgue–Stieltjes sense.
The functions F0 and F1 defined on the set (0,+1)⇥ (−1,+1) are measurable and satisfy the criticality

condition (see [4])

F0(t, 0) ⌘ 0, F1(x, 0) ⌘ 0, t, x 2 (0,+1) (3)

[i.e., the function identically equal to zero satisfies Eq. (1)].
In the case where F = F

A

, F0(t, z) = z, and F1(x, z) = g(x) 2 L1(0,+1), Eq. (1) turns into the integral
Wiener–Hopf equation of the second kind

'(x) = g(x) +

1Z

0

K(x− t)'(t)dt, x ≥ 0, (4)

where K(x) = F

0
A

(x). Numerous works are devoted to the investigation of Eq. (4) (see, e.g., [5–9] and the
references therein). Due to their specific features, various mathematical theories developed for the investigation of
equations of the form (4) combine fine analytic constructions with efficient approximate methods. We also note
that Eq. (4) is used in various branches of mathematical physics (see, e.g., [10–12]).

In a special case where F1 ⌘ 0 and F0(t, z) = z, Eq. (1) was investigated in detail in [13] in connection with
its important application to the well-known problem of the probability theory: For a given random variable ⇠, it is
necessary to find an independently distributed random variable ⇣ such that the following relation is true:

⇣ v (⇠ + ⇣)+ =

8
><

>:

⇠ + ⇣ for ⇠ + ⇣ ≥ 0,

0 for ⇠ + ⇣ < 0.

(5)

The equivalence of these random variables is understood in a sense of coincidence of their distribution functions.
Relation (5) is reduced to the following special case of Eq. (1):

'(x) = −
1Z

0

'(t)d

t

F (x− t), x ≥ 0,

where F plays the role of distribution function of the random variable ⇠ and ' is the required distribution function
of ⇣.

In the case where F1 ⌘ 0, F0(t, z) = G(z), and G is a continuous function on a certain segment [0, ⌘] such
that G(z) ≥ z, z 2 [0, ⌘], G(⌘) = ⌘, and G " on [0, ⌘], Eq. (1) was investigated in [14] and the existence of
a positive monotonically nondecreasing and bounded solution '(x) was proved. Moreover, the following limit
relation was established:

lim

x!+1
'(x) = ⌘.

In a recent paper of one of the authors (see [15]), Eq. (1) has been studied in a special case where

F1 ⌘ 0, F0(t, z) = z − !(t, z), and F = F

A

;



122 KH. A. KHACHATRYAN AND A. S. PETROSYAN

here, ! is a monotonically decreasing (starting from a certain number δ > 0) function of z satisfying the Kras-
nosel’skii–Hankel condition: There exists a measurable function

◦
!

:

◦
! 2 L1(R+

) \ C0(R+
),

◦
! # with z on [δ,+1), m1(

◦
!

) ⌘
1Z

0

x

◦
!

(x)dx < +1,

such that

0  !(t, z)  ◦
!

(t+ z), (t, z) 2 R+ ⇥ [δ,+1).

Another approach proposed in [15] enables one to construct a one-parameter family of positive and bounded
solutions and also to find the limit of each solution from this family at infinity.

The present paper is devoted to the investigation of Eq. (1) and its special cases in which the function F is
continuous and has a singular component:

F ⌘ F

C

= F

A

+ F

S

.

In the last case where F1 ⌘ 0, we construct a one-parameter family of positive and bounded solutions of Eq. (1)
under certain conditions imposed on the function F0(t, z). In the general case (2), under absolutely different
conditions imposed on F0 and F1, we prove the existence of positive and integrable solutions. In conclusion,
we present several examples of the functions F

j

(t, z), j = 0, 1.

2. Definitions and Auxiliary Facts

Let E be one of the following Banach spaces: C[0,+1), C

l

[0,+1), or V
c

[0,+1), where C

l

[0,+1) is
a Banach space of functions continuous on [0,+1) with finite limit at 1 and the norm

kfk = sup

x≥0
|f(x)|

and V

c

[0,+1) is a Banach space of continuous functions of bounded variation on [0,+1) with the norm

kfk = |f(a)|+
b_

a

f (6)

[uniform convergence follows from the convergence in norm (6)].
Consider an integral operator

(

ˆ

Ff)(x) = −
1Z

0

f(t)d

t

F (x− t), x ≥ 0,

where F satisfies conditions (a)–(c) (see Sec. 1) and f 2 E.

It is known that the operator ˆ

F acts in each Banach space E. Moreover, for F ⌘ F

C

= F

A

+F

S

, the operator
I − ˆ

F admits the following factorization (see [13]):

I − ˆ

F = (I − ˆ

U

−
)(I − ˆ

U

+
), (7)
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where I is the identity operator, ˆ

U

± are Volterra operators:

(

ˆ

U

−
f)(x) =

1Z

x

f(t)d

t

u−(t− x) and (

ˆ

U

+
f)(x) = −

xZ

0

f(t)d

t

u+(x− t),

f belongs to E,

u±(x) = w±(0)− w±(x), (8)

w± 2 V

c

[0,+1), w± # with x, lim

x!+1
w±(x) = 0,

and, in addition,

(1− w−(0))(1− w+(0)) = 0.

