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ON SOME EXTREMAL PROBLEMS OF DIFFERENT METRICS
FOR DIFFERENTIABLE FUNCTIONS ON THE AXIS

V. A. Kofanov UDC 517.5

For an arbitrary fixed segment  α β,[ ] � R  and given  r ∈N ,  Ar ,  A0 ,  and  p > 0,  we solve

the extremal problem 

α

β

∫ x t dtk q( ) ( )   →  sup,      q ≥ p,    k = 0,      q ≥ 1,    1 ≤ k ≤ r – 1,

on the set of all functions  x Lr∈ ∞   such that  x r( )

∞
 ≤ Ar   and  L x p( )  ≤ A0 ,  where 

L x p( )   : =  
a

b
p

p

x t dt a b x t t a b∫
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In the case where  p = ∞  and  k ≥ 1,  this problem was solved earlier by Bojanov and Naidenov. 

1.  Introduction

Let  G  denote either the real axis  R  or a finite segment  α β,[ ] � R.  We consider the spaces  L Gp( ),  0 <

p ≤ ∞,  of all measurable functions  x :  G → R  such that  x L Gp ( ) < ∞,  where

x L Gp ( )  : =  
x t dt p

x t p

p

G

p

t G

( ) if ,

sup ( ) if

∫
⎛
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< < ∞

=
∈
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0

vrai ∞∞

⎧
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⎩
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⎪ .

For  r ∈N   and  p, s ∈ 0, ∞( ],  we denote by  Lp s
r

,   the space of all functions  x :  R →  R   for which  x r( – )1   is

locally absolutely continuous,  x Lp∈ ( )R ,  and  x r( )  ∈  Ls( )R .  We write  x p  instead of  x Lp ( )R   and  Lr
∞

instead of  Lr
∞ ∞, . 

In the present paper, we study some modifications of the known extremal problem 

x k
q

( )   →  sup,      0 ≤ k ≤ r – 1,    q ≥ 1, (1)
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on the set of all functions  x Lp s
r∈ ,   such that 

x r
s

( )   ≤  Ar ,      x p  ≤  A0 . (2)

It is known (see, e.g., [1, p. 47]) that problem (1) is equivalent to the determination of the exact constant  C  in
the Kolmogorov – Nagy-type inequality 

x k
q

( )   ≤  C x xp
r

s
α α( ) 1−

,      0 ≤ k ≤ r – 1, (3)

for functions  x Lp s
r∈ , ,  where 

α  =  
r k q s

r p s

− + −
+ −

1 1

1 1
.

Only in some cases is the exact constant in inequality (3) known for all  r ∈N .  For a detailed description
of the cases in which the exact constant in inequality (3) is known, see [1 – 3]. 

For an arbitrary segment  α β,[ ] � R,  Bojanov and Naidenov [4] solved the problem 

α

β

∫ ( )Φ x t dtk( ) ( )   →  sup,     1 ≤ k ≤ r – 1,

on the set of all functions  x Lr∈ ∞  that satisfy (2) with  p = s = ∞  ;  here, the function  Φ  is continuously differ-

entiable on  0, ∞[ ) ,  positive on  (0, ∞),  and such that  Φ( )t  / t  does not decrease and  Φ( )0  = 0. 

Consider the class  W  of functions  Φ  continuous, nonnegative, and convex on  0, ∞[ )   and such that
Φ( )0  = 0.  For  p > 0,  we set 

L x p( )   : =  sup : , , ( ) , ( , ),x a b x t t a bL a bp[ ] ∈ > ∈{ }R 0 .

Functionals of this type were studied in [5].  Note that  L x( )∞  = x ∞   and  L x( )′ 1 ≤ 2 x ∞ . 
In the present paper, we solve the modifications of the Bojanov – Naidenov problem 

α

β

∫ ( )Φ x t dtp( )   →  sup,      Φ ∈W ,    p > 0,

and 

α

β

∫ ( )Φ x t dtk( ) ( )   →  sup,      Φ ∈W ,    1 ≤ k ≤ r – 1,

on the class of all functions  x Lr∈ ∞  that satisfy the conditions 
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x r( )
∞

  ≤  Ar ,      L x p( )   ≤  A0

instead of conditions (2) with  s = p = ∞.

