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CONDITIONS FOR THE STABILITY OF AN IMPULSIVE LINEAR EQUATION 
WITH PURE DELAY

I. L. Ivanov 
1  and  B. I. Slyn’ko 

2 UDC 517.9

We establish necessary and sufficient conditions for the stability of one class of impulsive linear
differential equations with delay. 

Stability of solutions of impulsive differential equations, including periodic systems, was studied in
numerous works (see, e.g., [1 – 3]).  Systems of impulsive differential equations with delay were investigated in
[4 – 6].  These investigations were based on the direct Lyapunov method combined with Razumikhin’s concept.
Of special importance is the problem of the construction of an analog of the Floquet theory for this class of dif-
ferential equations.  In the present paper, for a scalar equation with pure delay whose value coincides with the
period of pulse action, under certain assumptions, we construct an analog of the monodromy operator in a func-
tional space and establish necessary and sufficient conditions for the stability of a linear equation.  The method is
based on the comparison principle for discrete mappings [7].  The investigation of stability is reduced to the de-
termination of real roots of a certain transcendental equation. 

Consider the problem of the stability of the differential equation 

�x bx t= −( )θ ,    t k≠ θ ,

(1)

x t cx t t k k( ) ( ),+ = = ∀ ∈θ N0 ,

where  bc ≥ 0  and  θ > 0,  in the space of functions 

X  =  C 0, θ[ )   ∩  C k k
k

1

1

1θ θ, ( )+( )⎛
⎝⎜

⎞
⎠⎟=

∞

∪ .

We have assumed here that  bc ≥ 0  to guarantee the solvability on the real axis for the transcendental equation
introduced below. 

Note that, for  b = 0,  this equation is trivial; this special case is considered in what follows.  We now as-

sume that  b ≠ 0. 
Since  bc ≥ 0,  the following two cases are possible: 

(i) b > 0  and  c ≥ 0; 

(ii) b < 0  and  c ≤ 0. 
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In what follows, we restrict ourselves to case (i), addressing case (ii) only in remarks. 
Denote  Ω = ( , )0 θ .  For Eq. (1), we formulate the initial conditions 

x t f t( ) ( )= ,      t ∈ Ω , (2)

where  f (t)  is a continuous function. 

We take a sequence  ϕn n{ } ∈N0
  of functions  ϕn : Ω → R   and consider the problem 

d t

dt
b tn

n
ϕ

ϕ
( )

( )= −1 ,    t ∈ Ω ,    n ∈N , (3)

ϕ θ ϕn nc( ) ( )− = −1 0 ,

ϕ0( ) ( )t f t= ,    t ∈ Ω , (4)

where the functions  ϕn ,  n ∈N ,  are continuously differentiable in the domain of definition  ( ϕ0   is continu-
ous). 

Definition 1.  System (3) is called stable if, for any  ε > 0,  there exists  δ > 0  such that if 

ϕ0( ) ( )t C Ω   <  δ,

then 

ϕ εn Ct( ) ( )Ω <

uniformly in  n. 

Definition 2.  System (3) is called asymptotically stable if it is stable and  ϕn Ct( ) ( )Ω → 0   as  n → ∞.

It is easy to see that the solutions of problems (1), (2) and (3), (4) are related to one another as follows: 

ϕ θn t x n t( ) ( )= + ,      t ∈( ]0, θ , (5)

Therefore, conditions for stability and asymptotic stability of system (1) are equivalent to conditions for stability
and asymptotic stability of system (3). 

Definition 3.  Let  ϕn{ }   be a solution of (3).  Then the operator  T  :  C( )Ω  →  C( )Ω   defined by the
equality  T n nϕ ϕ= +1   for an arbitrary  n ∈N   is called the monodromy operator for (3). 

It is obvious that this operator admits the representation 

T t c b s dsn n n

t

ϕ ϕ ϕ
θ

( ) ( ) ( )= +
−
∫0 . (6)
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It can be shown that the operator  T  is linear.  Using the Banach–Steinhaus theorem and the definitions of
monodromy operator and stabilities, one can easily verify that the stability of (3) is equivalent to the bounded-

ness of the sequence  T n

C( )Ω
  (here, the norm of an operator is the ordinary operator norm generated by the

norm  ⋅ C( ))Ω ,  and the asymptotic stability is equivalent to the relation 

lim
( )n

n

C
T

→ ∞
=

Ω
0 .

The introduced monodromy operator has the form 

T t c b s dsn n n

t

ϕ ϕ θ ϕ( ) ( ) ( )= + ∫
0

. (7)

Consider the problem of finding the general form of the expression  T n1. 