By

m(F ) =

+1Z

−1

xdF (x), (9)

we denote the first moment of the function F (i.e., the mathematical expectation of a random variable ⇠ ). In what
follows, unless otherwise specified, we assume that integral (9) is absolutely convergent in the Lebesgue–Stieltjes
sense and

m(F ) < 0. (10)

Under condition (10), it follows from the results obtained in [13] that

w+(0) < 1 and w−(0) = 1. (11)

In [13], by using conditions (a)–(c), inequality (10), and factorization (7), it is proved that, for F ⌘ F

C

=

F

A

+ F

S

, the equation

S(x) = −
1Z

0

S(t)d

t

F (x− t), x ≥ 0, (12)

with condition

S(0) = 1

possesses a positive monotonically nondecreasing and bounded solution and, in addition,,

1 = S(0)  S(x)  (1− w+(0))
−1

, x ≥ 0, (13)

lim

x!+1
S(x) = (1− w+(0))

−1
,

1

1− w+(0)
− S 2 L1(R+

). (14)
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We now consider the corresponding inhomogeneous equation

⇢(x) = g(x)−
1Z

0

⇢(t)d

t

F (x− t), x ≥ 0, (15)

for the required measurable function ⇢(x), where g(x) ≥ 0, x 2 R+
, and g 2 L1(R+

). By using factorization (7),
we reduce the solution of Eq. (15) to the consecutive solution of the following coupled equations:

(I − U

−
)Q = g, (16)

(I − U

+
)⇢ = Q. (17)

We now rewrite Eq. (16) in the open form as follows:

Q(x) = g(x) +

1Z

x

Q(t)du−(t− x), x ≥ 0. (18)

In [14], it is shown that Eq. (18) has a nonnegative locally integrable solution with the asymptotics

xZ

0

Q(t)dt = o(x), x ! +1,

obtained as the limit of the following successive approximations:

Q

(n+1)
(x) = g(x) +

1Z

x

Q

(n)
(t)du−(t− x), Q

(0)
(x) = g(x), n = 0, 1, 2, . . . , x ≥ 0. (19)

The following inequality for the solution Q was also established in [14]: For any r > 0, the following inequality
is true:

r+1Z

r

Q(⌧)d⌧ 

0

@
1Z

1

du−(⌧)

1

A
−1 1Z

r

g(⌧)d⌧. (20)

In what follows, under additional conditions imposed on the function g, we establish new properties of the func-
tion Q, namely, we prove the following lemma important for our subsequent presentation:

Lemma 1 (main). Assume that a function g has the following properties:

0  g 2 L1(R+
) \ L1(R+

), g(x) # with x on R+
, and m1(g) ⌘

1Z

0

xg(x)dx < +1.

Also let u− be defined by (8) and (11), where L1(R+
) is a space of functions almost everywhere bounded on R+

.

Then the solution Q(x) of Eq. (18) has the following properties:
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(i) Q(x) # with x on R+
,

(ii) Q 2 L

0
1(R+

) \ L1(R+
), where L

0
1(R+

) is a space of functions almost everywhere bounded on R+

whose limit at infinity is equal to zero.

Proof. First, we show that Q(n)
(⌧) # with ⌧ on R+

, n = 0, 1, 2, . . . . For n = 0, this is clear because g(x) #
with x on R+

. Let Q(n)
(⌧) # with ⌧ for some n 2 N. Rewriting iterations (19) in the form

Q

(n+1)
(⌧) = g(⌧) +

1Z

0

Q

(n)
(⌧ + t)du−(t),

Q

(0)
(⌧) = g(⌧), n = 0, 1, 2, . . . , ⌧ ≥ 0,

(21)

and taking into account the monotonicity of the function g, we conclude from (21) that Q(n+1)
(⌧) # with ⌧

on R+
. Hence, the limit function

Q(⌧) = lim

n!1
Q

(n)
(⌧)

is also monotonically decreasing. In view of the monotonicity of Q, it follows from (20) that

0  Q(r + 1) 

0

@
1Z

1

du−(⌧)

1

A
−1 1Z

r

g(t)dt −!
r!+1

0.

In turn, this implies that Q is bounded on the set [1,+1) and lim

⌧!+1Q(⌧) = 0.

We now prove that Q belongs to L

0
1(R+

). In view of (18), we get

Q(x) = g(x) +

1Z

x

Q(t)d

t

u−(t− x) +

1Z

1

Q(t)d

t

u−(t− x)

 sup

x2R+

g(x) +Q(x)

1Z

x

d

t

u−(t− x) + sup

t≥1
Q(t)

1Z

1

du−(t− x)

 sup

x2R+

g(x) +Q(x)u−(1− x) + sup

t≥1
Q(t)

 sup

x2R+

g(x) + sup

t≥1
Q(t) +Q(x)u−(1) for x 2 [0, 1]. (22)

Note that u−(1) < 1 because u−(0) = 0, u−(+1) = 1, and u−(x) is a strictly increasing function
from V

c

[0,+1) (see [13, 14]). Hence, by using (22), we get

Q(x)  C(1− u−(1))
−1

,
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where

C ⌘ sup

x2R+

g(x) + sup

t≥1
Q(t).

Thus, we have proved that Q belongs to L

0
1(R+

). To complete the proof, it remains to show that Q belongs
to L1(R+

).

Integrating both sides of (20) with respect to r from zero to a certain number δ > 0, we obtain

δZ

0

r+1Z

r

Q(⌧)d⌧dr 

0

@
1Z

1

du−(⌧)

1

A
−1

δZ

0

1Z

r

g(⌧)d⌧dr

=

0

@
1Z

1

du−(⌧)

1

A
−10

@
δZ

0

δZ

r

g(⌧)d⌧dr +

δZ

0

1Z

δ

g(⌧)d⌧dr

1

A
.

Changing the order of integration in the last two terms and using the Fubini theorem, we get

δZ

0

r+1Z

r

Q(⌧)d⌧dr 

0

@
1Z

1

du−(⌧)

1

A
−10

@
δZ

0

⌧g(⌧)d⌧ + δ

1Z

δ

g(⌧)d⌧

1

A



0

@
1Z

1

du−(⌧)

1

A
−1 1Z

0

⌧g(⌧)d⌧ 

0

@
1Z

1

du−(⌧)

1

A
−1

m1(g) < +1.

In view of the monotonicity of Q, we find

δZ

0

Q(r + 1)dr 

0

@
1Z

1

du−(⌧)

1

A
−1

m1(g) < +1

or

δ+1Z

1

Q(z)dz 

0

@
1Z

1

du−(⌧)

1

A
−1

m1(g).

