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CRITICAL POINTS APPROACHES TO ELLIPTIC PROBLEMS DRIVEN
BY A p(x)-LAPLACIAN

S. Heidarkhani1 and B. Ge2 UDC 517.9

We establish the existence of at least three solutions for elliptic problems driven by a p(x)-Laplacian.
The existence of at least one nontrivial solution is also proved. The approaches are based on the variational
methods and critical-point theory.

1. Introduction

In the present paper, we study the following elliptic problem:

−∆

p(x)u = λf(x, u) in ⌦,

u = 0 on @⌦,

(1)

where

∆

p(x)u = div(|ru|p(x)−2ru)

is the p(x)-Laplacian operator, ⌦ ⇢ R

N

, N ≥ 1, is a nonempty bounded open set with smooth boundary @⌦,

p 2 C(⌦) satisfies the condition

N < p

−
:= inf

x2⌦
p(x)  p(x)  sup

x2⌦
p(x) < +1,

λ > 0, and f : ⌦⇥R ! R is an L

1-Carathéodory function.
In recent years, the investigation of differential equations and variational problems with variable exponent has

become a new and interesting topic. It arises from the nonlinear elasticity theory, the theory of electrorheological
fluids, etc. (see [29, 31]). Problems of this kind also have extensive applications in various research fields, such
as the image-processing model (see, e.g., [16, 24]), stationary thermorheological viscous flows (see [1]), and the
mathematical description of the processes of filtration of ideal barotropic gases through porous media (see [2]).

Note that, for p(x) = p = constant, there is a large literature dealing with the problems involving the
p-Laplacian with Dirichlet boundary conditions, both in the scalar case and for elliptic systems in bounded or
unbounded domains. It is not necessary to cite these works here because the reader can easily find them. Numerous
authors investigated the existence and multiplicity of solutions for the problems with p(x)-Laplacian. In recent
years, the interest to the study of variational problems and elliptic equations with variable exponent is increasing.
We refer the reader to [19, 21, 27] for the theory of Lp(x) and W

1,p(x)
(⌦). The problem of p(x)-Laplacian with
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Dirichlet conditions in the scalar case was studied by Fan and Zhang [20]. In fact, in [20], Fan and Zhang, first,
introduced some basic properties of the generalized Lebesgue–Sobolev spaces W 1,p(x)

0 (⌦), which can be regarded
as a special class of generalized Orlicz–Sobolev spaces, second, presented several important properties of the
p(x)-Laplace operator, and finally, under certain appropriate conditions imposed on the nonlinear term, established
some existence results for the weak solutions of problem (1). Bonanno and Chinnı̀ [7] used a three-critical-point
theorem for nondifferentiable functionals due to Bonanno and Marano [12] (Theorem 3.6) and established the
existence of at least three weak solutions for the problem

−∆

p(x)u = λ(f(x, u) + µg(x, u)) in ⌦,

u = 0 on @⌦,

where ⌦ ⇢ R

N

, N ≥ 1, is a nonempty bounded open set with smooth boundary @⌦, p 2 C(⌦), λ and µ

are two positive parameters, and f, g : ⌦ ⇥ R ! R are two functions measurable with respect to each variable
separately and possibly discontinuous with respect to u. In [8], Bonanno and Chinnı̀ also studied the multiplicity
of solutions for problem (1) on the basis of a convenient form of the recent three-critical-points theorem established
by Bonanno and Marano [12].

In the present paper, motivated by [7, 8], we first apply two related three-critical-points theorems for differ-
entiable functionals due to Bonanno and Candito [6] to prove the existence of at least three weak solutions to
problem (1) (see Theorems 4 and 5) and then use a very recent local minimum theorem for differentiable function-
als due to Bonanno [5] (under different assumptions imposed in Theorems 4 and 5) to establish the existence of at
least one nontrivial weak solution to problem (1) (see Theorem 7). Theorems 4 and 5 extend the results of [8].

For a thorough account on the subject, we refer the reader to the papers [9, 10, 13, 14, 22, 23, 26].

2. Preliminaries and Basic Notation

In the present section, we introduce some definitions and results used in the next section. First, we introduce
some theories of Lebesgue–Sobolev spaces with variable exponent. The details can be found in [17, 19, 21]. We set

L

1
+ (⌦) =

n

p 2 L

1
(⌦) : ess inf

x2⌦
p(x) > 1

o

.