2.  Auxiliary Statements

Let  ϕr t( ) ,  r ∈N ,  denote the  r th  2π-periodic integral of the function  ϕ0( )t  = sgn sin t  with mean value

zero on a period.  For  λ > 0,  we set  ϕλ, ( )r t  : = λ−r ϕ λr t( ).  Denote a rearrangement of the function  x ,  x ∈
L a b1 ,[ ],  by  r (x, t)  (see, e.g., [6], Sec. 1.3).  We set  r (x, t) = 0  for  t ≥ b – a. 

Note that if a function  x Lr∈ ∞  satisfies the condition  L x p( )  < ∞  for a certain  p > 0  and  x t( )  > 0,  t ∈
(a, b),  where  a = – ∞  or  b = + ∞,  then  x t( ) → 0  as  t → – ∞  or  t → + ∞.  In this case, we assume that
x( )−∞  = 0  and  x( )+∞  = 0. 

Lemma 1.  Let  r ∈N ,  let  Ar , p > 0,  and let an interval  (a , b),  – ∞ ≤ a  < b  ≤ ∞,  and a function

x Lr∈ ∞  be such that 

x r( )
∞

  ≤  Ar ,      L x p( )   ≤  ∞,

x a( )  =  x b( )  =  0,     x t( )  > 0,      t ∈ (a, b).

Also assume that  λ > 0  satisfies the condition 

L x p( )   ≤  A Lr r p( ),ϕλ . (4)

Then, for any function  Φ ∈W   and any measurable set  E  � (a, b),  μE  ≤ π  / λ,  the following inequal-
ities are true: 

a

b
px t dt∫ ( )Φ ( )   ≤  

0

π λ

λϕ
/

, ( )∫ ( )Φ A t dtr r
p

(5)

and 

E

px t dt∫ ( )Φ ( )   ≤  
m

m

r r
p

A t dt
−

+

∫ ( )
Θ

Θ

Φ ϕλ, ( ) ,      Θ = 
μE
2

, (6)

where  m  is a point of local maximum of the spline  ϕλ,r . 

Furthermore, if  – ∞ < a < b < ∞,  then 

1
b a

x t dt
a

b
p

− ( )∫ Φ ( )   ≤  λ
π

ϕ
π λ

λ
0

/

, ( )∫ ( )Φ A t dtr r
p

. (7)
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Proof.  We fix an arbitrary function  x Lr∈ ∞  and an interval  (a, b)  that satisfy the conditions of Lem-
ma 1.  First, we prove the inequality 

x ∞   ≤  Ar rϕλ, ∞
. (8)

Assume that (8) is not true.  Then there exists  ω < λ  such that 

x ∞   =  Ar rϕω, ∞
. (9)

Assume that  t0 ∈R  satisfies the condition 

ϕω,r ∞
  =  ϕω, ( )r t0 (10)

and  c  is the maximum zero of the spline  ϕω,r   such that  c < t0.  We fix an arbitrary  ε > 0.  There exists a point

tε  ∈ ( , )c t0   for which  ϕω ε, ( )r t   =  ϕω,r ∞
 – ε.  We set  δ : = t0 – tε .  It is clear that  δ → 0  as  ε → 0.  For suf-

ficiently small  ε > 0,  we define a function  ψε( )t   on  c[ , c + π ω/ ]  as follows: 

ψε( )t   : =  

ϕ δ δ

ϕ δ π ω

ω

ω

,

,

( ) if , ,

( ) if , /

r

r

t t c t

t t t c

− ∈ +[ ]

+ ∈ +

0

0 −−[ ]
∈ +[ ] + − +[ ]

⎧

⎨
⎪⎪

⎩
⎪
⎪

δ

δ π ω δ π ω

,

if , / , / .0 t c c c c∪

It is obvious that  ψε( )t0  = ϕω,r ∞
 – ε  and  ψε( )t  → ϕω, ( )r t ,  t ∈ c c, /+[ ]π ω ,  as  ε → 0.  Since  L x p( )  < ∞ ,

it follows from (9) and (10) that there exists a shift  x tε( ) : = x (t + τε )  such that  ′x tε( )0  = 0  and 

x tε( )0   ≥  Ar rϕ εω, ∞
−( )  =  A tr ψε( )0 . (11)

Note that, by virtue of (9), the function  x  satisfies the conditions of the Kolmogorov comparison theorem
[7].  According to this theorem [7], one has 

x tε( )   ≥  A tr ψε( ),      t ∈ c c+ + −[ ]δ π ω δ, / .

