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MONOGENIC FUNCTIONS IN A BIHARMONIC ALGEBRA

S. V. Grishchuk  and  S. A. Plaksa UDC 517.96

We present a constructive description of monogenic functions that take values in a commutative
biharmonic algebra by using analytic functions of complex variables.  We establish an isomor-
phism between algebras of monogenic functions defined in different biharmonic planes.  It is
proved that every biharmonic function in a bounded simply connected domain is the first compo-
nent of a certain monogenic function defined in the corresponding domain of a biharmonic plane.

An associative algebra of the second rank with identity commutative over the field of complex numbers  C
is called biharmonic if it contains a basis  e e1 2,{ }   that satisfies the conditions 

e e1
2

2
2 2

0+( ) = ,      e e1
2

2
2 0+ ≠ , (1)

which is also called biharmonic. 

It was shown in [1] that there exists a unique biharmonic algebra  B  whose basis (note that it is not bihar-

monic) consists of the identity of the algebra  1  and an element  ρ  for which  ρ2 0= .  In the same work, all bi-

harmonic bases  e e1 2,{ }   were described and it was shown that they form the two-parameter family 
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α α
α

ρ , (2)

where  i  is the imaginary unit and the complex numbers  α1 0≠   and  α2   can be chosen arbitrarily.  Here and
in what follows, the presence of the symbol  ±  in a relation means that either the upper signs or the lower signs
should be chosen simultaneously. 

The biharmonic plane  μe e1 2,   is understood as the linear span  μ ζe e xe ye
1 2 1 2, := ={ +  : x, y ∈ }R   of

the elements  e1   and  e2   over the field of real numbers  R. 

We associate a domain  D  of the Cartesian plane  xOy  with the domain  D xe ye x y Dζ ζ: : ( , )= = + ∈{ }1 2

congruent to it in the plane  μe e1 2, . 

Since  α1 0≠   in (2), any nonzero element of a biharmonic plane is invertible.  Therefore, the derivatives
of functions defined in domains of a biharmonic plane are defined in the same way as in the complex plane. 

A function  Φ : Dζ → B   is called monogenic in a domain  Dζ   if, at every point  ζ ζ∈ D ,  there exists the

finite limit 
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which is called the derivative of the function  Φ  at the point  ζ . 
If a function 

Φ( ) ( , ) ( , ) ( , ) ( , )ζ = + + +U x y e U x y ie U x y e U x y1 1 2 1 3 2 4 iie2 ,

(3)
ζ = +xe ye1 2 ,

where  U Dk : → R ,  k = 1 4, ,  has continuous derivatives up to the fourth order inclusive in the domain  Dζ ,

then, by virtue of the equality 
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and condition (1), each component  U x yk ( , ) ,  k = 1 4, ,  of this function is a biharmonic function, i.e., it satis-
fies the biharmonic equation 

Δ2 0U x y( , ) = . (5)

in the domain  D. 
Similarly to monogenic functions in the complex plane, the monogenic functions defined in a domain  Dζ

of an arbitrary biharmonic plane  μe e1 2,   and taking values in the biharmonic algebra  B  form an algebra, which

is denoted by  M( , ),μ ζe e D
1 2

. 

In [2], monogenic functions defined in domains of a biharmonic plane whose biharmonic basis is formed by
the elements 

e1 1= ,      e i
i

2
2

= − ρ (6)

were considered and necessary and sufficient conditions for their monogeneity (Cauchy – Riemann conditions)
were established; we write these conditions here in a folded form: 

∂
∂

=
∂

∂
Φ Φ( ) ( )ζ ζ

y x
e2       ∀ = + ∈ζ ζxe ye D1 2 . (7)

It can be established by analogy that function (3) is monogenic in a domain  Dζ   of an arbitrary biharmonic

plane  μe e1 2,   if and only if its components  U x yk ( , ) ,  k = 1 4, ,  are differentiable in the domain  D  and the

following equality is true: 

∂
∂

=
∂

∂
Φ Φ( ) ( )ζ ζ
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x
e1 2     ∀ = + ∈ζ ζxe ye D1 2 . (8)
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In the present paper, we give a constructive description of all monogenic functions in a plane  μe e1 2,   by

using monogenic functions of complex variables and establish an isomorphism between algebras of monogenic
functions defined in different biharmonic planes.  We also show that every biharmonic function in a bounded
simply connected domain is the first component of a certain monogenic function (3) and determine the latter in
an explicit form. 