For p 2 L

1
+ (⌦), we denote

p

−
= p

−
(⌦) = ess inf

x2⌦
p(x) and p

+
= p

+
(⌦) = ess sup

x2⌦
p(x).

For any p(x) 2 L

1
+ (⌦), we define the variable-exponent Lebesgue space

L

p(x)
(⌦) =

8

<

:

u : u is a measurable real-valued function such that
Z

⌦

|u(x)|p(x)dx < 1

9

=

;

.

We introduce a norm (the so-called Luxemburg norm) in this space by the formula

kuk
L

p(x)(⌦) = inf

8

<

:

λ > 0 :
Z

⌦

�

�

�

�

u(x)

λ

�

�

�

�

p(x)

dx  1

9

=

;

.
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The space (L

p(x)
(⌦), k.k

p(x)) is a Banach space. We define the variable-exponent Sobolev space W

1,p(x)
(⌦) as

follows:

W

1,p(x)
(⌦) =

n

u 2 L

p(x)
(⌦) : |ru| 2 L

p(x)
(⌦)

o

.

This space is equipped with the norm

kuk
W

1,p(x)(⌦) = kuk
L

p(x)(⌦) + kruk
L

p(x)(⌦).

By W

1,p(x)
0 (⌦), we denote the closure of C1

0 (⌦) in W

1,p(x)
(⌦). In W

1,p(x)
0 (⌦), we consider the norm

kuk : = kruk
L

p(x)(⌦).

We now present some facts used in what follows.

Proposition 1 (see [20]). (i) The spaces L

p(x)
(⌦), W

1,p(x)
(⌦) and W

1,p(x)
0 (⌦) are separable and re-

flexive Banach spaces.

(ii) There is a constant c > 0 such that

kuk
L

p(x)(⌦)  ckruk
L

p(x)(⌦)

for all u 2 W

1,p(x)
0 (⌦).

Proposition 2 (see [7]). Let

⇢

p

(u) =

Z

⌦

|u(x)|p(x)dx.

For u 2 W

1,p(x)
0 (⌦), the following assertions are true:

(i) kuk < 1(= 1;> 1) () ⇢

p

(|ru|) < 1(= 1;> 1).

(ii) If kuk > 1, then
1

p

+
kukp− 

Z

⌦

1

p(x)

|ru(x)|p(x)dx  1

p

− kukp+ .

(iii) If kuk < 1, then
1

p

+
kukp+ 

Z

⌦

1

p(x)

|ru(x)|p(x)dx  1

p

− kukp− .

As shown in [20, 27], W 1,p(x)
(⌦) is continuously embedded in W

1,p−
(⌦) and, since p

−
> N, W

1,p−
(⌦)

is compactly embedded in C

0
(⌦). Thus, W 1,p(x)

(⌦) is compactly embedded in C

0
(⌦). Therefore, in particular,

there exists a positive constant c0 such that

kuk
C

0(⌦)  c0kuk (2)

for each u 2 W

1,p(x)
0 (⌦).
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By X, we denote the Sobolev space W

1,p(x)
0 (⌦). Let

G(u) =

Z

⌦

1

p(x)

|ru(x)|p(x)dx

for all u 2 X. We denote L = G

0 : X ! X

⇤
. Then

L(u)(v) =

Z

⌦

|ru(x)|p(x)−2ru(x)rv(x) dx

for all u, v 2 X.

Proposition 3 (see [20]). (i)
L : X ! X

⇤ is a continuous, bounded, and strictly monotone operator.

(ii) L is a mapping of the type (S+), i.e., if un * u in X and lim sup

n!1(L(u

n

), u

n

− u)  0, then
u

n

! u in X.

(iii) L : X ! X

⇤ is a homeomorphism.

We say that u is a weak solution to the problem (1) if u 2 X and

Z

⌦

|ru(x)|p(x)−2ru(x)rv(x)dx− λ

Z

⌦

f(x, u(x))v(x)dx = 0

for every v 2 X.

We set

δ(x) = sup

�

δ > 0 : S(x, δ) ⇢ ⌦

 

where S(x, δ) denotes a ball of radius δ with center at x. For all x 2 ⌦, we can prove that there exists x0 2 ⌦

such that S(x0, D) ⇢ ⌦, where D = sup

x2⌦ δ(x). We set

m :=

⇡

N/2

N

2

Γ

✓

N

2

◆

where Γ is the Euler function. Moreover, for each r > 0, we define

γ

r

:= max

n

(p

+
r)

1/p−
, (p

+
r)

1/p+
o

and, in addition,

F (x, t) =

t

Z

0

f(x, ⇠) d⇠

for all (x, t) 2 ⌦⇥R.
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3. Existence of Three Solutions

In the present section, we establish the existence of at least three weak solutions of problem (1). As our
main tools, we use two three-critical-points theorems. In the first of these theorems, the coercivity of the func-
tional Φ− λ is required; in the second theorem, a suitable sign hypothesis is assumed. The first result was
obtained in [4]. The second result was obtained in [3]. Here, we recall these results according to [6].