Therefore, 

L x p( )   =  L x p( )ε   ≥  Ar L c cp
ψε δ π ω δ+ + −[ ], / .

Passing to the limit as  ε  tends to zero, we get 

L x p( )   ≥  A Lr r p( ),ϕω   >  A Lr r p( ),ϕλ ,

which contradicts condition (4).  Thus, inequality (8) is proved. 



912 V. A. KOFANOV

We now prove inequality (5).  Let  x   denote the restriction of the function  x  to  (a, b)  and let  ϕ   denote
the restriction of the spline  Ar ϕλ,r   to  c[ , c + π λ/ ],  where  c  is a zero of the spline  ϕλ,r .  By virtue of the

Hardy – Littlewood theorem (see, e.g., [6], Proposition 1.3.11), to prove (5) it suffices to show that 

0

ξ

∫ ( )r x t dtp,   ≤  
0

ξ

λϕ∫ ( )r t dtr
p

, , ,      ξ > 0. (12)

By virtue of relation (8) and the condition  x(a) = x(b) = 0  of Lemma 1, for any  z ∈  0( , x L a b∞ )( , )   there

exist points  ti  ∈ (a, b),  i = 1, … , m,  m ≥ 2,  and two points  yj  ∈ (c , c + π λ/ )   such that 

z  =  x ti( )   =  ϕ ( )yj . (13)

According to the Kolmogorov comparison theorem, we have 

′x ti( )   ≤  ′ϕ ( )yj . (14)

Therefore, if points  θ1  and  θ2  are chosen so that 

z  =  r x( , )θ1   =  r( , )ϕ θ2 ,

then, according to the theorem on the derivative of a rearrangement (see, e.g., [6], Proposition 1.3.2), we get 

′r x( , )θ1   =  
i

m

ix t
=

−
−

∑ ′
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥1

1
1

( )   ≤  
j

jy
=

−
−

∑ ′
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥1

2
1

1

ϕ ( )   =  ′r ( , )ϕ θ2 .

This implies that the difference  Δ( )t  : = r x t( , )  – r t( , )ϕ   changes its sign (from  “–”  to  “+”)  at most once.

The same is true for the difference  Δ p t( )  : = r x tp( , ) – r tp( , )ϕ . 
Consider the integral 

I( )ξ   : =  
0

ξ

∫ Δ p t dt( ) .

It is clear that  I( )0  = 0.  We set  M : = max b{  – a, π λ/ } .  Then, by virtue of (4), for any  ξ ≥ M,  we have 

I( )ξ   =  L x p
p( )   –  A Lr

p
r p

p( ),ϕλ   ≤  0.

Furthermore, the derivative  ′I t( )  = Δ p t( )   changes its sign (from  “–”  to  “+”)  at most once.  Hence,  I( )ξ  ≤ 0

for all  ξ ≥ 0.  Thus, inequalities (12) and (5) are proved. 
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We now prove (6).  Note that  ϕ   is a comparison function for  x ,  i.e., relation (14) follows from (13).
The proof of (5) was based on exactly this fact and inequality (4).  Therefore, using (5) instead of (4), we can
prove by analogy that 

0

ξ

∫ ( )r x t dtpΦ( , )   ≤  
0

ξ

ϕ∫ ( )r t dtpΦ( , ) ,     ξ > 0.

This yields 

E

px t dt∫ ( )Φ ( )   ≤  
0

μE
pr x t dt∫ ( )Φ( , )   ≤  

0

μ

ϕ
E

pr t dt∫ ( )Φ( , )   =  
m

m

r r
p

A t dt
−

+

∫ ( )
Θ

Θ

Φ ϕλ, ( ) ,

which proves (6). 

It remains to prove (7).  Let  – ∞ < a < b < + ∞.  We choose  d ∈ (a, b)  so that 

a

d
px t dt∫ ( )Φ ( )   =  

d

b
px t dt∫ ( )Φ ( )   : =  I.