Let δ tend to +1. This yields

1Z

1

Q(z)dz 

0

@
1Z

1

du−(⌧)

1

A
−1

m1(g). (23)

On the other hand, setting r = 0 in (20), we obtain

1Z

0

Q(z)dz 

0

@
1Z

1

du−(⌧)

1

A
−1 1Z

0

g(⌧)d⌧. (24)
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Finding the sum of (23) and (24), we arrive at the inequality

1Z

0

Q(z)dz 

0

@
1Z

1

du−(⌧)

1

A
−1 1Z

0

(⌧ + 1)g(⌧)d⌧.

Thus, the proof of the lemma is completed.

We now proceed to the solution of Eq. (17):

⇢(x) = Q(x)−
xZ

0

⇢(t)d

t

u+(x− t), x ≥ 0. (25)

Consider the iterations

⇢

n+1(x) = Q(x)−
xZ

0

⇢

n

(t)d

t

u+(x− t),

⇢0 ⌘ 0, n = 0, 1, 2, . . . , x ≥ 0.

In view of the inequality w+(0) < 1 and representation (8), by induction on n, we can easily show that

(a) ⇢

n

" with n,

(b) ⇢

n

2 L1(R+
), n = 0, 1, 2, . . . ,

(c) ⇢

n

(⌧)  (1− w+(0))
−1

sup

⌧≥0Q(⌧), ⌧ ≥ 0,

(d)
Z 1

0
⇢

n

(⌧)d⌧  (1− w+(0))
−1

Z 1

0
Q(⌧)d⌧, n = 0, 1, 2, . . . .

Hence, the sequence of functions {⇢
n

(⌧)}1
n=0 has the pointwise limit as n ! +1 :

lim

n!1
⇢

n

(⌧) = ⇢(⌧).

Moreover, by the B. Levi theorem (see [16]), the limit function satisfies Eq. (25) and the inequalities

⇢(⌧) ≥ Q(⌧), ⌧ ≥ 0,

⇢(⌧)  (1− w+(0))
−1

sup

⌧≥0
Q(⌧) ⌘ C0,

(26)

1Z

0

⇢(⌧)d⌧  (1− w+(0))
−1

1Z

0

Q(⌧)d⌧  (1− w+(0))
−1

0

@
1Z

1

du−(⌧)

1

A
−1 1Z

0

(x+ 1)g(x)dx. (27)
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Since g(x) # 0 as x ! +1 and w+(0) < 1, by Lemma 3.3 in [13], we immediately conclude that

lim

x!+1
⇢(x) = 0. (28)

Relations (26)–(28) are used in what follows.

3. Solvability of Eq. (1) with Distribution Function F Containing Singular and Discrete Components

In this section, we consider Eq. (1) in the case where F admits representation (2).
Assume that a measurable function G(x) defined on the set R satisfies the following conditions:

(i) there exists a positive number ⌘ > 0 such that G 2 C[0, ⌘], G " [0, ⌘],

(ii) G(0)=0 and G(⌘)=⌘; moreover, the number ⌘>0 is the first positive root of the equation G(x)=x,

(iii) the function G(x) satisfies the Lipschitz condition on the segment [0, ⌘] with constant L > 0, i.e.,
there exists a number L > 0 such that

|G(x1)−G(x2)|  L|x1 − x2|, x1, x2 2 [0, ⌘].

The following theorem is true:

Theorem 1. Let the distribution function F satisfy conditions (a)–(c), let 1 − F 2 L1(R+
), and let there

exist numbers ⌘0 2 (0, ⌘) and ↵ 2 (0,min (1, 1/L)) such that:

(i) F1(x, µ⌘0(x)) ≥ µ

⌘0(x), F1(x, ⌘)  µ

⌘

(x), (29)

where

µ

δ

(x) ⌘ δ(1− F (x)), x 2 R+
; (30)

(ii) for any fixed x 2 R+
, the functions F0(x, z) and F1(x, z), monotonically increase with the argument z

on the segment [0, ⌘];

(iii)
0  F0(x, z)  ↵G(z), x 2 R+

, z 2 [0, ⌘]; (31)

(iv) in the set R+ ⇥ [0, ⌘], the functions F0 and F1 satisfy the Carathéodory condition with respect to the
argument z, i.e., for any fixed z 2 [0, ⌘], the functions {F

j

(x, z)}
j=0,1 are measurable with respect to

x 2 R+ and continuous in z on the segment [0, ⌘] for almost all x 2 R+
.

Then Eq. (1) has a nonzero nonnegative solution in the space L1(R+
) \ L

0
1(R+

), where

L

0
1(R+

) =

�
f 2 L1(R+

) : lim

x!1
f(x) = 0

 
.
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Proof. Parallel with Eq. (1), we consider the following auxiliary equation:

'̃(x) = −
1Z

0

G

↵

('̃(t))d

t

F (x− t), x ≥ 0, (32)

for the required measurable and real function '̃(x), where

G

↵

(z) = ⌘ − ↵G(⌘ − z). (33)

We introduce the following iterations:

'̃

n+1(x) = −
1Z

0

G

↵

('̃

n

(t))d

t

F (x− t),

'̃0(x) ⌘ 0, n = 0, 1, 2, . . . , x ≥ 0.

In view of the properties of the function G and conditions (a)–(c), by the induction on n, we can easily show
that

(j1) '̃

n

(x) " with n,

(j2) '̃

n

(x) 6⌘ 0, n = 1, 2, 3, . . . ,

(j3) '̃

n

(x) " with x, n = 0, 1, 2, . . . ,

(j4) '̃

n

(x)  ⌘, n = 0, 1, 2, . . . , x 2 R+
.

Hence, the sequence of functions {'̃
n

(x)}1
n=0 has a pointwise limit as n ! 1 :

'̃(x) = lim

n!1
'̃

n

(x).

Moreover, by the B. Levi theorem, the limit function satisfies Eq. (32), is monotonically increasing, and satisfies
the inequalities

⌘(1− ↵)

x_

−1
F  '̃(x)  ⌘

for all x 2 R+
. In what follows, we show that

⌘ − '̃ 2 L1(R+
) \ L

0
1(R+

).

