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TRIGONOMETRIC APPROXIMATION OF FUNCTIONS IN
GENERALIZED LEBESGUE SPACES WITH VARIABLE EXPONENT

R. Akgiin UDC 517.938.5

We investigate the approximation properties of the trigonometric system in ng(t'). We consider the mod-
uli of smoothness of fractional order and obtain direct and inverse approximation theorems together with
a constructive characterization of a Lipschitz-type class.

1. Introduction

Generalized Lebesgue spaces LP®™) with variable exponent and the corresponding Sobolev-type spaces
are extensively applied in elasticity theory, fluid mechanics, differential operators [31, 10], nonlinear Dirichlet
boundary-value problems [24], problems of nonstandard growth, and variational calculus [33].

These spaces appeared for the first time in [28] as an example of modular spaces [14, 26]. Sharapudinov [36]
established the topological properties of LP&)  Furthermore, if

p* :=esssup p(x) < oo,
xeT

then LP™) isa special case of the Musielak—Orlicz spaces [26]. Later, many mathematicians studied the principal
properties of these spaces [36, 24, 32, 12]. There is a rich theory of boundedness of integral transforms of various
types in LP™) [22, 33,9, 37].

For p(x) := p, 1 < p < oo, LP™ coincides with the Lebesgue space LP?; the basic problems of
trigonometric approximation in L” were investigated by numerous mathematicians (among others, see [39, 19,
30, 40, 6, 4], etc.). The problems of approximation by algebraic polynomials and rational functions in Lebesgue
spaces, Orlicz spaces, symmetric spaces, and their weighted versions on sufficiently smooth complex domains and
curves were studied in [1-3, 15, 18, 16]. For a complete treatise on polynomial approximation, we refer the reader
to the books [5, 8, 41, 29, 35, 23].

In the harmonic and Fourier analyses, some operators (e.g., the operator of partial sum of Fourier series,
conjugate operator, operator of differentiation, and operator of shift f — f (-4+ h), h € R) are extensively
used to prove approximation inequalities of direct and inverse types. Unfortunately, the space L? &) is not p()-
continuous and not translation invariant [24]. Under various assumptions (including translation invariance) im-
posed on the modular space, Musielak [27] established some approximation theorems in modular spaces with
respect to the ordinary moduli of smoothness. Since LP™) s not translation invariant, by using Butzer—Wehrens-
type moduli of smoothness (see [7, 13]) Israfilov et al. [17] obtained direct and inverse trigonometric approximation
theorems in LP™).
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In the present paper, we study the approximation properties of the trigonometric system in Lgy(r'). We consider
the moduli of smoothness of fractional order and obtain direct and inverse approximation theorems together with a
constructive characterization of a Lipschitz-type class.

Let T := [—m, ] and let P be the class of 2m-periodic Lebesgue measurable functions p = p(x): T —
(1, 00) such that p* < oco. We introduce the class ng(T') = ng(r') (T) of 2m-periodic measurable functions f
defined on T and satisfying the inequality

/ | £ () P9 dx < 0.
T

The class Lgy(r') is a Banach space [24] with the norms

p(x)

J(x) dx| <1

o

1y = 1 @l rr =i 3> 0: [ ‘
T

and
1@ = sup / f()g(ldx: g € L2O, / g7 @ dx < 1
T T

which possess the property!

LAy = 11f I e - (1

where p’(x) := p(x)/ (p (x) — 1) is the exponent conjugate to p(x).
We say that a variable exponent p(x) defined on T possesses the Dini—Lipschitz property DL, of order y
on T if

1 Y
sup {|P(X1)—p(X2)}3|X1—XzI58} (lng) <c¢, 0<d<l.

x1,x2€T
Let f € L;(T'), let p € P possess the property DLy, let 0 < h <1, and let

x+h/2

ahf(x)::% / fydt, xeT,

x—h/2

be the Steklov mean operator. In this case, the operator oy, is bounded [37] in Lgy(r'). Using these facts and setting
x,t €T, 0<a <1, wedefine

00 h/2 h/2
1
Ggf(x)::(l—ah)af(x):Z(—l)k(i)h_k / / fx4+u+...4+up)duy...dug, 2)
k=0 —h/2  —h)2

I The relation X =< Y means that there exist constants C, ¢ > 0 such that cY < X < CY. Throughout the paper, ¢, C,c1,c2,... denote
constants different in different cases. The relation X, = O(Y,), n = 1,2,..., means that there exists a constant C > 0 such that
Xn <CYy forn=1,2,....
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where f e LY )

2

(Z) ::a(a—l)..];!(a—k+l) for k> 1, ((f) =, (g) =1,

and [ is the identity operator.