By virtue of (5), there exists  y ∈ [0, π  / (2λ)]  for which 

I  =  
c

c y

r r
p

A t dt
+

∫ ( )Φ ϕλ, ( ) ,

where  c  is a zero of the spline  ϕλ,r .  By virtue of the Kolmogorov comparison theorem, we obtain  d – a ≥ y

and  b – d ≥ y.  Therefore, 

a

b
px t dt∫ ( )Φ ( )   =  

a

d
px t dt∫ ( )Φ ( )   +  

d

b
px t dt∫ ( )Φ ( )

≤  
d a

y
A t dt

c

c y

r r
p− ( )

+

∫ Φ ϕλ, ( )   +  
b d

y
A t dt

c

c y

r r
p− ( )

+

∫ Φ ϕλ, ( )

=  ( ) ( ),b a
y

A t dt
c

c y

r r
p

− ( )
+

∫1 Φ ϕλ .

It is easy to see that the function 

1
y

A t dt
c

c y

r r
p

+

∫ ( )Φ ϕλ, ( )
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does not decrease on  [0, π  / (2λ)].  Therefore, 

a

b
px t dt∫ ( )Φ ( )   ≤  ( ) ( )

/( )

,b a A t dt
c

c

r r
p

− ( )
+

∫2
2

λ
π

ϕ
π λ

λΦ   =  ( ) ( )
/

,b a A t dt
c

c

r r
p

− ( )
+

∫λ
π

ϕ
π λ

λΦ ,

which is equivalent to (7). 
Lemma 1 proved. 

Setting  Φ( )t  = tq p/ ,  q ≥ p,  we obtain the following corollary: 

Corollary 1.  Under the conditions of Lemma 1, one has 

L x q( )   ≤  A Lr r q( ),ϕλ ,    q ≥ p.

In particular, 

x ∞   ≤  Ar rϕλ, ∞
.

Lemma 2.  Let  r ∈N   and   Ar , p  > 0.  Suppose that a function  x Lr∈ ∞  has zeros and satisfies the
condition 

x r( )
∞

  ≤  Ar ,      L x p( )  < ∞,

and  λ > 0  is chosen so that 

L x p( )   ≤  A Lr r p( ),ϕλ .

If  t0  is a zero of the function  x  and  c  is a zero of the spline  ϕλ,r ,  then, for an arbitrary function  Φ ∈W

and any  ξ ∈ 0, /π λ( ],  one has 

t

t
px t dt

0

0 +

∫ ( )
ξ

Φ ( )   ≤  
c

c

r r
p

A t dt
+

∫ ( )
ξ

λϕΦ , ( ) (15)

and 

t

t
px t dt

0

0

−
∫ ( )

ξ

Φ ( )   ≤  
c

c

r r
p

A t dt
−
∫ ( )

ξ
λϕΦ , ( ) .

Proof.  Passing to the shift  x(⋅ + τ)  if necessary, we can assume that  t0 = c. 
Let us prove inequality (15) (the second inequality of Lemma 2 is proved by analogy).  We set  ϕ( )t  : =

Ar ϕλ, ( )r t .  In the proof of Lemma 1, we have established that the spline  ϕ   is a comparison function for the
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function  x,  i.e., the inequality  x( )ξ  = ϕ η( )   implies that  ′x ( )ξ  ≤ ′ϕ η( ) .  Therefore,  x t( )  ≤ ϕ( )t ,  t ∈
c( , c + π  / ( )2λ ).  If the last inequality holds for all  t ∈  (c, c + ξ),  then inequality (15) is obvious.  For this rea-

son, we can assume that the difference  Δ( )t  : = x t( )  – ϕ( )t   changes its sign on  (c, c + ξ).  Moreover, it has at

most one change of sign (from  “–”  to  “+”)  on  (c, c + π  / λ)  because  ϕ   is a comparison function for  x.  The
same is true for the difference 

ΔΦ( )t   : =  Φ x t p( )( )   –  Φ ϕ( )t p( ).

Let a point  d ∈ (c, c + π  / λ)  be such that  Δ( )t  ≤ 0,  t ∈ (c, d),  and  Δ( )t  ≥ 0,  t ∈ (d, c + π  / λ).  Then  ΔΦ( )t  ≤ 0,

t ∈ (c, d),  and  ΔΦ( )t  ≥ 0,  t ∈ (d, c + π  / λ). 
Consider the following two cases: 

(i) x t( )  > 0,  t ∈ (c, c + ξ); 

(ii) x (t)  has a zero on  (c, c + ξ). 