To this end, we consider an auxiliary equation

⇢̃(x) = ⌘(1− F (x))−
1Z

0

(⌘ −G

↵

(⌘ − ⇢̃(t)))d

t

F (x− t), x ≥ 0 (34)
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for the required function ⇢̃(x) and the following successive approximations for this equation:

⇢

n+1(x) = ⌘(1− F (x))−
1Z

0

�
⌘ −G

↵

(⌘ − ⇢̃

n

(t))

�
d

t

F (x− t),

⇢̃0(x) = ⌘(1− F (x)), n = 0, 1, 2, . . . , x ≥ 0.

(35)

By induction, we can easily show that

(i1) ⇢̃

n

(x) " with n;

(i2) ⇢̃

n

(x) 2 L1(R+
), n = 0, 1, 2, . . . ;

(i3)
Z 1

0
⇢

n

(x)dx  ⌘(1− ↵L)

−1k1− Fk
L1(R+), n = 0, 1, 2, . . . ;

(i4) ⇢̃

n

(x)  ⌘, n = 0, 1, 2, . . . , x ≥ 0.

Thus, we prove property (i3). The proofs of the remaining properties of the sequence {⇢̃
n

(⌧)}1
n=0 are simpler.

For n = 0, the property (i3) directly follows from (35) in view of the fact that ↵ 2 (0,min (1, 1/L)). Assume
that (i3) holds for a certain natural n. Thus, in view of the conditions imposed on F and G, it follows from
relations (35) that

1Z

0

⇢̃

n+1(x)dx = ⌘

1Z

0

(1− F (x))dx−
1Z

0

1Z

0

(⌘ −G

↵

(⌘ − ⇢̃

n

(t)))d

t

F (x− t)dx

 ⌘k1− Fk
L1(R+) − ↵L

1Z

0

1Z

0

⇢̃

n

(t)d

t

F (x− t)dx

= ⌘k1− Fk
L1(R+) + ↵L

1Z

0

xZ

−1

⇢̃

n

(x− t)d

t

F (t)dx

= ⌘k1− Fk
L1(R+) + ↵L

1Z

0

0Z

−1

⇢̃

n

(x− t)d

t

F (t)dx+ ↵L

1Z

0

xZ

0

⇢̃

n

(x− t)d

t

F (t)dx

= ⌘k1− Fk
L1(R+) + ↵L

0Z

−1

1Z

0

⇢̃

n

(x− t)dxd

t

F (t) + ↵L

1Z

0

+1Z

t

⇢̃

n

(x− t)dxd

t

F (t)

= ⌘k1− Fk
L1(R+) + ↵L

0Z

−1

+1Z

−t

⇢̃

n

(y)dyd

t

F (t) + ↵L

1Z

0

1Z

0

⇢̃

n

(y)dyd

t

F (t)
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 ⌘k1− Fk
L1(R+) + ↵L

1Z

0

⇢̃

n

(y)dy

+1Z

−1

d

t

F (t)

 ⌘k1− Fk
L1(R+)

✓
1 +

↵L

1− ↵L

◆

= ⌘(1− ↵L)

−1k1− Fk
L1(R+).

Hence, the sequence of functions {⇢̃
n

(⌧)}1
n=0 has a pointwise limit as n ! 1 :

⇢̃(⌧) = lim

n!1
⇢̃

n

(⌧)

Moreover, by the Lebesgue theorem, this limit satisfies Eq. (34) and the relations

⌘(1− F (x))  ⇢̃(x)  ⌘, x 2 R+
,

1Z

0

⇢̃(x)dx  ⌘(1− ↵L)

−1k1− Fk
L1(R+).

By using the conditions imposed on the function G and the fact that ↵ 2 (0,min (1, 1/L)), we can easily show
that the solution of Eq. (34) is unique in the following class of measurable functions:

⌦

⌘

⌘ {' : 0  '(x)  ⌘, x 2 R+}.

On the other hand, we can directly show that the function

⇢̃

⇤
(x) ⌘ ⌘ − '̃(x) 2 ⌦

⌘

satisfies Eq. (34). This means that

⇢̃

⇤
(x) 2 L1(R+

).

We now prove that

lim

x!+1
⇢̃

⇤
(x) = 0.

Since 0  '̃(x)  ⌘, x 2 R+
, and '̃(x) " with x on R+

, there exists a limit

lim

x!+1
'̃(x) = c0  ⌘.

We now prove that c0 = ⌘. To this end, we first show that

lim

x!+1

0

@−
1Z

0

G

↵

('̃(t))d

t

F (x− t)

1

A
= G

↵

(c0). (36)
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We find
������
G

↵

(c0) +

1Z

0

G

↵

('̃(t))d

t

F (x− t)

������
 G

↵

(c0)(1− F (x)) +

1Z

0

|G
↵

(c0)−G

↵

('̃(t))||d
t

F (x− t)|

= I1(x) + I2(x).

It is clear that I1(x) ! 0 as x ! +1. It is necessary to prove that I2(x) ! 0 as x ! +1. By using
relation (33), we obtain

I2(x)  ↵L

1Z

0

|c0 − '̃(t)||d
t

F (x− t)|

= ↵L

0

@
xZ

0

|c0 − '̃(t)||d
t

F (x− t)|+
1Z

x

|c0 − '̃(t)||d
t

F (x− t)|

1

A

= ↵L(J1(x) + J2(x)).

Since '̃(t) ! c0 as t ! +1, for any " > 0, there exists δ > 0 such that if t > δ, then

|'̃(t)− c0| < ".

Let x > 2δ. Then we get the following relation for the second integral J2(x) :

J2(x)  "

1Z

x

|d
t

F (x− t)|  ".

Moreover, after necessary transformations for the first integral J1(x), we obtain

J1(x) =

x/2Z

0

|c0 − '̃(t)||d
t

F (x− t)|+
xZ

x/2

|c0 − '̃(t)||d
t

F (x− t)|

 2c0

xZ

x/2

|d
t

F (⌧)|+ "

xZ

x/2

|d
t

F (x− t)|

 2c0

xZ

x/2

|d
t

F (⌧)|+ ".

