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MODULES WITH UNIQUE CLOSURE RELATIVE TO A TORSION THEORY. III

S. Doğruöz,1 A. Harmanci,2 and P. F. Smith3 UDC 512.5

We continue the study of modules over a general ring R whose submodules have a unique closure relative
to a hereditary torsion theory on Mod-R. It is proved that, for a given ring R and a hereditary torsion
theory ⌧ on Mod-R, every submodule of every right R-module has a unique closure with respect to ⌧
if and only if ⌧ is generated by projective simple right R-modules. In particular, a ring R is a right
Kasch ring if and only if every submodule of every right R-module has a unique closure with respect to
the Lambek torsion theory.

1. Introduction

In the present paper, all rings are associative with identity and all modules are unitary right modules. This
paper is a continuation of [1] and [2], and any unexplained terms can be found in [1, 3, 4]. Let R be a ring.
All torsion theories on Mod-R, the category of all right R-modules, are hereditary. For the Goldie torsion theory
and terminology for torsion theories in general and any unexplained terminology, see also [5, 6, 9].

Let R be any ring and let ⌧ be a torsion theory on Mod-R. Given an R-module M, ⌧(M) denotes the
⌧ -torsion submodule of M. A submodule L of M is called ⌧ -essential provided L is an essential submodule
of M and M/L is a ⌧ -torsion module. In addition, a submodule K of M is called ⌧ -closed in M provided
that K has no proper ⌧ -essential extension in M, i.e., if K is a ⌧ -essential submodule in a submodule L of M,

then K = L. Note that if K is a submodule of M such that either M/K is ⌧ -torsion-free or K is a closed
submodule of M, then K is a ⌧ -closed submodule of M. Given a submodule N of M, by a ⌧ -closure of N

in M, we mean a ⌧ -closed submodule K of M containing N such that N is ⌧ -essential in K. The module M

is called a ⌧ -UC-module provided every submodule has a unique ⌧ -closure in M.

In [1, 2] we investigate, for a general torsion theory ⌧, when a submodule of a general R-module M has
a unique ⌧ -closure and when the module M is ⌧ -UC. In the present paper, we are interested when a ring R

has the property that every (right) R-module is ⌧ -UC for a given torsion theory ⌧. One consequence of [10]
(Theorem (1) , (16)) is that the ring R is semiprime Artinian if and only if every (right) R-module is UC. The
Goldie torsion theory is denoted by ⌧

G

. In [1, p. 232], it is pointed out that every ⌧

G

-UC-module is UC , and
conversely. Thus, R is semiprime Artinian if and only if every module is ⌧

G

-UC. Recall that if ⌧ and ⇢ are
torsion theories on Mod-R, then ⌧  ⇢ provided that every ⌧ -torsion module is ⇢-torsion. It is proved in [1]
(Proposition 3.6) that if ⌧ and ⇢ are torsion theories on Mod-R such that ⌧  ⇢, then every ⇢-UC-module is
⌧ -UC and, in particular, every UC-module is a ⌧ -UC-module. Thus, we have proved our first result.

Proposition 1.1. Let R be a ring and let ⌧ be any torsion theory on Mod-R. Then the fact that R is
semiprime Artinian implies that every R-module is ⌧ -UC. Moreover, the converse holds for ⌧

G

 ⌧.

Let M be an R-module. For any nonempty subset X of M, ann

R

(X) denotes {r 2 R : xr = 0 for
all x 2 X} and, for any nonempty subset Y of R, ann

M

(Y ) denotes {m 2 M : my = 0 for all y 2 Y }.
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In the case X = {x} and Y = {y}, we write ann

R

(x) and ann

M

(y) for ann
R

(X) and ann

M

(Y ), respectively.
We now prove the following result:

Theorem 1.1. Let R be any ring. Then the following statements are equivalent for a torsion theory ⌧

on Mod-R :

(1) Every right R-module is ⌧ -UC.

(2) Y = X for every right R-module X and ⌧ -essential submodule Y of X.

(3) Every ⌧ -torsion right R-module is projective.