Theorem 1 ([6], Theorem 3.2). Let X be a reflexive real Banach space, let Φ : X −! R be a coercive
and continuously Gâteaux differentiable functional whose derivative admits a continuous inverse on X

⇤
, let

 : X −! R be a continuously Gâteaux differentiable functional whose derivative is compact, and let

inf

X

Φ = Φ(0) =  (0) = 0.

Assume that there is a positive constant r and v 2 X with 2r < Φ(v) such that

(a1)
sup

u2Φ−1(]−1,r[) (u)

r

<

2

3

 (v)

Φ(v)

;

(a2) for all

λ 2
�

3

2

Φ(v)

 (v)

,

r

sup

u2Φ−1(]−1,r[) (u)



,

the functional Φ− λ is coercive.

Then, for each

λ 2
�

3

2

Φ(v)

 (v)

,

r

sup

u2Φ−1(]−1,r[) (u)



,

the functional Φ− λ has at least three distinct critical points.

Theorem 2 ([6], Theorem 3.3). Let X be a reflexive real Banach space, let Φ : X −! R be a convex,
coercive, and continuously Gâteaux differentiable functional whose derivative admits a continuous inverse on X

⇤
,

let  : X −! R be a continuously Gâteaux differentiable functional whose derivative is compact, and let

(i) inf

X

Φ = Φ(0) =  (0) = 0;

(ii) for any λ > 0 and for every u1 and u2 that are local minima for the functional Φ − λ such that
 (u1) ≥ 0 and  (u2) ≥ 0, the following inequality be true:

inf

s2[0,1]
 (su1 + (1− s)u2) ≥ 0.

Assume that there are two positive constants r1 and r2 and v 2 X with 2r1 < Φ(v) <

r2

2

such that

(b1)
sup

u2Φ−1(]−1,r1[) (u)

r1
<

2

3

 (v)

Φ(v)

;

(b2)
sup

u2Φ−1(]−1,r2[) (u)

r2
<

1

3

 (v)

Φ(v)

.
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Then, for each

λ 2
�

3

2

Φ(v)

 (v)

, min

⇢

r1

sup

u2Φ−1(]−1,r1[) (u)

,

r2/2

sup

u2Φ−1(]−1,r2[) (u)

�

,

the functional Φ− λ has at least three distinct critical points lying in Φ

−1
(]−1, r2[).

The following theorem is a special case of our main results:

Theorem 3. Let ⌦ ✓ R

2 be a nonempty bounded open set with smooth boundary @⌦, let f : R ! R be
a continuous function, and let

F (t) =

t

Z

0

f(⇠) d⇠

for all t 2 R be such that F (h) > 0 for some h > 0 and F (⇠) ≥ 0 in [0, h]. For fixed p(x) = p > 2, it is
assumed that

lim inf

⇠!0

F (⇠)

|⇠|p = lim sup

|⇠|!+1

F (⇠)

|⇠|p = 0.

Then there is λ⇤
> 0 such that, for each λ > λ

⇤
, the problem

−∆

p

u = λf(u) in ⌦,

u = 0 on @⌦

admits at least three weak solutions.

Remark 1. The results similar to Theorem 3 were obtained in [11] (Theorem 0), where a class of Dirichlet
quasilinear elliptic systems driven by a (p, q)-Laplacian operator was considered, and also in [25] (Theorem 1),
where a quasilinear second-order differential equation was studied.

We formulate the existence results as follows:

Theorem 4. Let f : ⌦⇥R ! R be an L

1-Carathéodory function such that

ess inf

x2⌦
F (x, ⇠) ≥ 0

for all ⇠ 2 R. Assume that there exist two positive constants r and h such that

(A1)
1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

mD

N

2

N − 1

2

N

> 2r;

(A2)

Z

⌦
sup|t|c0γr

F (x, t)dx

r

<

2 ess inf

x2⌦ F (x, h)

3

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

(2

N − 1)

;
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(A3) lim sup|t|!+1
F (x, t)

|t|p−/p+
<

Z

⌦
sup|t|c0γr

F (x, t)dx

r

.