Since the binomial coefficients (Z) satisfy the relation [34, p. 14]

c(a)

o +
(k) = Kot keZ™,
we get
> o
Cl@):=>)_ (k) < 00

and, therefore,
I3 fllpre < €1 Nlp < 00,

provided that f € ng(r'), p € P possesses the property DL, and 0 < h < 1.

For 0 <o <1 and r = 1,2,3,..., we define the fractional modulus of smoothness of index r + a for

fe Lgy(r'), p € P possessing the property DL, and 0 < h <1 as follows:

4[1(1'_0hi)agfa

i=1

Qrya (f:8)p) = sup
0<h;,h<§

b,

and
Q (fpey = sup Joif ],
0<h=<$
By inequality (3), we conclude that

Qrta (f 5)1,(.) =c ||f||p,:r ’

where f € ng(r'), p € P possesses the property DL;, 0 < h < 1, and the constant ¢ > 0 depends only on «,

r, and p.

Remark 1. The modulus of smoothness Q4(f,6),(), « € R, has the following properties for p € P

possessing the property DLj:
() Qq (f,8),() is a nonnegative nondecreasing function of § > 0;
() Qo (f1+ f2,)p0) = QR (f1,)p0) T Qo (f2:)p0) 5
(iii) Sli_%fza(f, 8)py = 0.
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Let
En(f)py 1= Jnf IIf =Tlpms n=0.12....,

be the error of approximation of a function f € Lé’jg'),

degree not greater than .

where 7, is the class of trigonometric polynomials of

For a given f € L', assuming that

[ Fx)dx = 0, 4
T

we define the ath fractional (o« € RT) integral of f as follows [42, Vol.2, p. 134]:

Io(x, f):= ) cx (k)™ e,

keZ*

where

Ck :=/f(x)e_ikxdx for ke Z*:={+l,+2,+3,...}
T

and

(k)™ := |k|™* e (C1/2miasignk

as the principal value.
Let @ € RT be given. We define the fractional derivative of a function f € L' satisfying (4) as

[@]+1
SO = g lia-a (X f),

provided that the right-hand side exists; here, [x] denotes the integer part of a real number x.

Let WY,. p € P, a >0, be the class of functions [ € ng([') such that /@ ¢ Lé’](r'). The class W
becomes a Banach space with the norm

1/ lwe = 1 g + 1S

The main results of this work are the following:

Theorem 1. Let f € Wp"(.), o € RT, and let p € P possess the property DL, with y > 1. Then, for
every natural n, there exists a constant ¢ > 0 independent of n and such that

En(f)p(.) < ﬁﬁvn(f(a))p(.).
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Corollary 1. Under the conditions of Theorem 1, the following relation is true:

En(f)p(') = m”f(a”p,f

where ¢ > 0 is a constant independent of n = 0,1,2,3,....

Theorem 2. If « € R, p € P possesses the property DLy, with y > 1, and f € ng(r'), then there exists
a constant ¢ > 0 dependent only on a and p and such that the following relation holds for n = 0,1,2,3,...:

2
E ) <cQ \ .
n(f)p()_c a(fn-i-l)p(,)

The following inverse theorem of trigonometric approximation is true:

Theorem 3. If o € RT, p € P possesses the property DL, with y > 1, and f € ng(t'), then the
following relation holds for n = 0,1,2,3,...:

T

a—1
n+lL0‘(n+naZ:@+1) Ey()pe-

Qa (f
where the constant ¢ > 0 depends only on a and p.

Corollary 2. Let o € R™, let p € P possess the property DL, with y > 1, andlet f € Lé’fr’), If

En(f)py =0 (n7%), c6>0 n=12,...,

then
0(8). o> o,

Qu (f:8),0) = 108 log(1/8))). a =o,

0(8%), @ <o

Definition 1. For 0 < o < o, we set
Lmammﬁy:{feLM)Q(f&ﬂ)— wﬂ,5>q.