(4) If E is an essential right ideal of R, then the R-module R/E is ⌧ -torsion-free.

(5) If a right ideal E of R is ⌧ -essential in R

R

, then E = R.

(6) Every singular right R-module is ⌧ -torsion-free.

(7) Every proper submodule of any module is ⌧ -closed.

Proof. (1) ) (2). Let Y be a ⌧ -essential submodule of X. Then X⊕ (X/Y ) is not ⌧ -UC if Y 6= X by [1]
(Lemma 3.2). By hypothesis (1), Y = X.

(2) ) (3). Let M be any ⌧ -torsion R-module. There exists a free R-module F and a submodule K of F
such that M ⇠

=

F/K. Let L be a submodule of F maximal with respect to the property K \ L = 0 (Zorn’s
lemma). Then K ✓ K ⊕ L and K ⊕ L is an essential submodule of F. Since F/K is ⌧ -torsion, we conclude
that K ⊕ L is a ⌧ -essential submodule of F and, hence, F = K ⊕ L and M

⇠
=

L is projective.

(3) ) (4). Let E be an essential right ideal of R. There exists a submodule E

0 of R
R

with E ✓ E

0 such
that E0

/E is ⌧ -torsion and R/E

0
⌧ -torsion-free. By (3), E0

/E is projective and, hence, E0
= E. Thus, R/E is

⌧ -torsion-free.

(4) ) (5). Let E be a ⌧ -essential submodule of R
R

. Then E is essential in R and R/E is ⌧ -torsion. By (4),
E = R.

(5) ) (1). Let M be an R-module. Suppose M is not ⌧ -UC. Then there exists a submodule X of M and
a proper ⌧ -essential submodule Y of X such that the R-module X⊕ (X/Y ) embeds in M (see [1], Lemma 3.2).
Let x 2 X \ Y. Then xR⊕ (xR+ Y )/Y can be embedded in M, i.e., xR⊕ (xR/(xR \ Y )) embeds in M and
xR\Y is ⌧ -essential in xR. If A = ann

R

(x), then xR

⇠
=

R/A and xR\Y

⇠
=

B/A, where B/A is ⌧ -essential
in R/A. Then B is ⌧ -essential in R

R

. By (5), B = R; a contradiction. Therefore, M is a ⌧ -UC-module.

(4) ) (6). Let M be a singular R-module. Let m 2 M. Then mR

⇠
=

R/E for some essential right ideal E
of R. By (4), mR is a ⌧ -torsion-free module. Hence, M is ⌧ -torsion-free.

(6) ) (7). Let N be a proper submodule of an R-module M and let K be a ⌧ -closure of N in M. Then N is
⌧ -essential in K and, hence, K/N is singular and, thus, ⌧ -torsion. But by the hypothesis, K/N is ⌧ -torsion-free.
Thus, N = K and, hence, N is ⌧ -closed in M.

(7) ) (6). Let N be a singular R-module. Let u 2 ⌧(N). Then uF = 0 for some essential right ideal
F of R. Note that R/F

⇠
=

uR ✓ ⌧(N) and hence F is ⌧ -essential in R. By (5) F = R and, hence, u = 0.

Therefore, N is ⌧ -torsion-free.

(6) ) (4). Clear.
Theorem 1.1 is proved.
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Corollary 1.1. If every R-module is ⌧ -UC , then every ⌧ -torsion R-module is semisimple.

Proof. Assume that every R-module is ⌧ -UC. Then every singular right R-module is ⌧ -torsion-free by
Theorem 1.1 (6). Let M be a torsion R-module and let N be a submodule of M. By Zorn’s lemma, there exists
a submodule K of M such that N ⊕ K is essential in M. Then M/(N ⊕ K) is singular. By the hypothesis,
M/(N ⊕K) is ⌧ -torsion-free and it is also ⌧ -torsion. Thus, M = N ⊕K and hence, M is semisimple.

Corollary 1.1 is proved.

The converse of Corollary 1.1 need not be true in general.