We set

I tΦ( )   : =  
c

c t

u du
+

∫ ΔΦ( ) .

Let us prove the inequality  I tΦ( )  ≤ 0, t ∈ (0, π  / λ),  which is equivalent to (15). 

First, assume that  x t( )  > 0,  t ∈ (c, c + ξ).  By assumption, we have  d < c + ξ.  Hence,  x t( )  ≥ ϕ( )t  > 0,

t ∈ (d, c + π  / λ),  and, therefore,  x t( )  > 0,  t ∈  (c, c + π  / λ).  Then, according to inequality (5),  IΦ( / )π λ  ≤ 0.
Furthermore,  IΦ( )0  = 0,  and the derivative  ′I tΦ( )  = ΔΦ( )c t+   changes its sign (from  “–”  to  “+”)  at most

once on  (0, π  / λ).  Thus,  I tΦ( )  ≤ 0,  t ∈ (0, π  / λ). 

Now assume that  x t( )  has a zero on  (c, c + ξ).  We set  c1 : =  sup t{  ∈ (c, c + π  / λ) :  x t( ) = 0} .  It is clear

that  x c( )1  = 0  and  x t( )  ≤ ϕ( )t ,  t ∈ ( , )c c1 .  Therefore, 

c

px t dt
γ

∫ ( )Φ ( )   ≤  
c

pt dt
γ

ϕ∫ ( )Φ ( ) ,      γ ∈[ ]c c, 1 . (16)

If  c + ξ ≤ c1,  then relation (16) follows from (15).  Now let  c1 < c + ξ.  Then  x t( )  > 0,  t ∈ (c1, c + π  / λ).

In this case, inequality (15) is already proved.  Assuming that  t0 : = c1  and using (15) with  c + ξ – c1  instead of

ξ,  we obtain 

c

c
px t dt

1

+

∫ ( )
ξ

Φ ( )   ≤  
c

c c
pt dt

2 1+ −

∫ ( )
ξ

ϕΦ ( )   ≤  
c

c
pt dt

1

+

∫ ( )
ξ

ϕΦ ( ) . (17)

The last inequality follows from the obvious relation 
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inf ( )
( , / )a c

a

a
pt dt

∈ −

+

∫ ( )
π λ δ

δ

ϕΦ   =  
c

c
pt dt

+

∫ ( )
δ

ϕΦ ( ) ,      δ π
λ

≤ .

Adding (17) and (16) with  γ = c1  together, we get (15). 
Lemma 2 is proved. 

Lemma 3.  Suppose that  r ∈N ,  Ar , p > 0,  and a function  x Lr∈ ∞  are such that 

x r( )
∞

  ≤  Ar ,      L x p( )  < ∞,

and  λ > 0  satisfies the condition 

L x p( )   ≤  A Lr r p( ),ϕλ .

Then, for any function  Φ ∈W   and an arbitrary segment  [a, b] � R ,  b  – a  ≤ π  / λ,  the following in-
equality is true: 

a

b
px t dt∫ ( )Φ ( )   ≤  

m

m

r r
p

A t dt
−

+

∫ ( )
Θ

Θ

Φ ϕλ, ( ) ,      Θ = 
b a−

2
, (18)

where  m  is a point of a local maximum of the spline  ϕλ,r .  In particular, 

a

b
px t dt∫ ( )Φ ( )   ≤  

0

π λ

λϕ
/

, ( )∫ ( )Φ A t dtr r
p

.

Proof.  If  x t( )  > 0  for  t ∈  (a, b),  then inequality (6) yields (18).  Assume that  x t( )  has a zero  t0 ∈
(a, b).  Then, according to Lemma 2, 

a

t
px t dt

0

∫ ( )Φ ( )   ≤  
c t a

c

r r
p

A t dt
+ − −

+

∫ ( )
π λ

π λ

λϕ
/ ( )

/

, ( )

0

Φ (19)

and 

t

b
px t dt

0

∫ ( )Φ ( )   ≤  
c

c b t

r r
p

A t dt
+ −

∫ ( )0

Φ ϕλ, ( ) , (20)

where  c  is a zero of the spline  ϕλ,r .  Adding (19) and (20) together, we obtain (18) because 

sup ( ),
μ δ

λϕ
E E

r r
p

A t dt
=

∫ ( )Φ   =  
m

m

r r
p

A t dt
−

+

∫ ( )
δ

δ

λϕ
/

/

, ( )
2

2

Φ ,      δ π
λ

≤ .