Corollary 3. Let 0 <o <, let p € P possess the property DL, with y > 1, and let f € Lp(). Then
the following conditions are equivalent:

(a) f €Lipo (e, p());

(b) En(f)py=0@m), n=12,....
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Theorem 4. Let p € P possess the property DL, with y > 1 andlet f € Lgfr'). If B €(0,00) and

o0
Z vﬂ_lEv(f)p,n < 00,

v=1

B
then f € Wp(.) and

En(f®)), <c ((n + DPE(poy+ Y vPTIE, (f)p(.)) ,

v=n-+1
where the constant ¢ > 0 depends only on 5 and p.

Corollary 4. Suppose that p € P possesses the property DL, with y > 1, f € Lgy(r), B € (0,00), and

o0
D VT EL(f)py < 00
v=1
for some o > 0. In this case, for n = 0,1,2, ..., there exists a constant ¢ > 0 dependent only on «, B, and p

and such that

i (f(a) n+1)p() (n+1)f3 Z(”+1)a+ﬂ VEW()poy e Z VI E (f)po)-

v=n+1
The following theorem on simultaneous approximation is true:

Theorem 5. Let B € [0,00), let p € P possess the property DL, with y > 1, and let f € L;(T'). Then
there exist T € T, and a constant ¢ > 0 dependent only on o and p and such that

”f(ﬂ) —_7® Hp’n < cE, (f(ﬂ))p(~)'

Definition 2 (Hardy space of variable exponent H?") on a unit disc I) with boundary T := dD) [21]. Let
p(2): T —(1,00) be a measurable function. We say that a complex-valued analytic function © in D belongs to
the Hardy space HPO if

, P4
sup /‘@(re”})‘p( )dﬂ < 400,

O<r<1
where p(¥) = p(eiﬁ) and ¥ € [0,2n] (and, therefore, p (¥) is a 2mw-periodic function). Let

p = inf p(z) and P = sup p(z2).

zeT zeT
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If p > 0, then it is obvious that H? c HPY) ¢ HP. Therefore, if f e HPO and p > 0, then nontangential
boundary values f(eie) exist a.e. on T and f(eie) € ng(T') (T) . Under the conditions 1 < p and p < 0o,

HPY) becomes a Banach space with the norm

1/ Iz = | £ ()]

=inf{ A > 0:[
p,m, T
T

Theorem 6. If p € P possesses the property DL, with y > 1, [ belongs to the Hardy space H r()
on D, and r € RT, then there exists a constant ¢ > 0 independent of n and such that

1

_ . k i0 _
“f(z) ];)ak(f)z Sch(f(e ). —n+1)p(.), n=0,12,...,

HprO

where aip(f), k =0,1,2,3,..., are the Taylor coefficients of f at the origin.

2. Some Aucxiliary Results

We begin with the following lemma:

Lemma A [20]. For r € R, let

(i) ay+ax+...+an+ ...
and

(ii) a1 +2"ar+...+n"an + ...

be two series in a Banach space (B, ||-||). Let

Ry i= 2": (1_ (nil)r)ak

k=1

and

forn=1,2,.... Then

“Rﬁﬁ* <e. n=12,...,

for some ¢ > 0 if and only if there exists R € B such that

|7 ]

In
|

where ¢ and C are constants that depend only on one another.
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Lemma B [38]. If p € P possesses the property DL, with y > 1 and f € Lgy(r'), then there are constants
c,C > 0 such that

[ —cy (5)

and

[Sn ) [r < C 1S Ny ©)

forn=1,2,....

Remark 2. Under the conditions of Lemma B, the following conclusions can be made:

(1) itreadily follows from (5) and (6) that there exists a constant ¢ > 0 such that
1S =Sn ) pm < CEalpey = En(S ) o

(i1) it follows from the generalized Holder inequality [24] (Theorem 2.1) that

L9 Lt
Foragiven f € L!, let
a s oe] '
f(x) -~ ?0 + Z (ap coskx + by sinkx) = Z cke’kx )
and
_ oo
f(x) - Z (ay sinkx — by, coskx)
k=1
be the Fourier series and the conjugate Fourier series of f, respectively. Setting A (x) := cxe'k* in (7), we

define

Sa(f) = Su(x, £)i= 3 (Ae(x) + A4 (x)) = “70 + Y (ag coskx + by sinkx), n=0,1,2,...,
k=0 k=1

n k o
R (fix):=>" (1 - (—) ) (Ak (x) + A_g(x)).

