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TAME COMODULE TYPE, ROITER BOCSES, AND
A GEOMETRY CONTEXT FOR COALGEBRAS

D. Simson UDC 512.5

We study the class of coalgebras C of fc-tame comodule type introduced by the author. With any basic

computable K-coalgebra C and a bipartite vector v = (v′|v′′) ∈ K0(C) × K0(C), we associate

a bimodule matrix problem MatvC(H), an additive Roiter bocs BC
v , an affine algebraic K-variety

ComodCv , and an algebraic group action GC
v × ComodCv −→ ComodCv . We study the fc-tame

comodule type and the fc-wild comodule type of C by means of MatvC(H), the category repK(BC
v )

of K-linear representations of BC
v , and geometry of GC

v -orbits of ComodCv . For computable coal-

gebras C over an algebraically closed field K, we give an alternative proof of the fc-tame-wild di-

chotomy theorem. A characterization of fc-tameness of C is given in terms of geometry of GC
v -orbits

of Comodv. In particular, we show that C is fc-tame of discrete comodule type if and only if the

number of GC
v -orbits in ComodCv is finite for every v = (v′|v′′) ∈ K0(C)×K0(C).

1. Introduction

Throughout this paper, we use the terminology and notation introduced in [21, 22, 28]. We fix a field K.

Given a K-coalgebra C, we denote by C-Comod and C-comod the categories of left C-comodules and left

C-comodules of finite K-dimension. Recall that C is said to be basic if the left C-comodule CC has a decom-

position

CC =
⊕
j∈IC

E(j) (1.1)

into a direct sum of pairwise nonisomorphic indecomposable injective left comodules E(j). Throughout this

paper, given j ∈ IC , we denote by S(j) the unique simple subcomodule of E(j). Hence, socC =
⊕

j∈IC S(j).
Following [26], the coalgebra C is called Hom-computable (or computable, in short) if dimK HomC(E(i), E(j))
is finite for all i, j ∈ IC . A left C-comodule M is said to be computable if dimK HomC(M,E(j)) is finite for

all j ∈ IC .
Given a computable comodule M, we denote by lgthM = (�j(M))j∈IC ∈ ZIC the composition length

vector of M, where �j(M) < ∞ is the number of simple composition factors of M isomorphic to the simple

comodule S(j). It is clear that lgthM ∈ Z(IC) if M is of finite K-dimension. We recall from [21] that the map

M �→ lgthM defines a group isomorphism lgth : K0(C)
�−−→ Z(IC), where K0(C) = K0(C-comod) is the

Grothendieck group of the category C-comod and Z(IC) is the direct sum of IC copies of Z .

We recall from [21] and [25] that an arbitrary K-coalgebra C is defined to be of K-wild comod-
ule type (or K-wild, in short) if the category C-comod of finite-dimensional C-comodules is of K-wild

representation type [18, 21, 23] in the sense that there exists an exact K-linear representation imbedding

T : modΓ3(K) −→ C-comod, where Γ3(K) =

(
K K3

0 K

)
. A K-coalgebra C is defined to be of K-tame
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comodule type [25] (or K-tame, in short) if the category C-comod of finite-dimensional left C-comodules is

of K-tame representation type ([18], Sec. 14.4, [22]), i.e., for every vector v ∈ K0(C) ∼= Z(IC), there exist

C-K[t]-bicomodules L(1), . . . , L(rv) that are finitely generated free K[t]-modules such that all but finitely many

indecomposable left C-comodules M with lgthM = v are of the form M ∼= L(s) ⊗K1
λ, where s ≤ rv and

K1
λ = K[t]/(t− λ), λ ∈ K. (1.2)

Equivalently, there exist a nonzero polynomial h(t) ∈ K[t] and C-K[t]h-bicomodules L(1), . . . , L(rv) that are

finitely generated free K[t]h-modules such that all but finitely many indecomposable left C-comodules M with

lgthM = v are of the form M ∼= L(s) ⊗K1
λ, where s ≤ rv and K[t]h = K[t, h(t)−1] is a rational K-algebra,

see [7] or [18] (Sec. 14.4). In this case, we say that L(1), . . . , L(rv) form an almost parametrizing family for the

family indv(C-comod) of all indecomposable C-comodules M with lgthM = v.