Lemma 3 is proved.
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3.  Main Results

We fix an arbitrary segment  α β,[ ] � R,  r ∈N ,  and  Ar , A0 , p > 0.  Recall the structure of the extremal

function  ϕ α β, ,[ ] r   in the Bojanov – Naidenov problem [4].  To this end, we first choose  λ > 0  that satisfies the

equality 

A0   =  A Lr r p( ),ϕλ (21)

and then represent the length of the segment  α β,[ ]  in the form 

β  –  α  =  n π
λ

  +  2Θ,      Θ ∈( )0 2, /( )π λ , (22)

where  n ∈N  or  n = 0.  We now set 

ϕ α β, , ( )[ ] r t   : =  A tr rϕ τλ, ( )+ , (23)

where  τ  is chosen so that 

ϕ αα β, , ( )[ ] +r Θ   =  ϕ βα β, , ( )[ ] −r Θ   =  Ar rϕλ, ∞
.

It is clear that  ϕ α β, ,[ ] r  ∈ Lr
∞   and 

ϕ α β, ,
( )
[ ] ∞r
r   =  Ar ,      L r p

ϕ α β, ,[ ]( )   =  A0 .

Theorem 1.  Let  r ∈N ,  A0 , Ar , p > 0,  Φ ∈W ,  and  α β,[ ] � R.  Then 

sup ( ) : , , ( )( )

α

β

∫ ( ) ∈ ≤ ≤
⎧
⎨
⎪

∞ ∞
Φ x t dt x L x A L x Ap r r

r p 0

⎩⎩⎪

⎫
⎬
⎪

⎭⎪
  =  

α

β

α βϕ∫ [ ]( )Φ , , ( )r
p

t dt .

Proof.  We fix an arbitrary function  x Lr∈ ∞  such that 

x r( )
∞

  ≤  Ar ,      L x p( )   ≤  A0 .

According to (21), we have 

L x p( )   ≤  A Lr r p( ),ϕλ .

We set  ak  : = α + k π / λ,  k = 0, 1, … , n.  By virtue of Lemma 3, we get 
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a

a
p

k

k

x t dt
+

∫ ( )
1

Φ ( )   ≤  
0

π λ

λϕ
/

, ( )∫ ( )Φ A t dtr r
p

,      k = 0, 1, … , n – 1,

and 

a

p

n

x t dt
β

∫ ( )Φ ( )   ≤  
m

m

r r
p

A t dt
−

+

∫ ( )
Θ

Θ

Φ ϕλ, ( ) ,

where  m  is a point of a local maximum of the spline  ϕλ,r   and  Θ  is defined by (22).  Thus, 

α

β

∫ ( )Φ x t dtp( )   ≤  n A t dtr r
p

0

π λ

λϕ
/

, ( )∫ ( )Φ   +  
m

m

r r
p

A t dt
−

+

∫ ( )
Θ

Θ

Φ ϕλ, ( )   =  
α

β

α βϕ∫ [ ]( )Φ , , ( )r
p

t dt .

The equality here is realized for  x = ϕ α β, ,[ ] r . 

Theorem 1 is proved. 

Let  q ≥ p.  Setting  Φ( )t  = tq p/ ,  we obtain the following corollary: 

Corollary 2.  Under the conditions of Theorem 1, the following relation holds for any  q ≥ p > 0: 

sup ( ) : , , ( )( )

α

β

∫ ∈ ≤ ≤
⎧
⎨
⎪

⎩⎪

⎫
∞ ∞

x t dt x L x A L x Aq r r
r p 0⎬⎬

⎪

⎭⎪
  =  

α

β

α βϕ∫ [ ], , ( )r

q
t dt .