Then, for each

λ 2

3

7

7

7

7

5

3

2

1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

(2

N − 1)

ess inf

x2⌦ F (x, h)

,

r

Z

⌦
sup|t|c0γr

F (x, t)dx

2

6

6

6

6

4

,

problem (1) admits at least three weak solutions.

Proof. In order to apply Theorem 1 to our problem, we introduce the functionals Φ,  : X ! R for
each u 2 X, as follows:

Φ(u) =

Z

⌦

1

p(x)

�

�ru(x)

�

�

p(x)
dx

and

 (u) =

Z

⌦

F (x, u(x))dx.

It is well known that Φ and  are well defined and continuously differentiable functionals whose derivatives
at the point u 2 X are functionals Φ0

(u), 

0
(u) 2 X

⇤ given, for every v 2 X, by the formulas

Φ

0
(u)(v) =

Z

⌦

�

�ru(x)

�

�

p(x)−2ru(x)rv(x)dx

and

 

0
(u)(v) =

Z

⌦

f(x, u(x))v(x)dx,

respectively. At the same time,  is sequentially weakly upper semicontinuous. Moreover, Φ is sequentially
weakly lower semicontinuous and Φ

0 admits a continuous inverse on X

⇤
. Furthermore,  0 : X ! X

⇤ is a compact
operator. We set

w(x) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

0 for x 2 ⌦ \ S(x0, D),

h for x 2 S

✓

x0,
D

2

◆

,

2h

D

 

D −
r

X

N

i=1
(x

i

− x0i)
2

!

for x 2 S(x0, D) \ S
✓

x0,
D

2

◆

.

(3)



1890 S. HEIDARKHANI AND B. GE

It is easy to see that w 2 X and, in particular, we get

1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

mD

N

2

N − 1

2

N

 Φ(w)

 1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

mD

N

2

N − 1

2

N

(4)

and

 (w) ≥
Z

S(x0, D/2)

F (x,w(x))dx ≥ ess inf

x2⌦
F (x, h)m

✓

D

2

◆

N

. (5)

In view of (4), it follows from (A1 ) that Φ(w) > 2r. The embedding X ,! C

0
(⌦) implies that

Φ

−1
(]−1, r[) = {u 2 X;Φ(u) < r} =

8

<

:

u 2 X;

Z

⌦

1

p(x)

|ru(x)|p(x)dx < r

9

=

;

✓
n

u 2 X; |u(x)|  c0γr for all x 2 ⌦

o

.

This yields

sup

u2Φ−1(]−1,r[)

 (u) = sup

u2Φ−1(]−1,r[)

Z

⌦

F (x, u(x))dx 
Z

⌦

sup

|t|c0γr

F (x, t) dx.

Therefore, in view of the assumption (A2 ) and inequalities (4) and (5), we get

sup

u2Φ−1(]−1,r[) (u)

r

=

sup

u2Φ−1(]−1,r[)

Z

⌦
F (x, u(x))dx

r



Z

⌦
sup|t|c0γr

F (x, t)dx

r

<

2

3

ess inf

x2⌦ F (x, h)

1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

(2

N − 1)

 2

3

 (w)

Φ(w)

.

Furthermore, it follows from (A3 ) that there exist two constants ⌘,# 2 R with

⌘ <

Z

⌦
sup|t|c0γr

F (x, t)dx

r
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such that

|⌦|c0F (x, t)  ⌘

|t|p−

p

+
+ # for all x 2 ⌦ and all t 2 R

n

.

We fix u 2 X. Then

F (x, u(x))  1

|⌦|c0

 

⌘

|u(x)|p−

p

+
+ #

!

for all x 2 ⌦. (6)

Further, in order to prove the coercivity of the functional Φ−λ , we first assume that ⌘ > 0. Thus, if kuk ≥ 1,

then, for any fixed

λ 2

3

7

7

7

7

5

3

2

1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

(2

N − 1)

ess inf

x2⌦ F (x, h)

,

r

Z

⌦
sup|t|c0γr

F (x, t)dx

2

6

6

6

6

4

,

in view of inequalities (2) and (6) and Proposition 2, we find

Φ(u)− λ (u) =

Z

⌦

1

p(x)

|ru(x)|p(x)dx− λ

Z

⌦

F (x, u(x))dx

≥ 1

p

+
kukp− − λ⌘

|⌦|c0

Z

⌦
|u(x)|p−dx

p

+
− λ#

c0

≥ 1

p

+
kukp− − λ⌘

|⌦|c0
|⌦|c0kukp

−

p

+
− λ#

c0

≥

0

B

B

@

1− ⌘

r

Z

⌦
sup|t|c0γr

F (x, t)dx

1

C

C

A

1

p

+
kukp− − λ#

c0
,

and, hence,

lim

kuk!+1

�

Φ(u)− λ (u)

�

= +1.