Since
xZ

x/2

|d
t

F (t)| ! 0 as x ! +1,
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for any " > 0, there exists δ1 > 0 such that
xZ

x/2

|d
t

F (t)| < "

for x > δ1.

Choosing x > max(2δ, δ1), we obtain

J1(x)  "(1 + 2c0).

Hence, for x > max(2δ, δ1),

I2(x)  ↵L(2"+ 2"c0).

Thus, relation (36) is proved.
Passing to the limit on both sides of Eq. (32) as x ! +1, we obtain

c0 = G

↵

(c0), 0 < c0  ⌘.

We now check that ⌘ is the first positive root of the equation G

↵

(x) = x. Assume the contrary, i.e., that there
exists a number ⌘1 2 (0, ⌘) such that

G

↵

(⌘1) = ⌘1, i.e., ⌘ − ↵G(⌘ − ⌘1) = ⌘1.

Then we get

⌘ − ⌘1 = G

↵

(⌘)−G

↵

(⌘1)  ↵L(⌘ − ⌘1).

This directly implies that ⌘  ⌘1 because ↵L < 1. In turn, this contradiction proves that c0 = ⌘.

Thus, we have shown that Eq. (32) possesses a nonzero nonnegative monotonically increasing and bounded
solution '̃(x) and, in addition,

lim

x!+1 '̃(x) = ⌘ and ⌘ − '̃ 2 L1(R+
).

We use these results to construct a positive solution of Eq. (1) in the space L1(R+
) \ L

0
1(R+

). Thus, we
introduce the following iterations:

'

n+1(x) = −
1Z

0

F0(t,'n

(t))d

t

F (x− t) + F1(x,'n

(x)),

'0(x) = µ

⌘0(x), n = 0, 1, 2, . . . , x ≥ 0.

(37)

By induction, we can easily show that

'

n

(x) " with n, (38)

'

n

(x)  ⌘ − '̃(x), n = 0, 1, 2, . . . , (39)
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We now prove inequalities (39). Let n = 0. Then

'0(x) = µ

⌘0(x)  µ

⌘

(x) = ⌘(1− F (x))

 ⌘(1− F (x)) +

0

@−
1Z

0

(⌘ −G

↵

(⌘ − ⇢̃

⇤
(t)))d

t

F (x− t)

1

A

= ⇢̃

⇤
(x) ⌘ ⌘ − '̃(x).

Assume that inequalities (39) are true for some n 2 N. By using (37) and (29)–(31), we find

'

n+1(x)  −
1Z

0

F0(t, ⌘ − '̃(t))d

t

F (x− t) + F1(x, ⌘ − '̃(x))

 −
1Z

0

F0(t, ⌘ − '̃(t))d

t

F (x− t) + F1(x, ⌘)

 −
1Z

0

(⌘ −G

↵

('̃(t)))d

t

F (x− t) + µ

⌘

(x)

= ⌘F (x) +

1Z

0

G

↵

('̃(t))d

t

F (x− t) + µ

⌘

(x)

= ⌘ − '̃(x).

In view of the conditions (i) and (ii) of Theorem 1, we can prove the monotonicity of the sequence {'
n

(x)}1
n=0

with respect to n. Hence, the sequence of functions {'
n

(x)}1
n=0 has a pointwise limit as n ! 1 :

'(x) = lim

n!1
'

n

(x).

Furthermore, '(x) satisfies Eq. (1). In view of the B. Levi theorem, this follows from the condition (iv) of Theo-
rem 1. By using (39), we get

µ

⌘0(x)  '(x)  ⌘ − '̃(x), x 2 R+
. (40)

Since µ

⌘0(x) ≥ 0, x 2 R+
, and

⌘ − '̃ 2 L1(R+
) \ L

0
1(R+

),

in view of (40), we conclude that ' 2 L1(R+
) \ L

0
1(R+

).

The theorem is proved.
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In what follows, we give several examples of the functions F0 and F1 satisfying all conditions of Theorem 1.

Examples of the Function F0(x, z):

(10 ) F0(x, z) = ↵

p

q0(x, z)
Q

p

(z)

⌘

p−1
, x 2 R+

, z 2 [0, ⌘],

where q0(x, z) is a real function defined on R+ ⇥ R and satisfying the following conditions:

(A) 0  q0(x, z)  1, x 2 R+
, z 2 [0, ⌘],

(B) q0 " with z on the segment [0, ⌘] for any fixed x 2 R+
,

(C) q0(x, z) satisfies the Carathéodory condition with respect to the argument z on the set R+⇥[0, ⌘].

(20 ) F(x, z) = q0(x, z) ln(↵Q(z) + 1), x 2 R+
, z 2 [0, ⌘].

The following functions serve as examples of the functions q0(x, z) and Q(z) :

q0(x, z) = e

−γx

(1− e

−βz

), γ, β > 0,

Q(z) =

z

p

⌘

p−1
, p > 1, z 2 [0, ⌘].

Examples of the Function F1(x, z):

(30 ) F1(x, z) = µ

⌘0+⌘1(x)
z

z + µ

⌘1(x)

, where x 2 R+
, z 2 [0, ⌘], ⌘0, ⌘1 > 0, and ⌘ ≥ ⌘0 + ⌘1,

(40 ) F1(x, z) = µ

⌘0+⌘1(x)
λz

2

(z + µ

⌘1(x))
2
, where x 2 R+

, z 2 [0, ⌘], λ ≥ 1 +

⌘1

⌘0
, ⌘ ≥ λ(⌘0 + ⌘1), and

⌘0, ⌘1 > 0.

4. One-Parameter Family of Positive and Bounded Solutions for Eq. (1) in the Case Where F1 ⌘ 0 and
F ⌘ FC = FA + FS

In the present section, we construct a one-parameter family of positive and bounded solutions of Eq. (1) in
a special case where F1(x, z) ⌘ 0 and the distribution function F satisfies the conditions (a)–(c) and has only
absolutely continuous and singular components, i.e., admits the representation

F ⌘ F

C

= F

A

+ F

S

.