For  [α, β] � R  and  k, r ∈N ,  k < r,  we consider the function 

ϕ α β, , , ( )[ ] r k t   : =  ϕ τα β, , ( )[ ] +r kt ,      τk  : = π
λ4

1 1 1+ −( )+( )k ,

where  ϕ α β, ,[ ] r   is defined by (23).  It is clear that 

ϕ α β, , ,
( ) ( )[ ] r k
k t   =  ϕ α β, , ( )[ ] −r k t .

Furthermore,  ϕ α β, , ,[ ] r k  ∈ Lr
∞   and 

ϕ α β, , ,
( )
[ ] ∞r k
r   =  Ar ,      L r k p

ϕ α β, , ,[ ]( )   =  A0 
.

Theorem 2.  Let  k, r ∈N ,  k < r,  A0 
, Ar , p > 0,  Φ ∈W ,  and  α β,[ ] � R.  Then 

sup ( ) : , , ( )( ) ( )

α

β

∫ ( ) ∈ ≤ ≤
⎧

∞ ∞
Φ x t dt x L x A L x Ak r r

r p 0⎨⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
  =  

α

β

α βϕ∫ [ ]( )Φ , , ,
( ) ( )r k
k t dt .
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Proof.  We fix an arbitrary function  x Lr∈ ∞  such that 

x r( )
∞

  ≤  Ar ,      L x p( )   ≤  A0.

According to (21), we have 

L x p( )   ≤  A Lr r p( ),ϕλ .

According to Corollary 1, we get 

x ∞   ≤  Ar rϕλ, ∞
.

By virtue of the Kolmogorov theorem, we obtain 

x i( )
∞

  ≤  Ar r iϕλ, − ∞
,      i = 1, … , r – 1.

Therefore, 

L x k( )( )1  ≤  2 1x k( )−
∞

  ≤  2 1Ar r kϕλ, + − ∞
  =  A Lr r k( ),ϕλ − 1.

Applying Theorem 1 with  p = 1  to the function  x k( ) ∈ Lr k
∞
− ,  we get 

α

β

∫ ( )Φ x t dtk p( )( )   ≤  
α

β

α βϕ∫ [ ] −( )Φ , , ( )r k
p

t dt   =  
α

β

α βϕ∫ [ ]( )Φ , , ,
( ) ( )r k
k p

t dt .

The equality here is realized for the function  x = ϕ α β, , ,[ ] r k . 

Remark 1.  For  p = ∞,  Theorem 2 was proved by Bojanov and Naidenov in [4]. 

Corollary 3.  Under the conditions of Theorem 2, the following relation holds for any  q ≥ 1  and  p > 0: 

sup ( ) : , , ( )( ) ( )

α

β

∫ ∈ ≤ ≤
⎧
⎨
⎪

∞ ∞
x t dt x L x A L x Ak q r r

r p 0

⎩⎩⎪

⎫
⎬
⎪

⎭⎪
  =  

α

β

α βϕ∫ [ ], , ,
( ) ( )r k
k q

t dt .

The theorem below specifies Theorems 1 and 2 for functions that have zeros and for periodic functions. 

Theorem 3.  Le t   r ∈N ,  p  > 0,  and   Φ ∈W .  Then the following inequality holds for any segment

[α, β] � R  and any function  x Lr∈ ∞  such that  L x p( )  < ∞  and  x( )α  = x( )β  = 0: 

1

β α α

β

− ( )∫ Φ x t dtp( )   ≤  1

0

1 1
1

π ϕ
ϕ

π

∫
⎛

⎝⎜
⎞

⎠⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

+

∞
+Φ

L x

L
x t dtp

r p

r
r p r

p

r p r

p

( )

( )
( )

/ ( )
/

/ . (24)
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In particular, for any  q ≥ p,  one has 

1
1

β α α

β

−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∫ x t dtq

q

( )

/

  ≤  
1

0

1

π
ϕ

ϕ

π

∫
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛
⎝⎜

⎞
⎠⎟r

q

q

p

r p

r

r
t dt

L x

L
( )

( )

( )

/
++

∞
+1
1

1
/ ( )

/

/
p r

p

r px . (25)

Furthermore, if  q   ≥   1  and   k   =  1, … , r – 1,  then the following inequality holds for any segment

[a, b] � R  and any function  x Lr∈ ∞  that satisfies the condition  x ak( )( ) = x bk( )( ) = 0: 