On the other hand, for ⌘  0, it is clear that

lim

kuk!+1
(Φ(u)− λ (u)) = +1.

Both cases lead to the coercivity of the functional Φ− λ .
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Thus, the assumptions (a1 ) and (a2 ) in Theorem 1 are satisfied. Hence, by using Theorem 1, in view of the
fact that the weak solutions of problem (1) are exactly the solutions of the equation

Φ

0
(u)− λ 

0
(u) = 0,

we arrive at the required assertion.

Theorem 4 is proved.

Theorem 5. Let f : ⌦⇥R ! R be an L

1-Carathéodory function such that

ess inf

x2⌦
F (x, ⇠) ≥ 0

for all ⇠ 2 R and satisfies the condition f(x, t) ≥ 0 for all (x, t) 2 ⌦ ⇥ (R

+ [ {0}). Assume that there exist
three positive constants r1, r2, and h with

2r1 <
1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

mD

N

2

N − 1

2

N

and

1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

mD

N

2

N − 1

2

N

<

r2

2

such that

(B1)

Z

⌦
sup|t|c0γr

F (x, t)dx

r1
<

2 ess inf

x2⌦ F (x, h)

3

1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

(2

N − 1)

;

(B2)

Z

⌦
sup|t|c0γr

F (x, t)dx

r2
<

ess inf

x2⌦ F (x, h)

3

1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

(2

N − 1)

.

Then, for each

λ 2

3

7

7

7

7

5

3

2

1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

(2

N − 1)

ess inf

x2⌦ F (x, h)

,

min

8

>

>

<

>

>

:

r1
Z

⌦
sup|t|c0γr

F (x, t)dx

,

r

2

2

Z

⌦
sup|t|c0γr

F (x, t)dx

9

>

>

=

>

>

;

2

6

6

6

6

4
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problem (1) admits at least three nonnegative weak solutions v1, v2, v3 such that

Z

⌦

1

p(x)

|rv

j

(x)|p(x)dx  r2 for each x 2 ⌦, j = 1, 2, 3.

Proof. Let Φ and  be as in the proof of Theorem 4. We apply Theorem 2 to our functionals. Obviously,
Φ and  satisfy Condition 1 of Theorem 2. We now check that the functional Φ − λ satisfies Condition 2 of
Theorem 2. Let u? and u

?? be two local minima of Φ − λ . Then u

? and u

?? are critical points for Φ − λ 

and, hence, they are weak solutions of problem (1). Since f(x, t) ≥ 0 for all (x, t) 2 ⌦⇥ (R

+ [ {0}), it follows
from the weak maximum principle (see, e.g., [15]) that u?(x) ≥ 0 and u

??

(x) ≥ 0 for every x 2 ⌦. This
means that su? + (1 − s)u

?? ≥ 0 for all s 2 [0, 1], that f(su? + (1 − s)u

??

, t) ≥ 0 and, consequently, that
 (su

?

+ (1− s)u

??

) ≥ 0 for all s 2 [0, 1]. Moreover, the conditions

2r1 <
1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

mD

N

2

N − 1

2

N

and

1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

mD

N

2

N − 1

2

N

<

r2

2

enable us to conclude that

2r1 < Φ(w) <

r2

2

.

Further, in view of the embedding X ,! C

0
(⌦), we get

Φ

−1
�

]−1, r1[
�

=

�

u 2 X;Φ(u) < r1

 

=

8

<

:

u 2 X;

Z

⌦

1

p(x)

|ru(x)|p(x)dx < r1

9

=

;

✓
�

u 2 X; |u(x)|  c0γr1 for all x 2 ⌦

 

and, hence,

sup

u2Φ−1(]−1,r1[)

 (u) = sup

u2Φ−1(]−1,r1[)

Z

⌦

F (x, u(x))dx 
Z

⌦

sup

|t|c0γr

F (x, t)dx.