We essentially use the main lemma from Sec. 2 in the proof of the following theorem:

Theorem 2. Let F1(x, z) ⌘ 0 and let the function F satisfy conditions (10) and (a)–(c). Furthermore, let
F ⌘ F

C

= F

A

+ F

S

. Assume that F0(t, z) has the following structure:

F0(t, z) = z − !(t, z),

where !(t, z) is a measurable real function defined on the set R+ ⇥ R and satisfying the following conditions:
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(γ1) there exists a number A > 0 such that, for any fixed t 2 R+
, the function !(t, z) # with z on the set

[A,+1);

(γ2) there exists a measurable function
◦
!

(z) defined on R with the following properties:

0  ◦
!

(z) # on [A,+1),

◦
! 2 L1(R+

) \ C0(R+
), and m1(

◦
!

) ⌘
1Z

0

x

◦
!

(x)dx < +1;

furthermore,

0  !(t, z)  ◦
!

(t+ z), t 2 R+
, z 2 [A,+1); (41)

(γ3) the function ! satisfies the Carathéodory condition with respect to the argument z on the set

R+ ⇥ [A,+1).

Then Eq. (1) has a one-parameter family of positive and bounded solutions {'
β

(x)}
β2∆ and, moreover, each

function from this family has the following properties:

lim

x!1
'

β

(x) = 2β(1− w+(0))
−1

, β 2 ∆,

if β1,β2 2 ∆, β1 > β2, then

'

β1(x)− '

β2(x) ≥ 2(β1 − β2), x 2 R+
.

Here,

∆ = [max({,β0),+1),

where β0 (β0 ≥ A) is a certain fixed number for which

◦
!

(β0) < β0 and { = sup

x≥0Q(x),

Q(x) is a positive and bounded solution of the inhomogeneous integral equation

Q(x) = 2

◦
!

(x+A)−
1Z

0

Q(t)d

t

F (x− t), x ≥ 0. (42)

Remark 1. The existence of a positive and bounded solution of Eq. (42) is not assumed and follows from
the main lemma proved in Sec. 2. The existence of the number β0 ≥ A directly follows from the properties of the
function

◦
!

.

We split the proof into several steps.
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Step 1 (investigation of a single auxiliary linear integral equation). Parallel with Eq. (1), we consider an
auxiliary equation

˜

Q(x) = 2

◦
!

(x+ S

β

(x))− λ

β

(x)

1Z

0

˜

Q(t)d

t

F (x− t), x ≥ 0, (43)

for the required measurable function ˜

Q(x), where

S

β

(x) = βS(x), β 2 ∆,

λ

β

(x) = 1−
◦
!

(x+ S

β

(x))

S

β

(x)

,

(44)

and S(x) is a solution of Eq. (12) with properties (13) and (14).
We introduce the following iterations:

˜

Q

n+1(x) = 2

◦
!

(x+ S

β

(x))− λ

β

(x)

1Z

0

˜

Q

n

(t)d

t

F (x− t),

˜

Q0(x) = 2

◦
!

(x+ S

β

(x)), n = 0, 1, 2, . . . , x ≥ 0.

(45)

By the induction on n, we can prove that

(✓1)
˜

Q

n

(x) " with n,

(✓2)
˜

Q

n

(x)  Q(x), n = 0, 1, 2, . . . , x ≥ 0.

Indeed, we prove, e.g., (✓2). Since S

β

(x) ≥ β ≥ β0 ≥ A, in view of the monotonicity of
◦
! on [A,+1),

we get

◦
!

(x+ S

β

(x))  ◦
!

(x+A),

which implies that

Q0(x) = 2

◦
!

(x+ S

β

(x))  2

◦
!

(x+A)  Q(x).

We assume that (✓2) is true for some n 2 N, we prove this assertion for n + 1. We first note that the
function λ

β

(x) has the following properties:

there exists a number δ = δ

β

> 0 such that

0 < δ  λ

β

(x)  1, x 2 R+
, (46)

1− λ

β

2 L1(R+
), β 2 ∆, (47)

lim

x!1
λ

β

(x) = 1 for any β 2 ∆. (48)
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Indeed, as δ > 0, we choose a number

δ = (β0 −
◦
!

(β0))
(1− w+(0))

β

> 0

and take into account the monotonicity of the function
◦
!

. This yields (46). Properties (47) and (48) directly follow
from the inclusion

◦
! 2 L1(R+

) \ C0(R+
).

By using (45), (46), and the inequality

Q0(x) 
◦
!

(x+A),

we arrive at the following formula:

˜

Q

n+1(x)  2

◦
!

(x+A)−
1Z

0

˜

Q

n

(t)d

t

F (x− t)  2

◦
!

(x+A)−
1Z

0

Q(t)d

t

F (x− t) = Q(x).

The proof of monotonicity of the sequence
�
˜

Q

n

 1
0

is simpler. Then the sequence of functions
�
˜

Q

n

 1
n=0

has
a pointwise limit as n ! 1 :

lim

n!1
˜

Q

n

(x) =

˜

Q

β

(x).

Furthermore, the limit function satisfies Eq. (43) and the inequalities

2

◦
!

(x+ S

β

(x))  ˜

Q

β

(x)  Q(x).

We now show that, for any β 2 ∆, the inequality

S

β

(x) ≥ ˜

Q

β

(x), x 2 R+
, (49)

is true. Indeed, it follows from the definition of the set ∆ that

S

β

(x) ≥ β ≥ { ≥ Q(x) ≥ ˜

Q

β

(x), x 2 R+
. (50)

Step 2 (construction of a nontrivial solution of the corresponding homogeneous equation; a priori esti-

mates). We now consider the homogeneous equation corresponding to (43):

E

β

(x) = −λ

β

(x)

1Z

0

E

β

(t)d

t

F (x− t), x ≥ 0, (51)

for the required measurable function E

β

(x), β 2 ∆. We can directly show that the function

˜

E

β

(x) ⌘ 2S

β

(x)− ˜

Q

β

(x)
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satisfies Eq. (51). Since S

β

(x) ≥ ˜

Q

β

(x) [see (49) and (50)], we find

˜

E

β

(x) ≥ S

β

(x), x 2 R+
, β 2 ∆.