1.  Constructive Description of Monogenic Functions in a Plane  μμe e1 2,

The unique maximum ideal  J ≡ ∈{ }c cρ : C   of the algebra  B  is associated with a linear continuous

functional  f : B C→   with kernel  J  such that  f ( )1 1= .  Let  G  denote the domain in  C  onto which the

functional  f  maps the domain  Dζ .  Consider the linear operator  A  that associates every function  Φ : Dζ → B
with a function  F GΦ : → C   according to the relation  F z fΦ Φ( ) : ( )= ( )ζ ,  where  ζ = xe ye1 2+   and  z  : =

f ( )ζ  = α1( )x iy± . 

In this case, it is obvious that if a function  Φ  is monogenic in the domain  Dζ ,  then  F zΦ( )  = ( ) ( )AΦ z   is

a monogenic function of the complex variable  z  in the domain  G,  i.e., it is holomorphic if  z = α1( )x iy+   and
antiholomorphic if  z = α1( )x iy− . 

By analogy with Theorem 2.4 in [3], one can prove the following statement: 

Theorem 1.  Every function  Φ: Dζ → B   monogenic in the domain  Dζ   can be represented in the form 

Φ Φ Φ( ) ( ) ( ) ( ) ( )ζ
π

ζ ζ
γ

= − +−∫
1

2
1

0
i

t t dtA      ∀ ∈ζ ζD , (9)

where  γ  is an arbitrary closed rectifiable Jordan curve in the domain  G   that encloses the point  f ( )ζ ,
and  Φ0 : Dζ → J   is a function monogenic in the domain  Dζ   and taking values in the ideal  J. 

Note that the complex number  z f= ( )ζ   is the spectrum of an element  ζ  of the algebra  B,  and the inte-

gral in equality (9) is the principal extension of the monogenic function  F z z( ) ( ) ( )= AΦ   of the complex vari-
able  z  to the domain  Dζ . 

It follows from Theorem 1 that the algebra  M( , ),μ ζe e D
1 2

  can be decomposed into the direct sum of the

algebra of principal extensions of monogenic functions of complex variables to  Dζ   and the algebra of functions

monogenic in  Dζ   and taking values in the ideal  J. 

The theorem below describes all monogenic functions defined in a domain  Dζ   of an arbitrary biharmonic

plane  μe e1 2,   and taking values in the ideal  J  in terms of monogenic functions of complex variables. 

Theorem 2.  Every function  Φ0: Dζ →J   monogenic in the domain  Dζ   and taking values in the ideal

J  can be represented in the form 

Φ0 0( ) ( )ζ ρ= F z     ∀ ∈ζ ζD , (10)

where  F G0 : → C   is a monogenic function of the complex variable  z f= ( )ζ . 
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Proof.  Since  Φ0   takes value in the ideal  J,  the following equality is true: 

Φ0 0( ) ( , )ζ ϕ ρ= x y      ∀ = + ∈ζ ζxe ye D1 2 . (11)

where  ϕ0 : D → C . 
Function (11) satisfies the monogeneity condition (8) for  Φ Φ= 0  : 

∂
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∂
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x
e     ∀ ∈( , )x y D . (12)

Using relation (2) and the expression 
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for the element inverse to  e1 ,  we obtain 

ρ ρe e i1
1

2
− = ± .

Taking this equality into account, we reduce condition (12) to the form 

∂
∂

= ±
∂

∂
ϕ

ρ
ϕ

ρ0 0( , ) ( , )x y

y
i

x y

x
     ∀ ∈( , )x y D .

Taking into account the uniqueness of a decomposition of elements of the algebra  B  in the basis  1, ρ{ } ,  we get

∂
∂

= ±
∂

∂
ϕ ϕ0 0( , ) ( , )x y

y
i

x y

x
     ∀ ∈( , )x y D .