Here, by a C-K[t]h-bicomodule CLK[t]h we mean a K-vector space L equipped with a left C-comodule

structure and a right K[t]h-module structure satisfying the obvious associativity conditions. In [28], a K-tame-

wild dichotomy theorem is proved for left (or right) semiperfect coalgebras and for acyclic hereditary coalgebras

over an algebraically closed field K by reducing the problem to the fc-tame-wild dichotomy theorem [28] (Theo-

rem 2.11) and, consequently, to the tame-wild dichotomy theorem for finite-dimensional K-algebras proved in [7]

and [3].

The aim of the paper is to study the classes of coalgebras C of fc-tame comodule type and of fc-wild

comodule type introduced in [28]. We recall that C is of fc-tame comodule type if, for every coordinate vector

v = (v′|v′′) ∈ K0(C)×K0(C), the indecomposable finitely copresented C-comodules N such that cdn(N) =
(v′|v′′) form at most finitely many one-parameter families, see Sec. 2 for a precise definition.

We study mainly computable fc-tame and fc-wild basic coalgebras C by means of a bimodule matrix

problem MatvC(H), the additive category repK(BC
v ) of K-linear representations, an additive Roiter bocs BC

v ,

an affine algebraic K-variety MapCv , an algebraic (parabolic) group action GC
v ×MapCv −→ MapCv , and a

Zariski open GC
v -invariant subset ComodCv ⊆ MapCv associated with C and with any bipartite vector v =

(v′|v′′) ∈ K0(C) × K0(C). It is shown in Sec. 4 that there is a bijection between the GC
v -orbits of ComodCv

and the isomorphism classes of comodules in C-Comodfc. On this way, we get in Theorem 4.1 a characterization

of fc-tameness and fc-wildness of computable coalgebras by means of MatvC(H), the K-linear representations

of the Roiter bocs BC
v , and in terms of geometry of the GC

v -orbits of ComodCv .
We show in Sec. 4 that a computable coalgebra C is fc-tame of discrete comodule type if and only if the

number of GC
v -orbits in ComodCv is finite for every bipartite vector v = (v′|v′′) ∈ K0(C)×K0(C). Moreover,

we prove that a computable coalgebra C is fc-tame if and only if, for every bipartite vector v = (v′|v′′) ∈
K0(C) × K0(C), there exists a constructible subset C(v) of the constructible set indComodCv ⊆ ComodCv
(defined by the indecomposable C-comodules) such that GC

v ∗ C(v) = indComodCv and dim C(v) ≤ 1, see

Theorem 4.1.

We also give an alternative proof of the following fc-tame-wild dichotomy theorem proved in [28]: If C is
a basic computable coalgebra over an algebraically closed field K, then C is either fc-tame or fc-wild, and
these two types are mutually exclusive.

We prove it in Sec. 3 by a reduction to the tame-wild dichotomy theorem of Drozd [7] for representations of

additive Roiter bocses, by applying the bimodule problems technique introduced in [5] and developed in [3, 4, 9,

17, 19, 20].

Throughout this paper, we freely use the coalgebra representation theory notation and terminology introduced

in [2, 16, 21, 22, 28]. The reader is referred to [1, 8, 10, 18] for representation theory terminology and notation,

and to [3, 4, 7, 9, 13] for a background on the representation theory of bocses.

In particular, given a ring R with an identity element, we denote by Mod(R) the category of all unitary

right R-modules, and by mod(R) ⊇ fin(R) the full subcategories of Mod(R) formed by the finitely generated
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R-modules and the finite-dimensional R-modules, respectively. Given a K-coalgebra C and a left C-comodule

M, we denote by socM the socle of M, i.e., the sum of all simple C-subcomodules of M.

A comodule N in C-Comod is said to be socle-finite if N is a subcomodule of a finite direct sum of

indecomposable injective comodules, or equivalently, dimK socN is finite. We say that N is finitely copre-

sented if N admits a socle-finite injective copresentation, i.e., an exact sequence 0 −→ N −→ E0
ψ−→ E1 in

C-Comod, where each of the comodules E0 and E1 is a finite direct sum of indecomposable injective comod-

ules. If E0, E1 ∈ add(E), for some socle-finite injective C-comodule E, the comodule N is called finitely
E-copresented. We denote by C-Comodfc ⊇ C-ComodEfc the full subcategories of C-Comod whose objects

are the finitely copresented comodules and finitely E-copresented comodules, respectively. Here by add(E) we

mean the full additive subcategory of C-Comod whose objects are finite direct sum of indecomposable injective

comodules isomorphic to direct summands of E.