Example 1.1. Let R be a commutative ring and let P be a maximal ideal of R such that P = P

2 and
ann

R

(P ) = 0. Let ⌧ be the hereditary torsion theory generated by R/P. Then every ⌧ -torsion module is semisim-
ple but not every R-module is ⌧ -UC.

Proof. If R/P is a projective R-module, then R = P ⊕ I for some ideal I of R. Thus, IP = 0 and, hence,
I = 0; a contradiction. Therefore, R/P is not projective. It follows that P is an essential ideal of R and, hence,
R/P is a nonzero singular module which is ⌧ -torsion and, hence, not ⌧ -torsion-free. Thus, not every R-module
is ⌧ -UC by Theorem 1.1.

Let X be a ⌧ -torsion module. Let S = {x 2 X : Px = 0}. Suppose X 6= S. Then there exists an R-sub-
module T of X such that S ⇢ T ✓ X and T/S

⇠
=

R/P. Then PT ✓ S and, therefore,

PT = P

2
T = P (PT ) ✓ PS = 0.

Thus, T ✓ S; a contradiction. It follows that X = S and, hence, X is semisimple.

Example 1.2. Let p be any prime integer, let F be a field of characteristic p > 0, and let G be the Prüfer
p-group. Then the group algebra R = F [G] has an augmentation ideal

P =

X

x2G
R(x− 1),

which satisfies P = P

2 and ann
R

(P ) = 0.

Proof. By [8] (Lemma 3.1.2), ann
R

(P ) = 0. Let x 2 G. Then x = y

p for some y 2 G and, hence,
x− 1 = y

p − 1 = (y − 1)

p 2 P

2
. It follows that P = P

2
.

Corollary 1.2. Let R be a ring such that every singular right R-module is ⌧ -torsion-free for some torsion
theory ⌧. Then M/ Soc(M

R

) is ⌧ -torsion- free and ⌧(M) ✓ Soc(M

R

) for every R-module M.

Proof. Let M be any R-module and let N
i

(i 2 I) denote the collection of essential submodules of M. For
each i 2 I, M/N

i

is ⌧ -torsion-free. Thus,
Y

i2I
(M/N

i

) is ⌧ -torsion-free. Since M/ Soc(M) is isomorphic to

a submodule of
Y

i2I
(M/N

i

), it is ⌧ -torsion free. The last part clearly follows.
Corollary 1.2 is proved.

Let R be any ring. Let

⌧(R

R

) =

M

i2I
U

i

,

where U

i

is a simple module for each i 2 I. We choose J ✓ I such that U
j

� U

k

if j 6= k in J and for
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each i 2 I there exists j 2 J such that U
i

⇠
=

U

j

. Then the torsion class of a torsion theory ⌧ is generated
by {U

j

: j 2 J}, i.e., X belongs to the torsion class of ⌧ , X =

L
λ2⇤ V

λ

where for every λ 2 ⇤, V

λ

⇠
=

U

j

for some j 2 J.

We now characterize the torsion theories satisfying the equivalent conditions in Theorem 1.1.

Theorem 1.2. Let ⌧ be a torsion theory on Mod-R. Then every right R-module is ⌧ -UC if and only if ⌧ is
generated by a collection S of projective simple R-modules.

Proof. Assume that every R-module is ⌧ -UC. By Corollary 1.1, every ⌧ -torsion module is semisimple. Let
S denote the set of representatives of ⌧ -torsion simple modules. Let V 2 S. Then V

⇠
=

R/P for some maximal
right ideal P of R. Hence P is not essential. Otherwise, R/P is singular, so it is ⌧ -torsion-free by Theorem 1.1.
But, since R/P is ⌧ -torsion, this is a contradiction. Therefore, R = P ⊕X for some projective simple ⌧ -torsion
right ideal X. Then V

⇠
=

X and, thus, S consists of all projective simple ⌧ -torsion R-modules.
Conversely, let T be the collection of modules of the form

L
i2I Wi

where for each i 2 I there exists V
i

2 S
such that W

i

⇠
=

V

i

. Then T is closed under submodules, homomorphic images and direct sums. To complete the
proof, we show that T is closed under extensions by short exact sequences. Let X be an R-module and let Y be
a submodule of X with Y 2 T and X/Y 2 T . Then X/Y is projective, being a direct sum of projective simple
modules. Hence Y is direct summand of X. Therefore,

X

⇠
=

Y ⊕ (X/Y ) 2 T .