Therefore,  F z0( )  : = ϕ0( , )x y   is a monogenic function of the complex variable  z = f xe ye( )1 2+   in the do-
main  G. 

The theorem is proved. 

Theorem 3.  Every function  Φ : Dζ → B   monogenic in the domain  Dζ   has derivatives of all orders

in  Dζ . 

Proof.  The function  Φ  is defined by equality (9) in which the integral has derivatives of all orders in the
domain  Dζ   and the monogenic function  Φ0   can be represented in the form (10) and, hence, is infinitely dif-

ferentiable with respect to the variables  x  and  y  in the domain  D.  Therefore, the derivative  ′Φ0   satisfies con-
ditions of the form (8) in  Dζ ,  i.e., it is a monogenic function.  By analogy, we establish that derivatives of all

orders of the function  Φ0   are monogenic functions in the domain  Dζ . 

The theorem is proved. 
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It follows from Theorem 3, equality (4), and condition (1) that the components  U x yk ( , ) ,  k = 1 4, ,  of
every function (3) monogenic in the domain  Dζ   satisfy the biharmonic equation (5) in the domain  D. 

By virtue of equalities (9) and (10), all monogenic functions  Φ : Dζ → B   can be represented by using two

arbitrary complex-valued monogenic functions  F z( )   and  F z0( )   of a complex variable  z G∈   as follows: 

Φ( ) ( ) ( ) ( )ζ
π

ζ ζ ρ
γ

= − + ( )−∫
1

2
1

0
i

F t t dt F f     ∀ ∈ζ ζD . (13)

In [2], the principal extensions of holomorphic functions of complex variables to a biharmonic plane  μe e1 2,

based on vectors (6) were constructed in an explicit form. 
To obtain the principal extension of a monogenic function  F z( )   of a complex variable  z x iy G= ± ∈α1( )

to the domain  Dζ   of an arbitrary biharmonic plane  μe e1 2, ,  we use the resolvent decomposition 
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2
     ∀ = + ∈ζ ζxe ye D1 2      ∀ ∈t γ

in the basis  1, ρ{ } .  As a result, we get 

1
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ζ
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F t t dt F z
F z

z
iy

( ) ( ) ( )
( )

− = − ′ ±⎛
⎝⎜

⎞−∫ ⎠⎠⎟ ρ      ∀ = + ∈ζ ζxe ye D1 2 . (14)

In particular, if  α1 1= ,  α2 0= ,  and the basis elements  e1   and  e2   of the biharmonic plane  μe e1 2,   are

defined by (6), then the right-hand side of equality (14) is simplified and equality (13) takes the form 

Φ( ) ( ) ( ) ( )ζ ρ= − ′ −⎛
⎝⎜

⎞
⎠⎟F z

iy
F z F z

2
0      ∀ = + ∈ζ ζx ye D2 , (15)

where  z ≡ f ( )ζ  = x + i y ∈ G. 
Note that, in [14], equality (15) was obtained (in a different form) for monogenic functions under additional

assumptions on the geometry of the domain  Dζ . 

2.  On an Isomorphism of Algebras of Monogenic Functions Defined in Different Biharmonic Planes

First, we consider several auxiliary statements. 

Lemma 1.  Suppose that biharmonic bases  e e1 2,{ }   and  � �e e1 2,{ }   are connected by the relations 

�e e r1 1 1= + ρ ,      �e e r2 2 2= ± +( )ρ ,     r1 , r2 ∈C . (16)

If a function  Φ : Dζ → B   is monogenic in the domain  Dζ   of the biharmonic plane  μe e1 2, ,  then the

function 
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� �Φ Φ Φ( ) ( ) ( ) ( )ζ ζ ζ ρ= + ′ +xr yr1 2 (17)

is monogenic in the domain  � �Dζ  : = �ζ{  = xe ye� �1 2±  : ζ = xe ye D1 2+ ∈ }ζ   of the biharmonic plane  μ � �e e1 2, . 