Therefore, in view of the assumption (B1 ), we find

sup

u2Φ−1(]−1,r1[) (u)

r1
=

sup

u2Φ−1(]−1,r1[)

Z

⌦
F (x, u(x))dx

r1



Z

⌦
sup|t|c0γr1

F (x, t)dx

r1
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<

2

3

ess inf

x2⌦ F (x, h)

1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

(2

N − 1)

 2

3

 (w)

Φ(w)

.

As above, by using the assumption (B2 ), we obtain

sup

u2Φ−1(]−1,r2[) (u)

r2
=

sup

u2Φ−1(]−1,r2[)

Z

⌦
F (x, u(x))dx

r2



Z

⌦
sup|t|c0γr2

F (x, t)dx

r2

<

1

3

ess inf

x2⌦ F (x, h)

1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

(2

N − 1)

 1

3

 (w)

Φ(w)

.

Thus, the assumptions (b1 ) and (b2 ) in Theorem 2 are satisfied. Hence, in view of Theorem 2 and the fact
that the weak solutions of problem (1) are exactly the solutions of the equation Φ

0
(u)− λ 

0
(u) = 0, problem (1)

admits at least three distinct weak solutions in X.

Theorem 5 is proved.

At the end of this section, we prove Theorem 3.

Proof of Theorem 3. We fix

λ > λ

⇤
:=

9

2

1

p

✓

2h

D

◆

p

F (h)

.

Since lim inf

⇠!0
F (⇠)

|⇠|p = 0, there is {r
n

}
n2N ✓ ]0,+1[ such that lim

n!+1 r

n

= 0 and

lim

n!+1

|⌦|max|t|c0(prn)1/p
F (t)

r

n

= 0.

Hence, there exists r > 0 such that

|⌦|max|t|c0(pr)1/p
F (t)

r

< min

8

>

>

<

>

>

:

2p

9

F (h)

✓

2h

D

◆

p

;

1

λ

9

>

>

=

>

>

;

and

2r <

3D

2
⇡

4p

✓

2h

D

◆

p

.

The required assertion follows from Theorem 4.
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4. Existence of a Nontrivial Solution

First, we recall, for the reader’s convenience, Theorem 2.5 from [28] presented in the form of Theorem 5.1
from [5] (see also Proposition 2.1 in [5] for the related results). This theorem is our main tool in proving the main
result.

For a given nonempty set X and two functionals Φ, : X ! R, we define the following functions:

#(r1, r2) = inf

v2Φ−1(]r1,r2[)

sup

u2Φ−1(]r1,r2[) (u)− (v)

r2 − Φ(v)

and

⇢(r1, r2) = sup

v2Φ−1(]r1,r2[)

 (v)− sup

u2Φ−1(]−1,r1[) (u)

Φ(v)− r1

for all r1, r2 2 R, r1 < r2.

Theorem 6 ([5], Theorem 5.1). Let X be a reflexive real Banach space, let Φ : X ! R be a sequentially
weakly lower semicontinuous, coercive, and continuously Gâteaux differentiable functional whose Gâteaux deriva-
tive admits a continuous inverse on X

⇤
, and let  : X ! R be a continuously Gâteaux differentiable func-

tional whose Gâteaux derivative is compact. Also let I
λ

= Φ − λ . Assume that there are r1, r2 2 R, r1 < r2,

such that

#(r1, r2) < ⇢(r1, r2).

Then, for each

λ 2
�

1

⇢(r1, r2)
,

1

#(r1, r2)



,

there is u0,λ 2 Φ

−1
(]r1, r2[) such that I

λ

(u0,λ)  I

λ

(u) for any u 2 Φ

−1
(]r1, r2[) and I

0
λ

(u0,λ) = 0.

We formulate the main result of this section as follows:

Theorem 7. Let f : ⌦⇥R ! R be an L

1-Carathéodory function such that

ess inf

x2⌦
F (x, ⇠) ≥ 0

for all ⇠ 2 R. Assume that there exist a nonnegative constant r1 and two positive constants r2 and h with

r1 <
1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

mD

N

2

N − 1

2

N

and

1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

mD

N

2

N − 1

2

N

< r2
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such that

(C1)

Z

⌦
sup|t|c0γr2

F (x, t)dx− ess inf

x2⌦ F (x, h)m

✓

D

2

◆

N

r2 −
1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

<

Z

⌦
sup|t|c0γr1

F (x, t)dx− ess inf

x2⌦ F (x, h)m

✓

D

2

◆

N

r1 −
1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

. (7)

Then, for each

λ 2

3

7

7

7

7

5

r1 −
1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

Z

⌦
sup|t|c0γr1

F (x, t)dx− ess inf

x2⌦ F (x, h)m

✓

D

2

◆

N

,

r2 −
1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

Z

⌦
sup|t|c0γr2

F (x, t)dx− ess inf

x2⌦ F (x, h)m

✓

D

2

◆

N

2

6

6

6

6

4

,

problem (1) admits at least one nontrivial weak solution u0 2 X such that

r1 <

Z

⌦

1

p(x)

|ru0(x)|p(x)dx < r2.