Theorem 1.2 is proved.

Let I be an idempotent ideal of a ring R. Then ⌧

I

denotes the torsion theory whose torsion modules are the
R-modules X such that XI = 0. As an application of Theorem 1.2, we now characterize the idempotent ideals I
such that every R-module is a ⌧

I

-UC-module.

Corollary 1.3. Let I be an idempotent ideal of a ring R. Then every R-module is ⌧

I

-UC if and only if
I = eR for some idempotent element e of R and the ring R/I is semiprime Artinian.

Proof. Suppose first that every R-module is ⌧

I

-UC. Let A be a right ideal of R maximal with respect to
the property that I \ A = 0. It is well known that I ⊕ A is an essential right ideal of R and, hence, I ⊕ A is
a ⌧

I

-essential right ideal of R because (R/(I ⊕ A))I = 0. By Theorem 1.1 (5), R = I ⊕ A. It follows that
I = eR for some e = e

2 2 R. Let E be a right ideal of R containing I such that E/I is an essential right ideal
of R/I. Then E is an essential right ideal of R and clearly E is ⌧

I

-essential in R. Again, using Theorem 1.1,
E = R. Thus, the ring R/I does not contain a proper essential right ideal and, hence, R/I is a semiprime
Artinian ring. Conversely, suppose that I = eR for some idempotent e 2 R such that the ring R/I is semiprime
Artinian. Let F be a right ideal of R such that F is ⌧

I

-essential in R

R

. Because R/F is ⌧

I

-torsion, we have
(R/F )I = 0 and, hence, I ✓ F. Furthermore, F is essential in R

R

and I is closed in R

R

so that F/I is
an essential right ideal of R/I by [4, p. 6]. But R/I is semiprime Artinian implies that F/I = R/I and, hence,
F = R. By Theorem 1.1, every R-module is ⌧

I

-UC.

Corollary 1.3 is proved.

2. Further Results

Let R be a ring and let M be an R-module. Given a submodule L of M and an element m 2 M, by (L : m),

we denote the set of elements r 2 R such that mr 2 L. Note that (L : m) is a right ideal of R.
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Lemma 2.1. Let R be any ring. The following conditions are equivalent for the torsion theories ⇢ and ⌧

on Mod-R.

(1) Every ⇢-essential right ideal of R is a ⌧ -essential right ideal of R.

(2) For every R-module M, every ⇢-essential submodule of M is a ⌧ -essential submodule of M.

Proof. (2) ) (1). Apply (2) in the case M = R.

(1) ) (2). Let M be an R-module and let L be a ⇢-essential submodule of M. Then L is an essential
submodule of M and M/L is ⇢-torsion. Let m 2 M and let A = (L : m). Then A is an essential right ideal
of R such that R/A

⇠
=

(mR + L)/L so that R/A is ⇢-torsion. Thus, A is a ⇢-essential right ideal of R.

In particular, R/A is ⌧ -torsion and, hence, (mR + L)/L is ⌧ -torsion, as well. Therefore, M/L is ⌧ -torsion
and L is a ⌧ -essential submodule of M.

Lemma 2.1 is proved.

Note the following result:

Proposition 2.1. Let R be any ring. Consider the following conditions for the torsion theories ⇢ and ⌧

on Mod-R.

(1) ⇢  ⌧.

(2) Every ⇢-essential right ideal of R is a ⌧ -essential right ideal of R.

(3) Every ⌧ -UC R-module is ⇢-UC.

Then (1) ) (2) ) (3).

Proof. (1) ) (2). Clear.

(2) ) (3). Let M be an R-module which is not ⇢-UC. By [1] (Theorem 3.4), there exist an R-module X

and a proper ⇢-essential submodule Y of X such that X ⊕ (X/Y ) embeds in M. Now (2) and Lemma 2.1 show
that Y is a ⌧ -essential submodule of X. Applying [1] (Theorem 3.4) again, we see that M is not a ⌧ -UC-module.