2. Preliminaries onfc-Comodule Types for Coalgebras

Throughout we assume that K is an algebraically closed field and C is a basic K-coalgebra with a fixed

decomposition (1.1). Following [28], given a finitely copresented C-comodule N in C-Comodfc, with a minimal

injective copresentation 0 −→ N −→ EN0
g−→ EN1 , we define the coordinate vector of N to be the bipartite

vector

cdn(N) = (cdnN0 | cdnN1 ) ∈ K0(C)×K0(C) = Z(IC) × Z(IC), (2.1)

where cdnN0 = lgth(socEN0 ) and cdnN1 = lgth(socEN1 ). We call a bipartite vector v = (v′|v′′) ∈ Z(IC) ×
Z(IC) proper if v′ �= 0 and v′′ has nonnegative coordinates. Note that an indecomposable comodule N in

C-Comodfc is injective if and only if the vector cdn(N) is proper and has the form v = (ej |v′′), where v′′ = 0
and ej is the j th standard basis vector of Z(IC), for some j ∈ IC .

The support of a bipartite vector v = (v′|v′′) ∈ Z(IC) × Z(IC) is the finite subset supp(v) = {j ∈ IC ;
v′j �= 0 or v′′j �= 0} of IC .

We recall from [28] that K-coalgebra C is defined to be of fc-wild comodule type (or fc-wild, in short) if

the category C-Comodfc of finitely copresented C-comodules is of K-wild representation type [18, 23, 25] in

the sense that there exists an exact K-linear representation imbedding T : modΓ3(K) −→ C-Comodfc, where

Γ3(K) =

[
K K3

0 K

]
.

A C-K[t]h-bicomodule CLK[t]h is defined to be finitely copresented if there is a C-K[t]h-bicomodule exact

sequence 0→ CLK[t]h → E′⊗K[t]h ψ−→ E′′⊗K[t]h, such that E′, E′′ are socle-finite injective C-comodules.

If E′, E′′ are finitely E-copresented, we call CLK[t]h finitely E-copresented.

A K-coalgebra C is defined to be of fc-tame comodule type (or fc-tame, in short) if the category

C-Comodfc is of fc-tame representation type [18] (Sec. 14.4), i.e., for every bipartite vector v = (v′|v′′) ∈
K0(C)×K0(C) ∼= Z(IC)×Z(IC), there exist C-K[t]h-bicomodules L(1), . . . , L(rv) that are finitely copresented

and such that all but finitely many indecomposable left C-comodules N in C-Comodfc, with cdn(N) = v, are

of the form N ∼= L(s) ⊗K1
λ, where s ≤ rv,

K1
λ = K[t]/(t− λ),
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and λ ∈ K. In this case, we say that L(1), . . . , L(rv) is a finitely copresented almost parametrizing family for

the family indv(C-Comodfc) of all indecomposable C-comodules N with cdn(N) = v. Obviously, one can

restrict the definition to proper bipartite vectors v = (v′|v′′).
We recall from [28] that the growth function μ̂ 1

C : K0(C)×K0(C) −−−→ N of C associates with any bipar-

tite vector v = (v′|v′′) ∈ K0(C)×K0(C) the minimal number μ̂ 1
C(v) = rv ≥ 1 of nonzero finitely copresented

C-K[t]h-bicomodules L(1), . . . , L(rv) forming an almost parametrizing family for indv(C-Comodfc). We set

μ̂ 1
C(v) = rv = 0 if there is no such a family of bicomodules, i.e., there is only a finite number of comodules N

in indv(C-Comodfc), up to isomorphism.