Proof.  First, we prove that the monogeneity of a function  Φ( )ζ   in the domain  Dζ   yields the monoge-

neity of function (17) in the domain  � �Dζ .  To this end, we show that the function  �Φ   satisfies necessary and suf-

ficient monogeneity conditions of the form (8), i.e., the conditions 
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∂
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�
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�Φ Φ( ) ( )ζ ζ

y
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e1 2      ∀ = ± ∈� � � �ζ ζxe ye D1 2 . (18)

By virtue of the monogeneity of the functions  Φ  and  ′Φ ,  the following equalities hold for all  ζ ζ∈ D : 
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y
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Using relations (16), (17), and (19), we obtain 
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∂
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=  ′ + +( ) + ′′ +Φ Φ( ) ( ) ( ) ( )ζ ρ ζe e r e r e xr yr e e1 2 2 1 1 2 1 2 1 22 .

By analogy, using the equalities 

∂
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= ′
Φ

Φ
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( )
ζ

ζ
x

e1 ,      
∂ ′

∂
= ′′

Φ
Φ

( )
( )

ζ
ζ

x
e1,

which are valid for all  ζ ζ∈ D ,  and the monogeneity of the functions  Φ  and  ′Φ ,  we get 

±
∂

∂
= ′ + +( ) + ′′

� �
�Φ

Φ Φ
( )

( ) ( ) (
ζ

ζ ρ
x

e e e r e r e2 1 2 2 1 1 2 ζζ) ( )xr yr e e1 2 1 2+ .

Thus, the function  �Φ   satisfies conditions (18), i.e., it is monogenic in the domain  � �Dζ . 

The lemma is proved. 

Lemma 2.  Suppose that biharmonic bases  e e1 2,{ }   and  � �e e1 2,{ }   are connected by relations (16) and

a function  � � �Φ : Dζ → B   is monogenic in the domain  � �Dζ   of the biharmonic plane  μ � �e e1 2, .  Then there ex-

ists a unique function  Φ( )ζ   monogenic in the domain  Dζ   : =  ζ ζ ζ= + = ± ∈{ }xe ye xe ye D1 2 1 2: � � � � �  of the bi-

harmonic plane  μe e1 2,   that satisfies equality (17). 
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Proof.  Consider the function 

Φ Φ Φ( ) ( ) ( ) ( )ζ ζ ζ ρ= − ′ +� � � � �xr yr e1 2 1
2     ∀ ∈ζ ζD . (20)

The monogeneity of this function in the domain  Dζ   can be proved by analogy with the monogeneity of func-

tion (17) in the domain  � �Dζ   (see the proof of Lemma 1). 

Let us prove that function (20) satisfies equality (17).  For this purpose, we multiply both sides of equality

(20) by  ρ  and then differentiate them with respect to  x.  As a result, we get 

∂
∂

=
∂

∂
Φ Φ( ) ( )ζ

ρ
ζ

ρ
x x

� �
    ∀ ∈ζ ζD . (21)

Taking into account the relations 

∂
∂

� �Φ( )ζ
x

  =  � � �′Φ ( )ζ e1 ,      
∂

∂
Φ( )ζ

x
  =  ′Φ ( )ζ e1 ,      �e e1 1ρ ρ= ,

and equality (21), we obtain 

� � �
� �

�
� �

′ =
∂

∂
=

∂
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=
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Φ
Φ Φ Φ

( )
( ) ( ) (

ζ ρ
ζ

ρ
ζ

ρe
x

e
x

e1
2

1 1
ζζ

ρ ζ
)

( )
∂

= ′
x

e e1 1Φ .

By virtue of these relations, function (20) satisfies equality (17). 