Proof. In order to apply Theorem 6 to our problem, we assume that the functionals Φ, : X ! R are
the same as in the proof of Theorem 4. As follows from the proof of Theorem 4, Φ and  satisfy the regular-
ity assumptions of Theorem 6. We choose w as indicated in (3). Taking into account relation (4), in view of
the conditions

r1 <
1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

mD

N

2

N − 1

2

N

and

1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

mD

N

2

N − 1

2

N

< r2,

we find

r1 < Φ(w) < r2.
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By virtue of the embedding X ,! C

0
(⌦), we get

Φ

−1
�

]−1, r2[
�

=

�

u 2 X;Φ(u) < r2

 

=

8

<

:

u 2 X;

Z

⌦

1

p(x)

|ru(x)|p(x)dx < r2

9

=

;

✓
�

u 2 X; |u(x)|  c0γr2 for all x 2 ⌦

 

.

This yields

sup

u2Φ−1(]−1,r2[)

 (u) = sup

u2Φ−1(]−1,r2[)

Z

⌦

F (x, u(x))dx 
Z

⌦

sup

|t|c0γr2

F (x, t)dx.

Therefore, we obtain

#(r1, r2) 
sup

u2Φ−1(]−1,r2[) (u)− (w)

r2 − Φ(w)



Z

⌦
sup|t|c0γr2

F (x, t)dx− (w)

r2 − Φ(w)



Z

⌦
sup|t|c0γr2

F (x, t)dx− ess inf

x2⌦ F (x, h)m

✓

D

2

◆

N

r2 −
1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

.

On the other hand, arguing as earlier, we conclude that

⇢(r1, r2) ≥
 (w)− sup

u2Φ−1(]−1,r1[) (u)

Φ(w)− r1

≥
 (w)−

Z

⌦
sup|t|c0γr1

F (x, t)dx

Φ(w)− r1

≥

Z

⌦
sup|t|c0γr1

F (x, t)dx− ess inf

x2⌦ F (x, h)m

✓

D

2

◆

N

r1 −
1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

.

Hence, it follows from the assumption (C1 ) that

#(r1, r2) < ⇢(r1, r2).
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Therefore, by applying Theorem 6 for each

λ 2

3

7

7

7

7

5

r1 −
1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

Z

⌦
sup|t|c0γr1

F (x, t)dx− ess inf

x2⌦ F (x, h)m

✓

D

2

◆

N

,

r2 −
1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

Z

⌦
sup|t|c0γr2

F (x, t)dx− ess inf

x2⌦ F (x, h)m

✓

D

2

◆

N

2

6

6

6

6

4

,

we conclude that the functional Φ− λ has at least one critical point u0 2 X such that r1 < Φ(u0) < r2, i.e.,

r1 <

Z

⌦

1

p(x)

|ru0(x)|p(x)dx < r2.

Thus, in view of the fact that the weak solutions of problem (1) are exactly the solutions of the equation

Φ

0
(u)− λ 

0
(u) = 0,

we arrive at the required assertion.
Theorem 7 is proved.

We now establish the following corollary of Theorem 7:

Theorem 8. Suppose that

1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

 1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

.

Let f : ⌦⇥R ! R be an L

1-Carathéodory function such that ess inf
x2⌦ F (x, ⇠) ≥ 0 for all ⇠ 2 R. Assume that

there exist two positive constants r and h with

1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

mD

N

2

N − 1

2

N

< r

such that

(C2)

Z

⌦
sup|t|c0γr

F (x, t)dx

r

<

ess inf

x2⌦ F (x, h)m

✓

D

2

◆

N

1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

.
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Then, for each

λ 2

3

7

7

7

7

5

1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

ess inf

x2⌦ F (x, h)m

✓

D

2

◆

N

,

r

Z

⌦
sup|t|c0γr

F (x, t)dx

2

6

6

6

6

4

,

problem (1) admits at least one nontrivial weak solution u0 2 X such that

r1 <

Z

⌦

1

p(x)

|ru0(x)|p(x)dx < r2.