An fc-tame coalgebra C is defined to be of fc-discrete comodule type if μ̂ 1
C = 0, i.e., the number of the

isomorphism classes of the indecomposable C-comodules N in C-Comodfc with cdn(N) = v is finite, for

every bipartite vector v = (v′|v′′) ∈ K0(C)×K0(C).
By the main result in [28], the definition is left-right symmetric for any computable coalgebra C. Note also

that the K-tameness and K-wildness of a coalgebra are defined by means of finite-dimensional comodules, but the

fc-tame comodule type and fc-wild comodule type are defined by means of the category C-Comodfc of finitely

copresented comodules that usually contains a lot of infinite-dimensional comodules.

In the proof of our main results, we need the following construction, which associates with any v = (v′|v′′) ∈
K0(C) × K0(C) and any finitely copresented C-K[t]h-bicomodule CLK[t]h a new one CL̃K[t]h , called fc-

localizing v-corrected C-K[t]h-bicomodule:

Construction 2.1. Let C be a basic K-coalgebra with a decomposition (1.1), and let v = (v′|v′′) ∈
K0(C)×K0(C) = Z(IC) × Z(IC) be a proper bipartite vector.

Let Uv = supp(v) ⊆ IC be the support of v = (v′|v′′). We call the socle-finite injective C-comodules

E(v′) =
⊕
i∈IC

E(i)v
′
i and E(v′′) =

⊕
j∈IC

E(j)v
′′
j (2.2)

the standard injective C-comodules with cdnE(v′) = (v′|0) and cdnE(v′′) = (v′′|0) .

We fix a rational K-algebra S = K[t]h and note that

Ev = EUv =
⊕
a∈Uv

E(a) (2.3)

is a socle-finite injective direct summand of CC.

Assume that CLS is a finitely copresented C-S-bicomodule with a fixed injective C-S-bicomodule copre-

sentation

0 −→ CLS −→ E0 ⊗ S ψ−→ E1 ⊗ S, (2.4)

where E0, E1 are socle-finite injective comodules such that E(v′) ⊆ E0 and E(v′′) ⊆ E1.

We construct in three steps a finitely Ev-copresented C-S-bicomodule CL̃S , called a localizing fc-
correction of CLS as follows:

Step 1. Fix a decomposition E0 = E′0 ⊕ E′′0 , where E′0 is the injective envelope of the semisimple subco-

module S(v) generated by the simple subcomodules of E0 that are isomorphic to S(j), with j ∈ Uv. Obviously,

every simple subcomodule S of E′′0 has the form S ∼= S(a), where a �∈ Uv.

Step 2. Define a C-S-subbicomodule CL
′
S of CLS to be the kernel of the composite C-S-bicomodule

homomorhism E′0 ⊗ S
u′0⊗S−→ E0 ⊗ S ψ−→ E1 ⊗ S, where u′0 : E′0 ↪→ E0 is the canonical imbedding.
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Step 3. Let ev : C → K be the idempotent of the algebra C∗ = HomK(C,K) defined by the direct sum-

mand Ev of CC. An fc-localizing correction of CLS is the C-S-bicomodule

CL̃S = evC�evCev [resEv(CL
′)S ], (2.5)

where resEv : C-Comodfc −→ evCev-Comodfc is the exact restriction functor and evC�evCev(−) :

evCev-Comodfc −→ C-Comodfc is the left exact cotensor product functor defined in [11] and [25] ((2.9), see

also [29]).

The following fc-localizing correction lemma is of importance:

Lemma 2.1. Let K be an algebraically closed field, C a basic K-coalgebra with the decomposition (1.1),
v = (v′|v′′) ∈ K0(C) × K0(C) = Z(IC) × Z(IC) a proper bipartite vector, S = K[t]h, and CLS a finitely
copresented C-S-bicomodule with a fixed injective C-S-bicomodule copresentation (2.4) as in Construction 2.1.

(a) The C-S-bicomodule CL̃S (2.5) has an injective C-S-bicomodule copresentation

0 −→ CL̃S −→ Ẽ0 ⊗ S
eψ−→ Ẽ1 ⊗ S (2.6)

and the comodules Ẽ0 = E′0, Ẽ1 lie in add(EUv).