Finally, we prove the uniqueness of a monogenic function  Φ  that satisfies equality (17).  To this end, it

suffices to show that the function  �Φ ≡ 0   in  D�ζ   is associated only with the function  Φ ≡ 0   in  Dζ .  Indeed,

for  �Φ ≡ 0 ,  relation (17) takes the form 

Φ Φ( ) ( ) ( )ζ ζ ρ+ ′ + ≡xr yr1 2 0 . (22)

Multiplying identity (22) by  ρ  term by term, we get  Φ( )ζ ρ ≡ 0 ,  which, in turn, yields 

′ + ≡Φ ( ) ( )ζ ρxr yr1 2 0 . (23)

Finally, comparing identities (22) and (23), we conclude that  Φ ≡ 0 . 
The lemma is proved. 

Theorem 4.  Let a biharmonic basis  e e1 2,{ }   be formed by elements (6) and let  � �e e1 2,{ }   be an arbi-

trary biharmonic basis whose elements are represented by equalities of the form (2).  Also assume that  Dζ   is

a domain of the biharmonic plane  μe e1 2,   a n d   � �Dζ  : = � � �ζ ζ ζ= ± = + ∈{ }xe ye xe ye D1 2 1 2:   is the corre-

sponding domain of the biharmonic plane  μ � �e e1 2, .  Then the algebras  M( , ),μ ζe e D
1 2

  a n d   M( , ),μ ζ� � ��e e D
1 2

are isomorphic, and the correspondence between the functions  Φ ∈ M( , ),μ ζe e D
1 2

  and  �Φ  ∈ M( , ),μ ζ� � ��e e D
1 2

is established by equality (17), where  r1 2 1: /= α α ,  r2  : = i(α1
2  + 2 11 2α α − )  / ( )2 1

2α ,  and   α1   a n d   α2

are the same complex numbers as in equalities (2) for the elements of the basis  � �e e1 2,{ } . 
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Proof.  We consider a biharmonic basis  � �e e1
1

2
1( ) ( ),{ }   such that 

� �e e1
1

1 1
( ) /= α ,      � �e e2

1
2 1

( ) /= α

and define the domain  � �D
ζ( )
( )

1
1   : =  �ζ{ ( )1

 = xe ye� �1
1

2
1( ) ( )±  : ζ = xe ye1 2+  ∈ Dζ}   in the plane  μ � �e e1

1
2
1( ) ( ),

. 

We associate every function  Φ ∈ M( , ),μ ζe e D
1 2

  with a function  �Φ( )1  ∈  M μ
ζ� � �
�

e e
D

1
1

2
1 1

1
( ) ( ) ( ),

( ),( )   by a rela-

tion of the form (17).  Since the elements of the basis  � �e e1
1

2
1( ) ( ),{ }   are associated with the elements  e1   and  e2

by relations of the form (16), by virtue of Lemmas 1 and 2 the indicated correspondence between the algebras

M( , ),μ ζe e D
1 2

  and  M μ � �e e1
1

2
1( ) ( ),( , � �D

ζ( )
( )

1
1 )   is bijective.  It follows from the equalities 

� � � �Φ Φ1
1 1

2
1 1( ) ( ) ( ) ( )ζ ζ( ) ( )   =  Φ Φ Φ Φ1 1 1 2 2 2 1( ) ( ) ( ) ( ) ( ) (ζ ζ ρ ζ ζ+ ′ +( ) + ′ +xr yr xr yr22 ) ρ( )

=  Φ Φ Φ Φ1 2 1 2 1 2( ) ( ) ( ) ( ) ( )ζ ζ ζ ζ ρ+ ( )′ +xr yr

that the product of the functions  �Φ1
1( ) , �Φ2

1( )  ∈  M μ
ζ� � �
�

e e
D

1
1

2
1 1

1
( ) ( ) ( ),

( ),( )   corresponds to the product of the functions

Φ1 , Φ2  ∈ M( , ),μ ζe e D
1 2

,  i.e., the algebras  M( ,μe e1 2
, Dζ )   and  M μ

ζ� � �
�

e e
D

1
1

2
1 1

1
( ) ( ) ( ),

( ),( )   are isomorphic. 

Finally, we establish an isomorphism between the algebras  M μ
ζ� � �
�

e e
D

1
1

2
1 1

1
( ) ( ) ( ),

( ),( )   and  M( , ),μ ζ� � ��e e D
1 2

  by

the equality 

� � � �Φ Φ( ) : ( ) ( )ζ ζ= ( )1 1 ,     � �ζ α ζ= 1
1( ) .