= n—+1

and

1
RY) R for m=1,23,.... ®)

1
{ m+1Y ™" om+ 1Y | m
2m + 1 m+1
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Under the conditions of Lemma B, using (6) and the Abel transformation, we get
IR (fix) |, Clfllpm- n=123.... xeT. feLi?
and, therefore, it follows from (8) and (9) that

|05 (S0 |y <cWflpm. m=1.2.3..... xeT. felf).

From the property (see (16) in [25])
2m

[(11<+1)r o [V S, e T
- =m+1

O (fH(x) = —5-
k=m+1

it is known (see (18) in [25]) that
®§;:) (Tm) =T

for Ty € T, m=1,2,3,....

fell,

©)

10)

Lemma 1. Let T, € Ty, let p € P possess the property DLy, with y > 1, and let r € R™. Then there

exists a constant ¢ > 0 independent of n and such that
” Tn(r) ”p,n <cn' ”T””P:TF :

Proof. Without loss of generality, one can assume that ||7,||, , = 1. Since

To =) (Ac(x) + A (),

k=0
we get
T < .
3 [ ) = Ao /7]
k=1
and
T(") n
2o =i YK | (k) = A /" .
k=1

In this case, by virtue of (9) and (5), we have

T,
(r) 1n

< ATl = == I Tallpz =

pr =7 pre

b,
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whence, applying Lemma A (with R = 0) to the series
n

Z[(Ak(x)—A_k(x))/nr]+0+0+...+0+...,
k=1

Zk’[(Ak(x)—A_k(x))/n’]+0—|—O+...+O+...,

k=1
we obtain
n k r
() -] =
k=1 D,
namely,
Tn(r) n k r
()] | £0- () el -]
P, k=1 D,
n k r - r
- (1—(n+1) )k [(Ak(x)—A_k(x))/” ] = Cx.
k=1 D,

Since R,(,r) (cf)= ch,r) (f) forevery real c, it follows from relation (10) and the last inequality that

170, = H@)ff) (Tn(r))H =

e = [0 (1)

n’

b,

7"
=n" @,(,lr) l’l_r < cxn” = cun’ ”Tn”p,yr .
p.m
The general case follows immediately from this.
Lemma 2. If p € P possesses the property DL, with y > 1, f € sz(_), and r =1,2,3,...,

Q (f’ S)p() = cSZQr_l (f//v 8)17(.) , 6>0,

with some constant ¢ > 0.

Proof. Setting

r

gx):= [ —on) 100,

=2

R. AKGUN

then
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we get

r

( _Uhl) glx) =

i=1

and

’ hy/2

[T =o0n)fx) =

1=

—h1/2

Therefore, it follows from (1) that

r

[T —on)f &

i=1

p,T
/22t u/2
~ 2h
0 —u/2
hi1/2 2¢ 1 u/2
SL//u - / g’ (x +s)ds dudt
2]’[1 u
00 —u/2 p.
hi1/2 2t
¢ Vi _ 2 "
soi [ [ulelpauar =i g,
0 0
Since
.
g'(x) =
i=2
we obtain

Q ,5 L\ < h2 "
FFBpo = s et g,

i=1.2...r

r—1
=c8% sup 1_[ (I —on;) f"(x)
0<h;<$ j=1
J=2...., r—1

Lemma 2 is proved.

/ (g) — g (x + 1) di =

= c8% sup
0<h <8

10 =on) fx)

hi/22t u/2

1 "
m///g (x + s)dsdudt.

0 0 —u/2

< —sup / / / / g" (x + s)dsdudt||go (x)| dx: go eLé’;(') and [|go(x)|p/(x) dx <1
T

10 —on) /"),

]_[( —op,) f"(x)

b,

= c82Qr-1 (f".8) ) -

b,
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Corollary 5. If r =1,2,3,..., p € P possesses the property DL, with y > 1, and f € sz(f), then
Qr (f.8)p) < 82" || f©@7 §>0,
p,T
with some constant ¢ > 0.
Lemma3. Let @ € RT, let p € P possess the property DL, with y > 1, let n = 0,1,2,..., and let
Tw € Tn. Then
b1 c
Qo l T, —— < 7@ ,
a(n n—i—l)p(.)_(l’l—i—l)“ T p.x
where the constant ¢ > 0 depends only on o and p.
Proof. First, we prove thatif 0 <o < 8, a,f € RT, then
Qg (f)pe) ¢ Qa (fi)p(, - (11
It is easily seen that if « < B, «, B € 7T, then