We investigate  T n1  by taking first several values of  n : 

T 01 1=       on    Ω ,

T c b ds c bt
t

1 1 1
0

= ⋅ + = +∫       on    Ω ,

T T T c c b b c bt ds
t

2

0

1 1= ( ) = + + +∫( ) ( ) ( )θ   =  c cb b ct bt2 21

2
+ + +⎛

⎝⎜
⎞
⎠⎟θ       on    Ω .

This implies that the general form of  T n1  is  T P tn
n1 = ( ) ,  where  P tn ( )   is a polynomial of degree  n. 

It can be shown that 

Tt c
k

btk k k= +
+

+θ
1

1
1 .

Let  bn   denote the free term of the polynomial  P tn ( )   for an arbitrary  n ∈N0 .  For the polynomial  P tn ( ) ,  we
obtain the representation 

P t b
b

n
t b

b

n
t b

b

n
n

n
n

n
n

n

( )
! ( )! ( )

= +
−

+
−

−
−

−

0 1

1
1

2

2

1 2 !!
t b bt bn

n n
−

−+ … + +2
1 . (8)

In this case, we have

P t TP t b
b

n
t b

b

n
t bn n

n
n

n
n

+

+
+= =

+
+ +1 0

1
1

1 2
1

( ) ( )
( )! !

bb

n
t

n
n

−
−

−
+

1
1

1( )!
 … b t cPn n+ ( )θ ,
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whence 

b cP c b b b
n

bn n n n n

n

+ − −= = + + + … +
⎛

⎝⎜
⎞

1 1

2

2 0
2

( )
! !

θ β
β β

⎠⎠⎟
, (9)

where  β θ= b .
Equality (9) is a recurrence relation.  Using this relation, we can determine  bn + 1  for known  b1 , b2 , … ,

bn .  Parallel with this relation, we also consider the relation 

� �b c
k

bn
k

n k
k

+
=

∞

−= ∑1
0

1

!
β (10)

for a certain sequence  �bn{ } .  Since  b0 1= ,  we set  �b0 1= . 

We seek a solution of (10) in the form  �b qn
n=   because, as  n → + ∞,  any solution of system (10) can al-

ways be majorized by the solution proposed above multiplied by a certain constant.  We are interested here in a
sequence with maximum growth.  Then relation (10) takes the form 

q c q
k

n n k
k

k

+ −

=

∞
= ∑1

0

β
!

,

or, on performing transformations and finding the sum of the series, 

q ce q= β/ . (11)

It can be shown that, for  b > 0  and  c > 0  (the case  c = 0  corresponds to an equation with trivially stable zero
solution), the transcendental equation (11) has a unique real root, which is positive.  This follows from the fact
that the function on the right-hand side of the equation takes only positive values and decreases monotonically

on the right half axis from  + ∞  to  1.  By analogy, we establish that, for  b < 0  and  c < 0,  this equation has a
unique real solution, which is negative.  Thus, we assume that  q  satisfies (11).  Then relation (10) holds for
�bn  = qn , n ∈Z . 

For an arbitrary  n ∈N0 ,  we denote

θn
n

n

b

b
= � . (12)

One can verify that  θn   satisfies the relation 

θ θ
β

θ
β

θ
β

β

n
q

n n ne
q q n q

+
−

− −= + + ⎛
⎝⎜

⎞
⎠⎟

+ … +1 1

2

2
1

2

1

! !

⎛⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

n

θ0 . (13)
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Denoting 

β
β

1 =
q

,

we obtain 

θ θ β θ
β

θ
β

θβ
n n n n

n

e
n

+
−

− −= + + + … +
⎛

⎝⎜
⎞

⎠
1 1 1

1
2

2
1

0
1

2! ! ⎟⎟ .

Performing the substitution  A ek
kk

= −β β1( / !) ,  we get 

θ θn k n k
k

n

A+ −
=

= ∑1
0

. (14)

Denote 

S An k
k

n

=
=
∑

0

and  r Sn n= −1 . 

Lemma 1.  Let a sequence  θn   be defined by (12).  Then there exists  θ∗   such that  θ∗  ≤ θn  ≤ 1  unif-
ormly in  n. 

Proof.  Thus,  θ νn n nr+ = −1 1( ) ,  where  νn   is a “weighted mean”: 

νn   =  
A

A

k n kk

n

kk

n

θ −=

=

∑
∑

0

0

.

First, we show that the second inequality in the statement of the lemma is true.  We prove it by the method
of mathematical induction. 

For  n = 0,  we have  θ0 1≤ .  Assuming that the required inequality holds for an arbitrary  k ≤ n  ( θk ≤ 1 ),
we prove it for  n + 1.  Indeed, 

θ ν ν θn n n n
k

kr+ = − ≤ ≤ { } ≤1 1 1( ) max ,

which was to be proved. 
Now consider the first inequality.  Consider one more inequality defined by the recurrence relation 

� �θ θn l nr+ = −1 1( ) ,
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where  l  is such that  � �θ θl k<   for any  k ≤ n,  k ≠ l,  and  �θ0 1= .  Using the method of mathematical induction,

one can easily prove that  l = n,  i.e.,  �θn{ }   decreases monotonically because  1 1− <�rn . 