Proposition 2.1 is proved.

Corollary 2.1. Let R be any ring and let ⌧ be a torsion theory on Mod-R. Consider the following condi-
tions:

(1) ⌧

G

 ⌧.

(2) Every essential right ideal of R is a ⌧ -essential right ideal of R.

(3) Every ⌧ -UC R-module is a UC-module.

Then (1) , (2) ) (3).

Proof. (1) ) (2) ) (3). By Proposition 2.1.

(2) ) (1). Let M be a nonzero singular R-module. Let m 2 M. Then ann

R

(m) is an essential and, hence,
⌧ -essential, right ideal of R. Then mR

⇠
=

R/ann

R

(m) is ⌧ -torsion. Therefore, M is ⌧ -torsion. Thus, ⌧
G

 ⌧.

Corollary 2.1 is proved.

We now present criteria for ⌧
G

 ⌧.
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Proposition 2.2. Let R be any ring and let ⌧ be a torsion theory on Mod-R. Then the following statements
are equivalent:

(1) ⌧

G

 ⌧.

(2) For any R-module M and any submodule N of M, there exists a submodule K of M such that
N \K = 0 and N ⊕K is ⌧ -essential in M.

(3) For any right ideal A of R, there exists a right ideal B of R such that A \ B = 0 and A ⊕ B is
⌧ -essential in R

R

.

(4) Every singular R-module is ⌧ -torsion.

Proof. (1) ) (2). Assume that ⌧
G

 ⌧. Let N be a submodule of M. By Zorn’s Lemma, there exists
a submodule K of M maximal with respect to the property N \K = 0. Then N ⊕K is essential in M. Hence
M/(N ⊕K) is singular. By assumption, M/(N ⊕K) is ⌧ -torsion and, therefore, N ⊕K is ⌧ -essential in M.

(2) ) (3). Clear.

(3) ) (4). Let M be any singular module. For any x 2 M, we have xR

⇠
=

R/ ann

R

(x) where ann

R

(x) is
an essential right ideal of R. Now R/ ann

R

(x) and, hence, xR is ⌧ -torsion by (3). Therefore, M is ⌧ -torsion.
Thus, every singular module is ⌧ -torsion.

(4) ) (1). Let X be any ⌧

G

-torsion module. There exists a submodule Y of X such that both Y and X/Y

are singular. By (4) both Y and X/Y are ⌧ -torsion. It follows that X is ⌧ -torsion. Thus, ⌧
G

 ⌧.

Proposition 2.2 is proved.

Further, we note that, in Proposition 2.1, statements (2) and (3), in general, do not imply (1) as shown by
the following example:

Example 2.1. There are rings R and torsion theories ⇢ and ⌧ on Mod-R such that every ⇢-essential right
ideal of R is a ⌧ -essential right ideal of R (and, hence, every ⌧ -UC-module is ⇢-UC ) but this is not the case
⇢  ⌧.

Proof. Let

R =

"
F F

0 F

#

be the ring of 2⇥ 2 upper triangular matrices over a field F. The right ideals of R are

0, I1 =

"
F F

0 0

#
, I2 =

"
0 F

0 F

#
, and I(x,y) =

("
0 xc

0 yc

# ���� c 2 F

)

for some x, y 2 F and R. Let ⌧
I1 = {N 2 Mod-R | NI1 = 0} and ⌧

I2 = {N 2 Mod-R | NI2 = 0} denote
the torsion theories determined by the idempotent ideals I1 and I2, respectively. The ring R has I2 as its only
essential right ideal. Since (R/I2)I2 = 0, I2 is a ⌧

I2-essential right ideal of R. On the other hand, R does not
have any ⌧

I1-essential right ideal except R itself. Hence, every ⌧

I1-essential right ideal of R is a ⌧

I2-essential
right ideal of R. Since I(0,1)I1 = 0 and I(0,1)I2 = I(0,1) 6= 0, I(0,1) is a ⌧

I1-torsion but not ⌧
I2-torsion module.