We now assume that 0 < « < 8 < 1. In this case, setting ®(x) := oj f(x), we get

h/2 h/2

o0
_ (B—a) 1
a}‘? a(b(x):Z:(—l)J( j w7 <I>(x+u1+...uj)du1...duj
J=0 —hj2  —h/2
o h/2 h/2 0
=Z(—1)](18j )h_/ / / |:Z(_1)k(k)h_k
J=0 —h/2  —hj2 “k=0
h/2 h/2
X / / f(x—i—ul+...uj—|—uj+1+...uj+k)du1...dujduj+1...duj+kj|
—h/2 —h/2
00 oo | h/2 h/2
; —a)\ [«
=ZZ(—1)]+k(lBj )(k) e / / f(x+u1+...uj+k)du1...duj+k
J=0k=0 ~h/2  —h/2
00 18 | h/2 h/2
_ _ B
__22(_1y)(v)53 /).“ /‘j%x—%u1+..Jthu1“.duv-—th(x) a.e.

v=0 —h/2  —h/2
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Then

ok £

_ || B v
‘p’ﬂ = Hoh CID(JC)HWr <c Hah f(x)Hp,n'

and

Qp (£ )pr < € L (£ )y - (13)

Note that if r{,7, € ZT and ay,B; € (0,1), then, taking o := r; + «y and B := rp + By for the remaining
cases ry = rp, a1 < f1, or ry <rp, a1 = PB1, or r; < rp, o1 < B and using (12) and (13), one can easily
verify that the required inequality (11) is true.

Using relation (11), Corollary 5, and Lemma 1, we get

2[a]
Qq (Tn, z ) < ¢ Qg (Tn, d ) <c ( i ) ‘ Tn(2[(¥])
n+1/p0 n+1),0 n+1 pu
¢ ¢
< - NGECE) HT(a) _ @[
= (n + 1)2[(1] (n + ) n o (n + 1)0‘ n Do

which is the required result.

Definition 3. For p € P, [ € ng(r'), 8 >0, and r =1,2,3,..., the Peetre K-functional is defined as
follows:

} . (14)
P,

Theorem 7. If p € P possesses the property DL, with y > 1 and f € LEO then the K-functional

2w
K (82r, f; Lg,g), sz(f)) in (14) and the modulus Qy (f,8),y, r=1,2,3,..., are equivalent.

K(.1:180W50) = int {17 =l 4
2

Proof. If h € sz(f ) then, by virtue of Corollary 5 and (14), we have

Qr (£.8)p) S llf =hlly + 8 |hCD

2r .7 p0) 2r
L SeK (8. £: 150, w2).

We estimate the reverse of the last inequality. The operator Lg defined by

§/2 2t u/2
(Ls f) (x) = 35—3// / F4s)dsdudi, xeT,
0 0 —u/2
18 bounded in Lgft') because
§/2 2t

ILs S, <3673 / / w0 f e dudt < |1 f pr
0 0
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We prove that

d? c
= Lef = —(] —
12 sf 5z L —08) [,

where ¢ 1is a real constant. Since

8/2 2t u/2
(Lsf) (x) = 36~ 3// / F(x+s)dsdudi
0 —u/2
8/22t| x+u/2 x—u/2

=35—30/0[ O/f(s)ds— O/ f(s)ds | dudt,

using the Lebesgue differentiation theorem we get

§/2 2t x+u/2 x—u/2

d _ d d
Swsnw=3= [ [15 [ seda-5 [ reds|duar
0 0 0 0

8/2 2t

=35 S 4+u/2)— f(x—u/2) (dudt
!![ X u X u ]M
§/21 x+t

— 6573 faydu+ | fayd e.
0/{/ i / . } e

Using the Lebesgue differentiation theorem once again, we obtain

§/2 x4+t x—
d2
5 (Ls ) () =657 / { [ fndu + — / (u)dui| dt

0 0

8/2

=65—3/[f(x+l)—f(x)+f(x—l)—f(x)]dl
0
§/2 §/2

/f(x+z)dz+/f(x—z)dz—af(x)
0 0

R. AKGUN
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8/2 0
6 |1 1
=5 E/f(x+t)dt+§/f(x+t)dt—f(x)
| 0 ~8/2
8/2
6 |1
=5 E/f(x%—t)dt—f(x)
| —8/2
8/2
—6 1 —6
=5 f(x)—g / f(x+1t)dt :8—2(1—03)f(x) a.e.
—5/2
The last equality implies by induction on r that
d?r c
dxerngST(l—O'g)r‘f, r = 1,2,3,... a.c.