Using the method of mathematical induction, we show that  θ θn n≥ �   for an arbitrary  n. 

For  n = 0,  we have  θ θ0 0≥ � .  Assuming that the required inequality holds for  l ≤ n  (i.e.,  θ θl l≥ � ),  we

prove that  θ θn n+ +≥1 1
� .  Indeed, 

θ ν θ θn n n
i

i n
i

i nr r r+ = − ≥ { } − ≥ { } −1 1 1 1( ) min ( ) min (� ))   =  � �θ θn n nr( )1 1− = + ,

which was to be proved. 

Let us show that  �θn   is bounded from below by a positive number.  Indeed, 

� � � �θ θ θ θn n n n n nr r r+ − −= − = − − = … =1 1 1 01 1 1 1( ) ( ) ( ) ( −−
=
∑ rk

k

n

)
0

.

Thus, the problem of the boundedness of  �θn   is equivalent to the problem of the convergence (to a nonzero

value) of the product  ( )1
0

−=
∞∏ rnn

.  This product converges if and only if there exists the sum of the series

rnn =
∞∑ 0

  [8].  However, 

r
k

n
k

k n

=
= +

∞

∑ β1
1

1

!
.

We take the minimal  l ≥ n  for which  l > β1   and obtain 

β β β1
1

1
1

1
1

1 1 1k

k n

k

k n

l
k

k lk k k! ! != +

∞

= + = +

∞

∑ ∑ ∑= +   

=  β
β β

1
1

1 1

1

1

1 2
k

k n

l l k l

k lk l l l k! ! ( ) ( )= +

−

= +

∞

∑ ∑+
+ + …

  

<  β
β β β

1
1

1 1

1

11

1
k

k n

l l k l

k l
k l

k

k l l! ! ( )= +

−

−
= +

∞

∑ ∑+
+

=
kk l l

l
k n

l l

! != +
∑ +

+ −
+

1

1 1

11

1

1
1

β β
β   

=  
β β

β
1

1

1
1

1

1

1

k

k n

l l

k l l! != +

+

∑ +
+ −

.

We now eliminate  rn   for which  l > n.  This does not affect the convergence of the series.  Now let  n = l.  Then 
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r
n n n

n
n

e

n

n n n

n
<

+ −
< =

⎛
⎝⎜

⎞
⎠⎟

+β
β

β
β

β
β

π

1
1

1
1

1
1

11

1
2

! !
ee nδ

,

where  δn
n

∈ ⎛
⎝⎜

⎞
⎠⎟0

1

12
,   [9].  Further, we get 

β
β

π
β

π
β

β
δ δ

1
1

1

1

2

1

2

n

n n

n
n

e
e n

n

e
en n

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

< 11

1

11

2n

e

n n

β

β

⎛
⎝⎜

⎞
⎠⎟

<

if we take  n  such that 

n

eβ1
2> .

However, 

β β1

1
1

2n
n=

∞

∑ = .

Therefore, the series  rnn =
∞∑ 0

  is convergent, and the product  ( )1
0

−=
∞∏ rnn

  is also convergent.  Conse-

quently, there exists  θ∗   such that  θ θn > ∗   for all  n ∈N . 
Lemma 1 is proved. 

Lemma 1 yields the following obvious corollary: 

Corollary 1.  Let  bn   be the sequence of free terms of  P t Tn
n( ) ( )= 1 ,  where   T   is the monodromy

operator for (4) for  b  > 0  and  c ≥ 0,  and let  q  be a solution of the equation  q ce q= β/ .  Then the fol-
lowing assertions are true: 

(i) if  q < 1,  then  bn → 0   as  n → ∞; 

(ii) if  q  = 1,  then there exist  n∗ ,  c1,  and  c2 ,  0 < c1 < c2 ,  such that  c1 < bn  < c2   for all

n n> ∗ ; 

(iii) if  q > 1,  then  bn → ∞   as  n → ∞. 

Lemma 2.  Suppose that  P t Tn
n( ) ( )= 1 ,  where  T  is the monodromy operator for (3),  b  > 0,  c ≥ 0,

and  bn > 0   are the free terms of  P tn ( ) .  Then the following assertions are true: 
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(i) if  bn → ∞   as  n → ∞,  then  Pn C( )Ω → ∞   as  n → ∞; 

(ii) if there exists  n∗ ∈N   such that  0 < c1 < bn  < c2   for all  n n> ∗ ,  then there exists  n∗∗

such that  γ γ1 2< <Pn C( )Ω   for all  n n> ∗∗ ; 

(iii) if  bn → 0   as  n → ∞,  then  Pn C( )Ω → 0   as  n → ∞. 