For Eq. (51), we consider the following iterations:

E

(n+1)
β

(x) = −λ

β

(x)

1Z

0

E

(n)
β

(t)d

t

F (x− t), x ≥ 0,

E

(0)
β

(x) = 2S

β

(x), n = 0, 1, 2, . . . .

By the induction on n, we can easily show that the following results are true:

E

(n)
β

(x) # with n, β 2 ∆, x 2 R+
,

E

(n)
β

(x)  2λ

β

(x)S

β

(x), n = 1, 2, 3, . . . , x ≥ 0,

E

(n)
β

(x) ≥ ˜

E

β

(x), n = 0, 1, 2, . . . .

Hence, the sequence of functions
�
E

(n)
β

(x)

 1
n=0

has a pointwise limit as n ! 1 :

lim

n!1
E

(n)
β

(x) = E

β

(x)

and, moreover, this limit satisfies Eq. (51) and the chain of inequalities

2λ

β

(x)S

β

(x) ≥ E

β

(x) ≥ ˜

E

β

(x) ≥ S

β

(x), x 2 R+
. (52)

We now consider the “main” auxiliary homogeneous equation

P

β

(x) = −
1Z

0

λ

β

(t)P

β

(t)d

t

F (x− t), x ≥ 0, (53)

for the required function P

β

(x), β 2 ∆.

By virtue of (51) and (52), the function

P

β

(x) =

E

β

(x)

λ

β

(x)

satisfies Eq. (53) and the inequalities

S

β

(x)  ˜

E

β

(x)  E

β

(x)  P

β

(x)  2S

β

(x), x ≥ 0, β 2 ∆. (54)

In the last step, by using the properties of the constructed solution P

β

(x) and a specially chosen iterative pro-
cess, we prove the existence of a one-parameter family of positive solutions for Eq. (1) in the case where F1 ⌘ 0.
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Step 3 [special iterative process for the solution of Eq. (1)]. We now consider the following successive
iterations:

'

β

n+1(x) = −
1Z

0

('

β

n

(t)− !(t,'

β

n

(t)))d

t

F (x− t),

'

β

0 (x) = 2S

β

(x), n = 0, 1, 2, . . . , x ≥ 0.

(55)

By the induction on n, we can easily show that

'

β

n

(x) # with n. (56)

'

β

n

(x) ≥ P

β

(x), n = 0, 1, 2, . . . , (57)

If β1, β2 2 ∆, β1 > β2, are arbitrary numbers, then

'

β1
n

(x)− '

β2
n

(x) ≥ 2(S

β1(x)− S

β2(x)) ≥ 2(β1 − β2), n = 0, 1, 2, . . . , x ≥ 0. (58)

We prove, e.g., inequality (57). The proof of the other properties of the sequence
�
'

β

n

(x)

 1
n=0

is simpler.
For n = 0, inequality (57) directly follows from the chain of inequalities (54). Let (57) be true for some n 2 N.
Then, by virtue of (41), (44), and (54), it follows from (55) that

'

β

n+1(x) ≥ −
1Z

0

(P

β

(t)− !(t, P

β

(t)))d

t

F (x− t)

≥ −
1Z

0

(P

β

(t)− !(t, S

β

(t)))d

t

F (x− t)

≥ −
1Z

0

(P

β

(t)− !(t+ S

β

(t)))d

t

F (x− t)

= −
1Z

0

(P

β

(t)− (1− λ

β

(t))S

β

(t))d

t

F (x− t)

≥ −
1Z

0

λ

β

(t)P

β

(t)d

t

F (x− t) = P

β

(x).

Thus, it follows from (56), (57), and (58) that the sequence of functions
�
'

β

n

(x)

 1
n=0

has a pointwise limit
as n ! 1 :

lim

n!1
'

β

n

(x) = '

β

(x).
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Furthermore, by the limit B. Levi theorem, the limit function satisfies Eq. (1) and the relations

˜

E

β

(x)  P

β

(x)  '

β

(x)  2S

β

(x), x 2 R+
, (59)

'

β1(x)− '

β2(x) ≥ 2(S

β1(x)− S

β2(x)) ≥ 2(β1 − β2), x 2 R+
. (60)

It directly follows from (60) that '
β

(x) " with β on ∆.

Since

˜

E

β

(x) = 2S

β

(x)− ˜

Q

β

(x) and 0  ˜

Q

β

(x)  Q(x),

we conclude that lim
x!1Q(x) = 0 (see the main lemma in Sec. 2) and

lim

x!1
S

β

(x) = β(1− w+(0))
−1

.

Finally, by using (59), we establish the existence of the finite limit

lim

x!1
'

β

(x) = 2β(1− w+(0))
−1

.

The theorem is proved.

Remark 2. In a special case where F = F

A

, this result was obtained in [15].

5. Construction of a Summable Solution of Eq. (1) with a Function F0(t, z) Whose Majorant Has the
Form z + !(t, ⇠)

The following theorem is true:

Theorem 3 (main). Assume that the distribution function F satisfies the conditions of Theorem 2 and that

1− F 2 L1(R+
).

Let F0(x, z) and F1(x, z) be given measurable and real functions defined on R+ ⇥ R. Suppose that there exist
numbers

⇠ ≥ 2max({,β0)
1− w+(0)

and ⇠0 2 (0, ⇠)

such that F0(x, z) and F1(x, z) satisfy the conditions:

(A) F1(x, µ
⇠0(x)) ≥ µ

⇠0(x) and F1(x, ⇠)  µ

⇠

(x), x 2 R+
;

(B) 0  F0(t, z)  z + !(t, ⇠), t 2 R+
, z 2 [0, ⇠], where ! satisfies the conditions of Theorem 2;

(C) for any fixed x 2 R+
, the functions {F

j

(x, z)}
j=0,1, monotonically increase with z on the segment [0, ⇠];
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(D) the functions {F
j

(x, z)}
j=0,1 satisfy the Carathéodory condition with respect to the argument z on the

set R+ ⇥ [0, ⇠].