Indeed, for r = 2, we have

dx2 \ dx2 dx?

d? [ d? d> (-6
= d \a2t) =g\ U oo

= _—6(d—2(1—05)u) = _—6(d—2(1—05)L5f) a.e.
X dx?

d* d? d? d? d?
WLﬁf =75 (—Lﬁf) =75 (WLS (Ls f =: u))

52 \ dx2 52
Since
d? d?
WUS (Lsf) =05 (mLsf) )
we get

d? d? d?
W(I—US)LSJF = WLSJ{—WUS (Ls f)

d2 2

d? d
= WL(S]{ —0g (WL(gf) = (I —oy) [dszgf] a.e.,
and, therefore,
d* 2 2

—6 (d —6 d
qu%f = 52 (W (I—US)LSf) = 8—2(1—08) |:dx2L8f]

15
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6 —
— (I —os) 5 —os) f 84 (I-05)°f ae.

Now let

d2(r—1) (r 1

(r-1)

m f 82(" ) (1 0'5) f a.c.

Then

42" . d? _d2(r—1) —1) d? 420—1 —1)
st e o SRS bl e

d> [ ¢ d? c
— (r—1) — (=1
dx? [ §2(r—1) (I =) u:| dx? [82(’ o =08 8f:|

_ ¢ I — (r—1) d? I
_82(’——1)( 05) s 52,( —os)" [ ae.

Setting AL := [ — (I — Lg)r , we prove that

d2r d2r )
— AL <c|—L%f and AL f e W
H dx2r Do dx2r 8 oo 8
For r = 1, we have
2 2
1,. 1 \1 1 d d
Agf=I1—-(I—-Lgf) =Lgf  and Hdz‘sfpn Hdz‘sfpn
Since
d2
mLsf 82 (I —os) f.

wegetAfe p() For r =2,3,..., using

—I—I—Lr Z( l)r j+l() r(r ])’

we obtain

d2r
H dx2r Ay

r—1 2r
r d r(r—j)
<3 (7)ot

T j=0

D,

We estimate

d* r(r J)
Hd 2r f

p,

R. AKGUN
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as follows:

r(r 7)
dx2r f

=

b,

d2r r ( (r—7j)
Ly f u)
dx2r 78\ Do
d2r ¢ .
| lpu-erid,,

(I —o5) [L(r J)f]’

52r (I'=05) [L(r ])f]’ 52r

D,

(7)at [0

b,

Since o5 (Lg f) = Ls (05 f), we have 0§ [L§r_j)f] = Lgr_j) (Géf) and, hence,

Cc

— S2r
D, 8

r(r J)f

=

IA

s2r

The last inequality yields

d2r
‘ dx2r
Therefore,
d2r
Since

s2r

§2r

v (7)eh [167]

D,
S () i)
i= DT

A B ()]
i=0

S ()

- 52r
D, p,T
d2r
r _ _
“(1 —0s) pr,n = 82’ (I—-o0s)" f o =1 er ’
d2r )
r r r
<c mL and A(gf S Wp()
2%
d*r c c
T lil | = U =09, 2 = 55 (S 80,
D,

r—1

F=(-LgY L.

Jj=0

17
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we get

(1= L5) gl . < el —Ls)gllpn

§/2 2t
<3¢57 f / U (T = 0u) gllyn dudt <c sup |1 —0u) gl -
O<u<$§
0 0
Taking into account that
r
|7 =457 = =) 1]

by a recursive procedure we obtain

| f=A5f], .= €3 H (I —oy) (1 —L5)"" f“m

-2
<c sup sup |({ —op) U —o01,) (I_Lg)r prn

0<t1<6 0<tr<§

r

<...<c sup H(I—Gt,-)f(x)
0<ti§8 i=1
i=1.2,..., r Y24

=cC Q,« (f,(g)p(.).

Theorem 7 is proved.