Proof.  1.  Assume that  bn → ∞ .  However, 

Pn C( )Ω   =  b
b

n k
tk

n k
n k

k

n

C

−
−

= −∑
( )!

( )0 Ω
  ≥  Pn ( )0   =  bn .

Therefore,  Pn C( )Ω → ∞   as  n → ∞. 

2.  Assume that there exists  n∗ ∈N   such that  0 < c1 < bn  < c2   for all  n n> ∗ .  Then 

P b
b

n k
t P bn C k

n k
n k

k

n

C

n n( )
( )

( )!
( )Ω

Ω
1

1
0

0=
−

≥ =
−

−

=
∑ >> c1 .

On the other hand, 

P b
b

n k
t b

b

n
n C k

n k
n k

k

n

C

k

n k

( )
( )

( )! (Ω
Ω

1

1
0

=
−

=
−

−

=

−

∑ −−
−

=
∑

k
n k

k

n

)!
θ

0

  

=  b
b

k c
b

c
cn k

k

k

n

n−
=

+∑ = <
( )

!

θ

0
1 2

1 1
.

Thus, 

c P
c

c
n C1

2
1

< <( )Ω       for    n n> ∗ .

3.  Assume that  bn → 0   as  n → ∞.  Then 

Pn C( )Ω1
  =  

b

c
n + 1

  →  0      as    n  →  ∞.

Lemma 2 is proved. 
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Lemma 3.  Suppose that  T  is the monodromy operator for (3),  b > 0,  and  c ≥ 0.  Then 

T fn

C( )Ω
  ≤  f TC

n

C( ) ( )
( )Ω Ω
1       for any    n.

Proof.  It suffices to show that 

T f tn ( )   ≤  f T tC
n

( ) ( ) ( )Ω 1 .

We prove this by the method of mathematical induction.  For  n = 0,  this relation is true because 

T f t0 ( )   =  f t( )   ≤  f C( )Ω   =  f TC( ) ( )Ω
0 1 .

Assume that 

T f tn ( )   ≤  f T tC
n

( ) ( ) ( )Ω 1 .

We get 

T f t T T f t bT f c T f s dsn n n n
t

+ = = + ∫1

0

( ) ( ) ( ) ( )θ   

≤  b T f c T f s dsn n
t

( ) ( )θ + ∫
0

  

≤  b T f c T s ds fn
C

n
t

C( ) ( ) ( ) ( )( ) ( )1 1
0

θ Ω Ω+ ∫   

=  f bT c T s ds f TC
n n

t

C
n

( ) ( )( ) ( ) ( ) ( ) ( ) (Ω Ω1 1 1
0

1θ + =∫ + tt) .

The lemma is proved. 

Thus, we have established that if  q  is a solution of the equation  q ce q= βθ/ ,  then the behavior of the se-

quence  bn   is determined by the location of  q  with respect to  1  (Corollary 1), the behavior of  T n
C

1
( )Ω

  is

determined by the behavior of the sequence  bn   (Lemma 2), and the behavior of  T fn
C( )Ω

  is determined by

the behavior of  T n
C

1
( )Ω

.  Therefore, we can formulate the following statement: 
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Corollary 2.  Let  q  be a solution of the equation  q ce q= βθ/   and let  b  > 0  and   c  ≥ 0  in system
(3).  Then the following assertions are true: 

(i) if  q < 1,  then Eq. (1) is asymptotically stable; 

(ii) if  q = 1,  then Eq. (1) is stable; 

(iii) if  q > 1,  then Eq. (1) is unstable. 

Note that if  b = 0,  then the stability of (3) is determined by the location of the modulus of the parameter  c
with respect to  1  because a solution of this system admits the analytic representation 

ϕ θn
nt c f( ) ( )= ,      t ∈ Ω ,    n ∈N .

In the case where  b < 0  and  c ≤ 0,  a solution of problem (3), (4) can be represented in the form  ϕn  =

( )−1 n
n�ϕ ,  where  �ϕn   is a solution of problem (3), (4) in which the coefficients  b  and  c  are replaced by their

moduli.  Therefore, the problems of stability of  ϕn   and  �ϕn   are equivalent. 
In this connection, taking into account that a solution of system (1) is associated with the solution of system

(3) given by (5), we can formulate the following theorem: 

Theorem 1.  Let  q  be a solution of the equation  q ce q= βθ/   and let system (1) be such that  bc  ≥ 0.
Then the following assertions are true: 

(i) if  q < 1 ,  then system (1) is asymptotically stable; 

(ii) if  q = 1,  then system (1) is stable; 

(iii) if  q > 1 ,  then system (1) is unstable. 

Thus, the problem of the stability of solutions of the considered equation reduces to the determination of the
location of the modulus of a solution of the transcendental equation (1) with respect to  1. 
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