The monogeneity of the function  �Φ   in the domain  � �Dζ   obviously follows from the monogeneity conditions (8)

for the function  �Φ( )1   and the inequality  α1  ≠ 0. 
The theorem is proved. 

By virtue of Theorem 4, it suffices to study monogenic functions in the biharmonic plane  μe e1 2,   con-

structed on the basis of vectors (6). 

3.  Representation of Biharmonic Functions in the Form of Components of Monogenic Functions

In what follows, the basis elements  e1   and  e2   of a biharmonic plane  μe e1 2,   are defined by (6). 

Let us show that every function  U x y1( , )   biharmonic in a bounded simply connected domain  D  of the
Cartesian plane  x Oy  is the first component of a certain function (3) monogenic in the corresponding domain
Dζ   of the biharmonic plane  μe e1 2, . 
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Consider several auxiliary statements. 

Lemma 3.  Any monogenic function (3) for which  U1 0≡   has the form 

Φ( )ζ = − + − − +( )i ax kx ay by n2 2   +  e ay by c2
22 2+ +( )

+  ie axy bx ky m2 2− − + +( )     ∀ = +ζ xe ye1 2 , (24)

where  a,  b,  c,  k,  m,  and  n  are arbitrary real constants. 

Proof.  The monogeneity condition (7) has the following componentwise form (see [2]): 

∂
∂

=
∂

∂
U x y

y

U x y

x
1 3( , ) ( , )

, (25)

∂
∂

=
∂

∂
U x y

y

U x y

x
2 4( , ) ( , )

, (26)

∂
∂

=
∂

∂
−

∂
∂

U x y

y

U x y

x

U x y

x
3 1 42
( , ) ( , ) ( , )

, (27)

∂
∂

=
∂

∂
+

∂
∂

U x y

y

U x y

x

U x y

x
4 2 32
( , ) ( , ) ( , )

. (28)

Substituting the function  U1 0≡   in equality (25) and integrating the latter with respect to the variable  x,
we get 

U x y u y3 3( , ) ( )=     ∀ ∈( , )x y D . (29)

Here and in the remaining part of the proof,  uk ,  k = 2, 3, 4,  are certain infinitely differentiable functions

u Dk
y: → R ,  where  Dy   is the projection of a domain  D  to the axis  Oy. 

Integrating equality (27) with respect to the variable  x  and taking into account the identity  U1 0≡   and
equality (29), we obtain 

U x y
x

u y u y4 3 4
2

( , ) ( ) ( )= − ′ +     ∀ ∈( , )x y D . (30)

Substituting relations (29) and (30) into equality (28) and integrating it with respect to  x,  we get 

U x y x u y xu y u y2
2

3 4 2
1

4
( , ) ( ) ( ) ( )= − ′′ + ′ +     ∀ ∈( , )x y D . (31)
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Taking (30) and (31) into account, we reduce equality (26) to the form 

− ′′′ + ′′ + ′ + ′ =
x

u y xu y u y u y
2

3 4 2 3
4

1

2
0( ) ( ) ( ) ( )     ∀ ∈( , )x y D . (32)

Further, differentiating equality (32) twice with respect to the variable  x,  we obtain

′′′ = ′′ =u y u y3 4 0( ) ( )     ∀ ∈y Dy , (33)

′ + ′ =u y u y2 3
1

2
0( ) ( )     ∀ ∈y Dy . (34)

Integrating equalities (33) the corresponding number of times with respect to the variable  y,  we determine the
functions  u3   and  u4 : 

u y ay by c3
22 2( ) = + + ,      u y ky m4 ( ) = +     ∀ ∈y Dy , (35)

where  a,  b,  c,  k,  and  m  are arbitrary real constants. 
Substituting functions (35) into equalities (29) and (30), we get 

U x y ay by c3
22 2( , ) = + +     ∀ ∈( , )x y D , (36)

U x y axy bx ky m4 2( , ) = − − + +     ∀ ∈( , )x y D . (37)

By analogy, substituting the function  u3   into equality (34) and integrating the latter with respect to  y,  we
obtain 

u y ay by n2
2( ) = − − +      ∀ ∈y Dy , (38)

where  n  is an arbitrary real constant.  Substituting functions (35) and (38) in (31), we get 

U x y ax kx ay by n2
2 2( , ) = − + − − +      ∀ ∈( , )x y D . (39)

Finally, substituting the components  U1 0≡ ,  (36), (37), and (39) in decomposition (3) of the monogenic

function  Φ,  we obtain equality (24). 
The lemma is proved. 