3. Proof of the Main Results

Proof of Theorem 1. We set Ay (x, f) := aj coskx + by sinkx. Since the set of trigonometric polynomials
is dense [22] in Lgy(r'), for a given f € Lgft') we have E,(f),) — 0 as n — oo. From the first inequality in
Remark 2, we have

) =) Ar(x, f)
k=0

in the norm |||, , . For k =1,2,3,..., we can find
an  an am  amw
s =t s+ 5~ ) i (o5 - )
x(x, ) = aj cos x+2k o + by sin x+2k %
=Ak(x—i-Z—Z,f)coso%-l—Ak(x—l-Oz‘—Z,f)sino%

and

am

Ay (x, f("‘)) — k% A, (x + 3 f) .
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Therefore,

D" Ak(x f) = Aolx. f) +cos 5= Y Ak (x +—f)—|—sm—ZAk( x+ 55 )

k=0 k=1
(074 > (04 s ~
= Ao(x, f) + cos 7kg:lk—mk (x, f(“)) + sin 7};1{%,{ (x, f("‘))

and, hence,

o0 o0
f(x) = Su(x, f) = coso%r Z kiaAk (x, f(“)> + sinag Z kLAk ( f(“))
k=n+1 k=n+1

Since

i kA, (x, f(“))

k=n+1

= 3 (5 () - r90) (5 (1) 0]
k=n+1

=Y e 07 (S (@) = 7O0) = 17 (50 (£ @) - 10)

k=n+1
and
S ke (v, )
k=n+1
Y (et ) (5 ( F9) = FO0) = 0 17 (50 (- 79) - FO0).
k=n+1
we obtain
FO=S0CNlpm = >0 K=+ 17 |50 (-1 @)= r@0]
k=n+1 ’
For s (@) s 0|

19
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+ > (k= (k+ D7)

) S ( f(a)) _ f@q, “M

k=n+1
F s, (. 79) - 700
o (e —a (@) —ap (@
<e| X G-+ E(S@) et DE(F@)
k=n+1 P P
o0
Fo| Y =+ ) E (F@) oo+ D (7) ,
k=n+1 ’ ,
Consequently, it follows from the equivalence in Remark 2(i) that
£ () = Sn(x, llpn
< 3 kK™% —(k +1)7 D™ | {E (f@ En(f@
<c| > | k+1D)™) +@n+1) (S9) T ESY)
k=n+1 P r
o0
(o) —o —a —a ¢ (o)
chn(f )po o kT -k + D)+ 5—(n+1)aEn(f )p(.).

k=n+1
Theorem 1 is proved.

Proof of Theorem 2. Weput r —1 <a <r, r € ZT. For g € sz(f), by virtue of Corollary 1, relation
(14), and Theorem 7, we have
-]

g(Zr)

En(f)pe) = En (f = 8)p() + En (8)p() = ¢ [Ilf ~gllpr + (1 + 7

p— * 1
<K ((n +1) 2r,f;L§,‘,),W,,2{)> S ey (f’n n 1) o
0

as required for r € Z*. Therefore, by the last inequality, we have

En(f)p(~) <cQy (f» 1/(” + 1))p(.) <cQy (f»ZT[/(”l + 1))p(-) , n=20,1,2,3,...,

and, by (11), we get

En(f)pe) = ¢ Qr (f.27/(n + D)y < ¢ Qa (f. 27/ (n + 1)y -

whence the required assertion follows.
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Proof of Theorem 3. Let T, € 7T, be the best approximating polynomial for f € Lé’](r') and let m € ZT.

Then, by Remark 1(ii), we have

Qu(fit/n + l)p() <Qu(f—Tom,m/(n + 1))1)() + Qo (Tom, w/(n + 1))p()

< cEn(f)pe) + Qo (T2m, 7w/ (n + 1)), -

Since

m—1
T3 () = T 0 + Y AT, ) - T ).

v=0

by virtue of Lemma 3 we get

5 [t

p,n}'

< 2"t En ()pe

Q (sz n/(n+1))p()_W{H (05)

Lemma 1 gives

D,

< sza ||T2v+1 - T2V ||

v+l T P, —
and
(@) _ ” (o) (o)
“ 1 D, 1 0 P ¢ O(f)p()

Hence,

. m—1

Qg (sz,yr/(n + 1))p() < m {EO(f)p() + Z 2(V+1)(¥E2v (f)P()} .
v=0

Using

21)

20 (N =€ D BT EL(fpeys v =123,
M:Z"_l-‘rl

we obtain

Qo (Tom, w/(n + 1)),

m 2Y
< N Eo(f)pey + 2Er(S o+ Y wTUEL()po
(n+1) e
C 2"
= r e | U ho + Y T EL(po S - 1) Z‘ W+ ¥ E(f)p0-

n=1
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If we choose 2 <n + 1 < 2™t then

D+ DT E()p0)s

c
Qo (Tom, 1 NS
o (Tom,7t/(n + 1)) = o+ 1 2

1)«

Eam(f)p) = Eam=1 (f)p() = m YWD E (Nyy -
v=0

The last two inequalities complete the proof.