Then Eq. (1) has a nonzero nonnegative solution in the space L1(R+
) \ L

0
1(R+

).

Proof. It follows from the definition of the set ∆ that

β

⇤
=

⇠(1− w+(0))

2

2 ∆.

Hence, by virtue of Theorem 2, we can state that the equation

'̃(x) = −
1Z

0

('̃(t)− !(t, '̃(t)))d

t

F (x− t), x ≥ 0,

has a positive and bounded solution '̃

β

⇤
(x) with the following properties:

lim

x!1
'̃

β

⇤
(x) = 2β

⇤
(1− w+(0))

−1
= ⇠ (61)

and

S

β

⇤
(x)  2S

β

⇤
(x)− ˜

Q

β

⇤
(x)  '̃

β

⇤
(x)  2S

β

⇤
(x). (62)

We now show that

⇠ − '̃

β

⇤
(x) 2 L1(R+

) \ L

0
1(R+

). (63)

The inclusion

⇠ − '̃

β

⇤ 2 L

0
1(R+

)

directly follows from (61) and (62). We prove that

⇠ − '̃

β

⇤ 2 L1(R+
).

By virtue of (62) and lim

x!1 ˜

Q

β

⇤
(x) = 0, we get

0  ⇠ − '̃

β

⇤
(x)  ⇠ − 2S

β

⇤
(x) +

˜

Q

β

⇤
(x), x 2 R+

. (64)

Since

⇠ − 2S

β

⇤
(x) = 2β

⇤
✓

1

1− w+(0)
− S(x)

◆
2 L1(R+

)

[see relation (14)] and ˜

Q

β

⇤ 2 L1(R+
), we derive inclusion (63) from (64).

On the other hand, we check the validity of inequality

⇠ − '̃

β

⇤
(x) ≥ µ

⇠0(x).
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By using the chain of inequalities (62) and relations (13) and (14), we obtain

⇠ − '̃

β

⇤
(x) ≥ ⇠ − 2S

β

⇤
(x) = 2β

⇤
✓

1

1− w+(0)
− S(x)

◆

= 2β

⇤

 
1

1− w+(0)

1_

x

F +

1

1− w+(0)

x_

−1
F − S(x)

!

= 2β

⇤

0

@ 1

1− w+(0)

1_

x

F +

xZ

−1

✓
1

1− w+(0)
− S(x− t)

◆
dF (t)

1

A

≥ 2β

⇤

1− w+(0)
(1− F (x)) = ⇠(1− F (x)) ≥ ⇠0(1− F (x)) = µ

⇠0(x).

We now consider the following iterations:

'

n+1(x) = −
1Z

0

F0(t,'n

(t))d

t

F (x− t) + F1(x,'n

(x)),

'0(x) = ⇠ − '̃

β

⇤
(x), n = 0, 1, 2, . . . , x ≥ 0.

(65)

By the induction on n, we can show that

'

n

(x) # with n, (66)

'

n

(x) ≥ µ

⇠0(x), n = 0, 1, 2, . . . . (67)

We first prove that

'1(x) ≥ µ

⇠0(x), '1(x)  '0(x), x 2 R+
.

In view of the inequality in condition (A) and the properties of the function F0, we get the following inequal-
ities from (65):

'1(x) ≥ F1(x, µ
⇠0(x)) ≥ µ

⇠0(x), x 2 R+
,

'1(x) = F1(x, ⇠ − '̃

β

⇤
(x))−

1Z

0

F0(t, ⇠ − '̃

β

⇤
(t))d

t

F (x− t)

 F1(x, ⇠)−
1Z

0

(⇠ − '̃

β

⇤
(t) + !(t, ⇠))d

t

F (x− t)

 µ

⇠

(x) + ⇠F (x)−
1Z

0

(−'̃

β

⇤
(t) + !(t, ⇠))d

t

F (x− t)
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 ⇠ −
1Z

0

(−'̃

β

⇤
(t) + !(t, '̃

β

⇤
(t)))d

t

F (x− t) = ⇠ − '̃

β

⇤
(x) = '0(x)

because !(t, ⇠)  !(t, '̃

β

⇤
(t)) by virtue of the inequalities '̃

β

⇤
(t)  ⇠ and '̃

β

⇤
(t) ≥ A.

We now assume that '
n

(x)  '

n−1(x) and '

n

(x) ≥ µ

⇠0(x) for some n 2 N and take into account the
monotonicity of the functions F0 and F1 in z. As a result, from (65), we obtain

'

n+1(x)  '

n

(x) and '

n+1(x) ≥ µ

⇠0(x).

Hence, the sequence of functions {'
n

(x)}1
n=0 has a pointwise limit as n ! 1 :

lim

n!1
'

n

(x) = '(x).

Moreover, by virtue of the condition (D) and the B. Levi theorem, this limit satisfies Eq. (1). Relations (66) and (67)
also imply that

µ

⇠0(x)  '(x)  ⇠ − '̃

β

⇤
(x), x 2 R+

,

whence it follows that ' 2 L1(R+
) \ L

0
1(R+

).

The theorem is proved.

Note that the role of the function F1 in Theorem 3, can be played by the examples presented in Sec. 3 for
⌘0 = ⇠0 and ⌘ = ⇠.

We now present one more example of the function F0 satisfying all conditions of Theorem 3:

F0(t, z) = z + !(t, ⇠) sin

z

!(t, ⇠)

, t 2 R+
, z 2 [0, ⇠].

Remark 3. Unlike the assertion of Theorem 2, the solution '(x) constructed in Theorems 1 and 3 cannot be
a distribution function because

' 2 L1(R+
) \ L

0
1(R+

).
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