(b) If N is an indecomposable comodule in C-Comodfc such that cdn(N) = v and N ∼= CLS⊗K1
λ, with

λ ∈ K, then the restriction û′0 : CL′S ↪→ CLS of the splitting monomorphism u′0⊗S : E′0⊗S ↪→ E0⊗S
to CL

′
S is an imbedding of C-S-bicomodules and induces isomorphisms CL̃S ⊗K1

λ
∼= CL

′
S ⊗K1

λ
∼= N

of C-comodules.

Proof. (a) By the construction, there are a decomposition E0 = E′0 ⊕ E′′0 and exact sequence

0 −→ CL
′
S −→ E′0 ⊗ S ψ′

−→ E1 ⊗ S

of C-S-bicomodules, where ψ′ = ψ ◦ (u′0 ⊗ S) and u′0 = (idE′
0
, 0) : E′0 ↪→ E0 = E′0 ⊕ E′′0 is

the canonical imbedding into the direct summand E′0 of E0. We recall from [11] and [25] (Sec. 2) that

the restriction functor resEv : C-Comodfc −→ evCev-Comodfc is exact and the cotensor product functor

evC�evCev(−) : evCev-Comodfc −→ C-Comodfc is left exact. Then we derive an exact sequence

0 −→ CL̃S −→ Ẽ0 ⊗ S ψ′
−→ E∨1 ⊗ S

of C-S-bicomodules, where Ẽ0 = evC�evCevresEv(E′0) and

E∨1 = evC�evCevresEv(E1).

Since E0 is a direct summand of EUv , by [11] and [25] (Proposition 2.7 and Theorem 2.10) there is an iso-

morphism Ẽ0
∼= E0, the socle of resEv(E1) is a finite-dimensional subcomodule of the coalgebra evCev and

the socle of E∨1 = evC�evCevresEv(E1) is a finite direct sum of comodules S(a), with a ∈ Uv. It follows

that the injective envelope Ẽ1 = EC(E∨1 ) of the C-comodule E∨1 lies in add(EUv). Hence we get the exact

sequence (2.6) and (a) follows.
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(b) The canonical imbedding u′0 = (idE′
0
, 0) : E′0 ↪→ E0 = E′0 ⊕ E′′0 into the direct summand E′0 of E0

induces the commutative diagram of C-S-bicomodules

0 −→ CLS −→ (E′0 ⊕ E′′0 )⊗ S
ψ−→ E1 ⊗ S

bu′0


⏐⏐ u′0⊗S

⏐⏐ idE1

⊗S

⏐⏐

0 −→ CL
′
S −→ E′0 ⊗ S

ψ′
−→ E1 ⊗ S

with exact rows, where û′0 is the restriction of the monomorphism u′0⊗S : E′0⊗S ↪→ E0⊗S to CL
′
S . Obviously,

û′0 is an imbedding of C-S-bicomodules.

Let N be an indecomposable comodule in C-Comodfc such that cdn(N) = v = (v′|v′′) and N ∼=
CLS ⊗ K1

λ, with λ ∈ K. Then N has a minimal injective copresentation 0 −→ N −→ E(v′) g−→ E(v′′).
Recall that cdnE(v′) = (v′|0) and cdnE(v′′) = (v′′|0). Then we get a commutative diagram of C-comodules

in C-Comodfc

0 −→ N −→ E(v′) g−→ E(v′′)⏐⏐�∼= f0

⏐⏐� f1

⏐⏐�
0 −→ CL⊗S K1

λ −→ (E′0 ⊕ E′′0 )⊗K1
λ

ψ⊗id−→ E1 ⊗K1
λ

bu′0


⏐⏐ u′0⊗id


⏐⏐ id


⏐⏐
0 −→ CL

′ ⊗S K1
λ −→ E′0 ⊗K1

λ

ψ′
−→ E1 ⊗K1

λ

with exact rows. Since the upper row is a minimal injective copresentation of N, f0 and f1 are monomorphisms,

and f0 has a factorization E(v′)
f ′0−→ E′0⊗K1

λ

u′0⊗S−→ E′0⊗K1
λ through the subcomodule E′0⊗K1

λ of E0⊗K1
λ,

because the socle of E′′0 ⊗K1
λ contains no simple comodules S(a), with a ∈ Uv. It follows that f ′0 restricts to

a monomorphism f̂ ′0 : N → CL
′ ⊗S K1

λ such that the composite map N
bf0−→ CL

′ ⊗S K1
λ

bu′0−→ CL⊗S K1
λ is an

isomorphism. Consequently, f̂ ′0 : N → CL
′⊗S K1

λ is an isomorphism of C-comodules. Hence, in the notation of

Construction 2.1, we get the isomorphisms

CL⊗S K1
λ = [evC�evCevresEv(CL

′)]⊗S K1
λ

∼= evC�evCev [resEv(CL
′ ⊗S K1

λ)] ∼= evC�evCev [resEv(N)] ∼= N

of C-comodules, because N is finitely EUv -copresented and [25] (Theorem 2.10 (d)) applies to N.