1
1

β α α

β

−

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟∫ x t dtk q

q

( )

/

( )   ≤  
1

0

1

π
ϕ

ϕ

π

∫ −
∞

∞

−
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛
⎝⎜

⎞
⎠⎟r k

q

q

r

r k

r
t dt

x
x( )

/

(rr k r) /

∞
. (26)

Proof.  We fix an arbitrary segment  [α, β] � R  and a function  x Lr∈ ∞   such that  L x p( )  < ∞  and  x( )α  =

x( )β  = 0.  We set  Ar  : = x r( )
∞

  and choose  λ > 0  that satisfies the condition 

L x p( )   =  A Lr r p( ),ϕλ   =  A Lr
r p

r pλ ϕ− −1/ ( ) ,

i.e., 

λ−1  =  
L x

A L
p

r r p

r p( )

( )

/

ϕ
⎛

⎝⎜
⎞

⎠⎟
+

1
1

. (27)

Consider the set of all segments  a bj j,[ ]  � [α, β]  such that 

x aj( )  =  x bj( )  =  0,      x t( )  > 0,     t a bj j∈( , ) .

It is clear that 

α

β

∫ ( )Φ x t dtp( )   =  
j a

b
p

j

j

x t dt∑ ∫ ( )Φ ( )

and 

j
j jb a∑ −( )   ≤  β  –  α.

Note that, on each interval  ( , )a bj j ,  the function  x  satisfies all conditions of Lemma 1.  Estimating the inte-
grals 

Φ x t dtp

a

b

j

j

( )( )∫
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with the use of inequality (7) and taking into account the definition  ϕλ, ( )r t  : = λ−r ϕ λr t( ),  we obtain 

α

β

∫ ( )Φ x t dtp( )   ≤  
j

j j r r
p

b a A t dt∑ ∫− ( )( ) ( )
/

,
λ
π

ϕ
π λ

λ
0

Φ

≤  ( ) ( )
/

,β α λ
π

ϕ
π λ

λ− ( )∫
0

Φ A t dtr r
p

  =  ( ) ( )β α
π

λ ϕ
π

− ( )∫ −1

0

Φ A s dsr
r

r
p

.

Hence, taking into account that  Ar  : = x r( )
∞

  and  λ  is defined by (27), we obtain (24).  Setting  Φ( )t  = tq p/

in (24), we get (25). 

It remains to prove (26).  We fix an arbitrary  k  =  1, … , r – 1,  a segment  [a, b] � R ,  and a function

x Lr∈ ∞  that satisfies the condition  x ak( )( ) = x bk( )( ) = 0.  Applying inequality (25) with  p = 1  to the function

x Lk r k( ) ∈ ∞
− ,  for  q ≥ 1  we obtain 

1
1

β α
α

β

−

⎛

⎝
⎜

⎞

⎠
⎟∫ x t dtk q

q

( )

/

( )   ≤  1

0

1

1

1

1 1
1

π
ϕ

ϕ

π

∫ −
−

−
− +

∞
− +⎛

⎝
⎜

⎞

⎠
⎟

( )⎛

⎝
⎜

⎞

⎠
⎟r k

q
q k

r k

r k

r k
r r kt dt

L x

L
x( )

( )

/ ( )
( ) . (28)

Taking into account the obvious relations 

L x k( )( )1  ≤  2 1x k( )−
∞

,      L r k( )ϕ − 1  =  2 1ϕr k− + ∞

and estimating  x k( )−
∞

1   (for  k > 1 )  with the use of the Kolmogorov inequality 

x k( )−
∞

1   ≤  ϕ
ϕr k

r

r k

r r
k

rx
x− + ∞

∞

∞

− +

∞

−
⎛
⎝⎜

⎞
⎠⎟1

1 1
( ) ,

we deduce (26) from (28). 
Theorem 3 is proved. 

Remark 2.  For a  2π-periodic functions  x Lr∈ ∞,  inequality (26) with  b – a = 2π  transforms into the
well-known Ligun inequality [8] 

x k
Lq

( )
,0 2π[ ]

  ≤  ϕ
ϕπr k L

r

r k

r r k r

q

x
x− [ ]

∞

∞

−

∞

⎛
⎝⎜

⎞
⎠⎟0 2,

( ) /
.
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