Hence ⌧

I1 ⇥ ⌧

I2 .

Example 2.1 is completed.
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Combining Proposition 2.1 and Example 2.1, we see that, in general, (3) does not imply (1) in Proposition 2.1.
We do not know whether (3) implies (2) in Corollary 2.1. In some situations, (2) does imply (1) in Proposition 2.1.
Thus, we have the following result:

Proposition 2.3. Let R be a ring and let ⇢ and ⌧ be torsion theories on Mod-R such that ⇢  ⌧

G

. Then
⇢  ⌧ if and only if every ⇢-essential right ideal of R is a ⌧ -essential right ideal of R.

Proof. The necessity follows by Proposition 2.1. Conversely, suppose that every ⇢-essential right ideal of R
is a ⌧ -essential right ideal of R. Let M be a ⇢-torsion module. There exists a submodule N of M such that
both N and M/N are singular. Let m 2 N. Since N is singular, ann

R

(m) is an essential right ideal of R.

Since ⇢ is a hereditary torsion theory, mR is ⇢-torsion and, thus, R/ ann

R

(m) is also ⇢-torsion because mR

⇠
=

R/ ann

R

(m). This implies that ann
R

(m) is a ⇢-essential right ideal of R and, therefore, a ⌧ -essential right ideal
of R. Hence, R/ ann

R

(m) is ⌧ -torsion, i.e., mR is ⌧ -torsion for all m 2 N and, thus, N is ⌧ -torsion. Similarly,
M/N is ⌧ -torsion. Therefore, M is ⌧ -torsion. It follows that ⇢  ⌧.

Proposition 2.3 is proved.

Let ⌧ be any torsion theory on Mod-R. For any R-module M, Z

⌧

(M) denotes the set of elements m in M

such that mE = 0 for some ⌧ -essential right ideal E of R. Note that Z
⌧

(M) is a submodule of the singular
submodule Z(M) of M.

Theorem 2.1. Let R be a ring and let ⌧ be a hereditary torsion theory on Mod-R such that Z
⌧

(R

R

) = 0.

Then ⌧

G

 ⌧ if and only if every ⌧ -UC-module is UC.

Proof. The necessity follows by Proposition 2.1. Conversely, suppose that every ⌧ -UC-module is a UC-
module. Let E be any essential right ideal of R. Suppose that R/E is not ⌧ -torsion. Then there exists a proper
right ideal F of R such that E ✓ F and R/F is a ⌧ -torsion-free R-module. Let M denote the R-module
R ⊕ (R/F ). Note that Z

⌧

(R

R

) = 0 and Z

⌧

(R/F ) = 0 and, hence, Z

⌧

(M) = 0. By [1] (Corollary 3.5),
M is a ⌧ -UC-module. However, since F is a proper essential right ideal of R, M is not a UC-module by [10]
(Theorem); a contradiction. Thus, the R-module R/E is ⌧ -torsion for every essential right ideal E of R. This
means that every singular module is ⌧ -torsion. By Proposition 2.2, ⌧

G

 ⌧.

Theorem 2.1 is proved.

3. The Lambek Torsion Theory

Let R be a ring. For any R-module M, E(M) denotes the injective hull of M. Let ⌧
L

denote the Lambek
torsion theory on Mod-R. Recall that ⌧

L

is the (hereditary) torsion theory on Mod-R whose torsion class consists
of all R-modules M such that Hom(M,E(R

R

)) = 0. For basic facts about the Lambek torsion theory, see [5, 9].
Recall that the ring R is called right nonsingular provided that R

R

is ⌧
G

-torsion-free.

Lemma 3.1. Let R be any ring. Then:

(1) ⌧

L

 ⌧

G

;

(2) ⌧

L

= ⌧

G

if and only if R is right nonsingular.

Proof. (1) By [9] (Ch. VI, Corollary 6.5).

(2) By [9] (Ch. VI, Proposition 6.7 and Corollary 6.8).
Lemma 3.1 is proved.