The lemma is proved.

3. fc-Tameness, fc-Wildness and Roiter Bocses for Coalgebras

We show in this section how the study of fc-tame and fc-wild coalgebras can be reduced to the study of

bimodule matrix problems in the sense of Drozd [5], to representations of additive Roiter bocses [3–7], and to the

study of propartite modules over a class of bipartite algebras [19, 20].

To formulate our main results on fc-tame and fc-wild computable coalgebras, we recall some notation, see

[25] and [26]. Given a socle-finite injective direct summand

E = EU =
⊕
u∈U

E(u) (3.1)
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of CC =
⊕

j∈IC E(j), with a finite subset U of IC , we define the category C-ComodEUfc to be fc-tame if for

every bipartite vector v = (v′|v′′) ∈ ZU × ZU , there is a finitely E-copresented almost parametrizing family for

indv(C-ComodEUfc ).
We start with the following fc-parametrization correction lemma:

Lemma 3.1. Let K be an algebraically closed field, C a basic K-coalgebra with the decomposition (1.1),
and E = EU a socle-finite injective direct summand (3.1) of CC.

(a) If C is fc-tame then the category C-ComodEUfc is fc-tame.

(b) If v = (v′|v′′) ∈ K0(C) × K0(C) = Z(IC) × Z(IC) is a proper bipartite vector, S = K[t]h,
and L(1), . . . , L(rv) is a finitely copresented almost parametrizing family of C-S-bicomodules for
indv(C-ComodEUfc ) then the fc-localizing v-corrected C-S-bicomodules L̃(1), . . . , L̃(rv) in the sense

of Construction 2.1 form a finitely EU -copresented almost parametrizing family for indv(C-ComodEUfc ).

Proof. It is sufficient to prove (b), because (a) is a direct consequence of (b). Assume that v = (v′|v′′) ∈
K0(C)×K0(C) = Z(IC) × Z(IC) is a proper bipartite vector and L(1), . . . , L(rv) is a finitely copresented almost

parametrizing family for indv(C-ComodEUfc ). Assume that rv ≥ 0 is a minimal number of such nonzero bimod-

ules. If rv = 0 then there is nothing to prove, because the number of the isomorphism classes of indecomposable

comodules in indv(C-ComodEUfc ) is finite.

Assume that rv ≥ 1. Then, for each 1 ≤ j ≤ rv, there is an indecomposable comodule N such that

cdn(N) = v and N ∼= L(j) ⊗S K1
λ(j), for some λ(j) ∈ K. Then N has a minimal injective copresentation

0 −→ N −→ E(v′) g−→ E(v′).
Since CL

(j)
S is a finitely copresented C-S-bicomodule, it has an injective C-S-bicomodule copresentation

0 −→ CL
(j)
S −→ E

(j)
0 ⊗ S ψ(j)

−→ E
(j)
1 ⊗ S,

where E
(j)
0 , E

(j)
1 are socle-finite injective C-comodules. Since N ∼= L(j) ⊗S K1

λ(j), there are C-comodule

monomorphisms E(v′) ⊆ E0 and E(v′′) ⊆ E1, because the sequence

0 −→ CL
(j) ⊗S K1

λ(j) −→ E
(j)
0 ⊗K1

λ(j)

bψ(j)

−→ E
(j)
1 ⊗K1

λ(j)

induced by the previous one is exact and is a socle-finite injective copresentation of N ∼= L(j)⊗S K1
λ(j). Then the

Construction 2.1 applies to CL
(j)
S , for j = 1, . . . , rv.