Lemma 4.  Let  D  be a bounded simply connected domain of the Cartesian plane  x  O y.  If   F   is a

holomorphic function in the domain  G : = z{  = x + i y : (x, y) ∈ D}   of the complex plane, then the functions 

Φ1 2 2( ) ( , ) ( , ) ( , ) ( , )ζ = + − +u x y i x y e x y ie u x yv v ,

Φ2 2( ) ( , ) ( , ) ( , ) ( , )ζ = + + −( )yu x y iy x y e x y y x yv vU   +  ie x y yu x y2 V( , ) ( , )+( ) ,
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Φ3 2( ) ( , ) ( , ) ( , ) ( , )ζ = + + −( )xu x y ix x y e x y x x yv vV

+  ie xu x y x y2 ( , ) ( , )−( )U     ∀ = + ∈ζ ζxe ye D1 2

are monogenic in the domain  Dζ   of the biharmonic plane  μe e1 2, ;  here, 

u x y F z( , ) : Re ( )= ,      v( , ) : Im ( )x y F z= ,

U F( , ) : Re ( )x y z= ,      V F( , ) : Im ( )x y z=     ∀ = +z x iy ,

and  F  is the antiderivative of the function  F  in the domain  G. 

The lemma is proved by the direct verification of the monogeneity conditions (7) for the functions  Φ1 ,
Φ2 ,  and  Φ3 . 

It is known that every biharmonic function  U x y1( , )   in a domain  D  is represented by the Goursat formula
(see, e.g., [5, p. 108]) 

U x y z z z1( , ) Re ( ) ( )= +( )ϕ ψ ,      z x iy= + , (40)

where  ϕ  and  ψ  are holomorphic functions in the domain  G  defined in Lemma 4 and  z x iy:= − . 

Theorem 5.  Every function  U x y1( , )   biharmonic in a bounded simply connected domain  D   of the
Cartesian plane  x  Oy  is the first component in decomposition (3) of the following monogenic function in the
domain  Dζ   of the biharmonic plane  μe e1 2, : 

Φ( ) ( ) ( ) ( ) ( ) ( )ζ ϕ ψ ϕ ψ= + + + −( )z z z ie z z z z2 2F , (41)

ζ = +xe ye1 2 ,      z x iy= + ,

where  ϕ  and  ψ  are the functions from equality (40), which are holomorphic in the domain  G  : = z{  =

x + i y : (x, y) ∈ D} ,  and  F   is the antiderivative of the function  ψ  in the domain  G .  All functions mono-
genic in the domain  Dζ   whose first component in decomposition (3) is the function  U1  can be represented

in the form of the sum of functions (24) and (41). 

Proof.  Denoting  u x y z1( , ) : Re ( )= ϕ ,  u x2( , y z) : Re ( )= ψ ,  and  v2( , ) : Im ( )x y z= ψ ,  we rewrite
equality (40) in the form 

U x y u x y xu x y y x y1 1 2 2( , ) ( , ) ( , ) ( , )= + + v . (42)

Using relation (42) and Lemma 4, we establish that function (41) is monogenic in the domain  Dζ   and that its

first component in decomposition (3) is the function  U1.  Finally, by using Lemma 3, we obtain a description of
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all functions monogenic in the domain  Dζ   whose first component in decomposition (3) is the function  U1   in

the form of the sum of functions (24) and (41). 
The theorem is proved. 

This work was partially supported by the Ukrainian State Foundation for Fundamental Research (grant
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