Proof of Theorem 4. For the polynomial T}, of the best approximation of f, according to Lemma 1, we
have

T2 =P = €t T = Tl <282 Byt ()0

Hence,

o o o

Yoo = Tailys = | T2 -1] 43 1T = Tl

i=1 g i=1 P i=1

o0
<c Y mPTUEn(f)pe) < oo
m=2

Therefore,

IThi+1 — Thillys — 0 as i — oo
F10)
This means that {7;} is a Cauchy sequence in Lé’]g). Since T,; — f in Lé’f;) and Wpﬂ(_) is a Banach space,

we conclude that f € Wpﬂ(.).

On the other hand, since
[P =sur )| =[SO = sur |+ k;z [ S0 (7P =53 1P|

for 2™ < n < 2m*! we have

< 2" DBE, (£)p0) < e+ DP Ea(f)pe)-

S22 (fP) = S0 D)
D,
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On the other hand,

oo oo
3 ” Syt (FB) = Sy (f(/s))HM <c Y 2P EL (1),

k=m+2 k=m+2

o0 o0
=c Z vﬂ_lEv (f)p(,) <c Z Uﬂ_lEv(f)p(.).
v=2m+141 v=n+1
Theorem 4 is proved.
Proof of Theorem 5. We set
1 2n
Wo(f) := Walx, f) := P DSy f). n=0.12.....
V=n
Since
Wa(, £ @) = W9, £),
we have

[r@0-120n)|

< | F90 =Wl £ @)

|

T W) = TG 1)

e n-r@emn)|

p’ﬂ p’n

=11+ I+ Is.

We denote by 7,7 (x, f) the best approximating polynomial of degree at most n for f in ng(r'). In this case, the

boundedness of the operator S, in Lé’j(T') implies the boundedness of the operator W,, in L gy(r ), and we obtain

h= | F@90 =T F@)

| TG @) = Wa, 1)

p, b,

< eEn(f ey + [WaC T = 1)< eEn(£ 0.

Using Lemma 1, we get

I < cn® [Tn (s Wa(f)) — Ta(, f)”p,n
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and

I3 < c 2Qn)* [[Wu(, ) — Ta(, Wn(f))”p,n’ <c(@2n)® Ey (Wy (f))p(-) .

We now have

170 G W () = Tu s O)llp.n
SNTuCWa () = Wal Ollpz + 1Wa s ) = fOllpz + 17O = TaC Hlipx

< cEn (Wa(f)pey + CEn(fpe) + CEn(fpey-
Since

Eyn (Wn(f))p(-) < cEn(f)p

we get

[F@QO =T = eEa(F )y +enEn Wa(F Dy + en En(Fpes + ¢ @) En W (f ey

< CEx(f )0y + cn®En(f)pe-
Since, according to Theorem 1,

En(/p0 = B o

we obtain

p. = ckn (f(a))p(’)-

ARIORFRION))

Theorem 5 is proved.

Proof of Theorem 6. Let f € HPO (D). First of all, if p(x) defined on T possesses the Dini—Lipschitz
property DL, for y > 1 on T, then p (eix), x € T, defined on T possesses the Dini—Lipschitz property
DL, for y > 1 on T. Since HP®) c H' (D) for 1 <p, let

00
Z ﬂkeike
k=—00

be the Fourier series of the function f (e?%) and let

n

Su(£,0):= Y Pre'’

k=—n



TRIGONOMETRIC APPROXIMATION OF FUNCTIONS IN GENERALIZED LEBESGUE SPACES WITH VARIABLE EXPONENT 25

be its nth partial sum. Since f(eie) € H' (D), we have [11, p.38]

Therefore,

If ¢ is the best approximating trigonometric polynomial for f (%) in L

0, for k <0,
Bi =
ar(f), for k>0.
[ =) ap(f)F =1f =Sa (£ )pr - (15)
k=0 HPO

p()

2w

then, using relations (6) and (15)

and Theorem 2, we get

11.
12.
13.

14.
15.
16.

17.

[ =" ar(f)F

k=0 HrO

A

“f () - t,’,“(G)HWr + |80 (f =10,

= ¢n (f(eie))p(o =8 (f(eie)’ n—il)pc) '

Theorem 6 is proved.
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