Lemma 3.2. Let E = E(R

R

). Then an R-module M is ⌧
L

-torsion if and only if ann
E

(ann

R

(m)) = 0 for
all m 2 M.
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Proof. Let m 2 M and let e 2 ann

E

(ann

R

(m)). We define a mapping ' : mR ! E by '(mr) = er

(r 2 R). It is easy to check that ' is well defined and that it is an R-homomorphism. Moreover, for every
homomorphism ✓ : mR ! E, we have ✓(m) 2 ann

E

(ann

R

(m)). Since E is injective, the result follows.
Lemma 3.2 is proved.

Corollary 3.1. A submodule N of an R-module M is a ⌧

L

-essential submodule of M if and only if

(a) N is an essential submodule of M, and

(b) ann

E

(N : m) = 0 for all m 2 M, where E = E(R

R

).

Proof. The submodule N is a ⌧

L

-essential submodule of M if and only if (a) holds and M/N is ⌧
L

-torsion.
It is necessary to apply Lemma 3.2.

Corollary 3.1 is proved.

Theorem 3.1. A ring R is right nonsingular if and only if every ⌧

L

-UC-module is UC.

Proof. The necessity follows by Lemma 3.1 (2). Conversely, suppose that every ⌧

L

-UC-module is UC.

We know that ⌧
L

 ⌧

G

. Further, we show that Z
⌧L(RR

) = 0. Suppose that x 2 Z

⌧L(RR

). Then there exists
a ⌧

L

-essential right ideal I of R such that xI = 0. Thus, I is essential in R

R

and R/I is ⌧
L

-torsion. Therefore,
Hom

R

(R/I,E(R

R

)) = 0. We define a mapping ✓ : R/I ! E(R

R

) by ✓(r + I) = xr for all r 2 R. Since
xI = 0, ✓ is well defined and is clearly an R-homomorphism. Thus, x = 0. It follows that Z

⌧L(RR

) = 0.

By Theorem 2.1, ⌧
G

 ⌧

L

. We have proved that ⌧
G

= ⌧

L

. Finally, Lemma 3.1 gives that R is right nonsingular.
Theorem 3.1 is proved.

Let R be a ring. Recall that R is called a right Kasch ring if every simple right module is embedded in R.

Quasi-Frobenius rings are among examples of right Kasch rings (see, e.g., [7], Theorem 3.4). More generally, right
pseudo-Frobenius rings are also examples of right Kasch rings (see, e.g., [7], Lemma 1.42 and Theorem 1.57).
This brings us to our final theorem.

Theorem 3.2. The following statements are equivalent for a ring R :

(1) R is a right Kasch ring.

(2) Every ⌧

L

-torsion module is zero.

(3) Every module is a ⌧

L

-UC-module.

Proof. (1) ) (2). Let R be a right Kasch ring and let M
R

6= 0. For 0 6= m 2 M, there exists a maxi-
mal submodule K of mR. Then there is an embedding ' : mR/K ! R and an embedding ◆ : R ! E(R

R

).

By the injectivity of E(R

R

), the homomorphism ◆' extends to a nonzero homomorphism ✓ : M/K ! E(R

R

).

If ⇡ : M ! M/K denotes the natural epimorphism, then ✓⇡ is a nonzero homomorphism from M to E(R

R

).

Hence, Hom
R

(M,E(R

R

)) 6= 0.

(2) ) (3). By Theorem 1.1.

(3) ) (1). Let V be any simple R-module. Then V

⇠
=

R/P for some maximal right ideal P of R. If P
is not an essential right ideal of R, then there exists a nonzero right ideal U of R such that P \ U = 0. In this
case, R = P ⊕ U and, hence, V ⇠

=

R/P

⇠
=

U. We now suppose that P is an essential right ideal of R. Since
P 6= R, statement (3) combined with Theorem 1.1 implies that R/P is not ⌧

L

-torsion. Thus, there exists a nonzero
homomorphism ↵ : V ! E(R

R

). It follows that V ⇠
=

'(V ) ✓ R because R is essential in E(R

R

). We have
proved that R is a right Kasch ring.

Theorem 3.2 is proved.
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