Proof. The required assertion follows from Theorem 7 if we take r1 = 0 and r2 = r. Indeed, in view of our
assumptions, we get

Z

⌦
sup|t|c0γr

F (x, t)dx− ess inf

x2⌦ F (x, h)m

✓

D

2

◆

N

r − 1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

<

 

1−

1

p

− max

⇢✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+�

r

!

Z

⌦
sup|t|c0γr

F (x, t)dx

r − 1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

=

Z

⌦
sup|t|c0γr

F (x, t)dx

r

<

ess inf

x2⌦ F (x, h)m

✓

D

2

◆

N

1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)


ess inf

x2⌦ F (x, h)m

✓

D

2

◆

N

1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

.

In particular, we find

Z

⌦
sup|t|c0γr

F (x, t)dx− ess inf

x2⌦ F (x, h)m

✓

D

2

◆

N

r − 1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

<

Z

⌦
sup|t|c0γr

F (x, t)dx

r

.

Hence, the application of Theorem 7 completes the proof.

Theorem 8 is proved.
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Let f : R ! R be a continuous function and let

F (t) =

t

Z

0

f(⇠) d⇠

for all t 2 R. The following result is obtained as a direct consequence of Theorem 7.

Theorem 9. Let f : R ! R be a nonnegative continuous function. Assume that there exist a nonnegative
constant r1 and two positive constants r2 and h with

r1 <
1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

mD

N

2

N − 1

2

N

and

1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

mD

N

2

N − 1

2

N

< r2

such that

(C3)
|⌦|F (c0γr2)− F (h)m

✓

D

2

◆

N

r2 −
1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

<

|⌦|F (c0γr1)− F (h)m

✓

D

2

◆

N

r1 −
1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

.

Then, for each

λ 2

3

7

7

7

7

5

r1 −
1

p

+
min

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

|⌦|F (c0γr1)− F (h)m

✓

D

2

◆

N

,

r2 −
1

p

− max

(

✓

2h

D

◆

p

−

,

✓

2h

D

◆

p

+
)

|⌦|F (c0γr2)− F (h)m

✓

D

2

◆

N

2

6

6

6

6

4

,

the problem

−∆

p(x)u = λf(u) in ⌦,

u = 0 on @⌦

admits at least one nontrivial weak solution u0 2 X such that

r1 <

Z

⌦

1

p(x)

|ru0(x)|p(x)dx < r2.

At the end of the paper, we present the following special case of our main result in this section:
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Theorem 10. Let p(x) = p > N, let h : ⌦ ! R be a positive and essentially bounded function, and let
g : R ! R be a nonnegative function such that

lim

t!0+

g(t)

t

p−1
= +1.

Then, for each

λ 2

3

7

7

7

5

0,

0

B

B

@

1

Z

⌦
h(x)dx

1

C

C

A

sup

r>0

r

Z

c0(pr)1/p

0
g(⇠) d⇠

2

6

6

6

4

,

the problem

−∆

p

u = λh(x)g(u) in ⌦,

u = 0 on @⌦

admits at least one nontrivial weak solution in X.

Proof. For fixed

λ 2

3

7

7

7

5

0,

0

B

B

@

1

Z

⌦
h(x)dx

1

C

C

A

sup

r>0

r

Z

c0(pr)1/p

0
g(⇠) d⇠

2

6

6

6

4

,

there exists a positive constant r such that

λ <

0

B

B

@

1

Z

⌦
h(x)dx

1

C

C

A

r

Z

c0(pr)1/p

0
g(⇠)d⇠

.

Moreover, the condition

lim

t!0+

g(t)

t

p−1
= +1

implies that

lim

t!0+

Z

t

0
g(⇠)d⇠

t

p

= +1.

Therefore, we can choose a positive constant h satisfying the inequality

1

p

✓

2h

D

◆

p

mD

N

2

N − 1

2

N

< r
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such that

✓

1

λ

◆

2

p

pD

p

ess inf

x2⌦ h(x)m

✓

D

2

◆

N

<

Z

h

0
g(⇠)d⇠

h

p

.

Hence, by using Theorem 8, we arrive at the required result.

Remark 2. All proofs in the present paper are based on finding the values of the corresponding functionals
on the function w(x) introduced in (3). Note that this is the same function as in [7].

The research of S. Heidarkhani was partly supported by a grant from IPM (No. 91470046).
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