By applying Lemma 2.1 to the finitely copresented C-S-bicomodule L(j) we get a finitely EU -copresented

C-S-bicomodule L̃(j) such that the fc-localizing v-corrected C-S-bicomodules L̃(1), . . . , L̃(rv) form a finitely

EU -copresented almost parametrizing family for indv(C-ComodEUfc ).
The lemma is proved.

Following [25, 26, 28] given a socle-finite injective direct summand E = EU (3.1), we consider the K-

algebra

RE = EndCE =
⊕
u∈U

euRE , (3.2)
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where euRE = HomC(E,E(u)) is viewed as an indecomposable projective right ideal of RE and eu is the

primitive idempotent of RE defined by the summand E(u) of E. Since the set U is finite,
∑

u∈U eu is

the identity of RE . It is easy to see that the Jacobson radical J(RE) of RE has the form J(RE) = {h ∈
EndCE;h(socE) = 0}. It follows that the algebra RE is semiperfect and pseudocompact with respect to the

K-linear topology defined by the left ideals aβ = HomC(E/Vβ, E) ⊆ RE , where {Vβ}β is the directed set of all

finite-dimensional subcomodules of E. Since E =
⋃
β Vβ, there are isomorphisms

RE = EndCE ∼= lim←−β
HomC(Vβ, E) ∼= lim←−β

RE/aβ. (3.3)

Following [3, 7, 28], we consider the homomorphism category Map1(E) whose objects are the triples

(E0, E1, ψ) with E0, E1 comodules in add(E) and ψ : E0 −→ E1 a homomorphism of C-comodules such

that ψ(socE0) = 0 ; and whose morphisms are the pairs (f0, f1), where f0 : E0 −→ E′0, f1 : E1 −→ E′1
and ψ′ ◦ f0 = f1 ◦ ψ. Denote by Map2(E) the full subcategory of Map1(E) whose objects are the triples

(E0, E1, ψ) such that soc Imψ = socE1. or equivalently, ψ : E0 −→ E1 has no nonzero direct summand of the

form 0 −→ E′′. We define the coordinate vector of (E0, E1, ψ) to be the bipartite vector

cdn(E0, E1, ψ) = (lgth(socE0)|lgth(socE1)) ∈ ZU × ZU = K0(RE)×K0(RE). (3.4)

Following [7], [3] (Sec. 6) and [28], we denote by P1(R
op
E ) the category whose objects are the triples

(P1, P0, φ) with P0, P1 finitely generated projective left RE-modules and φ : P1 −→ rad(P0) = P0J(RE)
a homomorphism of left RE-modules; and whose morphisms are the pairs (g1, g0), where g0 : P0 −→ P ′0,
g1 : P1 −→ P ′1 and φ′ ◦ g1 = g0 ◦ φ. Denote by P2(R

op
E ) the full subcategory of P1(R

op
E ) whose objects

are the triples (P1, P0, φ) with Kerφ ⊆ rad(P1). or equivalently, φ : P1 −→ P0 has no nonzero direct summand

of the form P −→ 0. We define the coordinate vector of (P1, P0, φ) to be the bipartite vector

cdn(P1, P0, φ) = (lgth(topP1)|lgth(topP0)) ∈ ZU × ZU = K0(R
op
E )×K0(R

op
E ).

We call cdn(Cokerφ) = cdn(P1, P0, φ) the coordinate vector of the RE-module Cokerφ.

We start with the following important result (here we freely use the terminology and notation introduced in [3]

(Sec. 6), [7], and [28]):

Theorem 3.1. Let K be an algebraically closed field, C a basic K-coalgebra with the decomposition (1.1),
E a socle-finite injective direct summand (3.1) of CC, and assume that the K-algebra RE = EndCE (3.2) is
finite-dimensional. Let BE = (A,AVA) be the additive Roiter bocs associated with the K-algebra RopE in [3]
(Proposition 6.1). Then there is a commutative diagram

Map1(E)
HE−→� P1(R

op
E )

G←−� repK(BE)

kerE

⏐⏐� cokE

⏐⏐�
C-ComodfcE

h•E−→� mod(RopE ),

(3.5)

where HE and h•E = HomC(•, E) are K-linear contravariant equivalences of categories, G is a covariant K-
linear equivalence of categories, h•E is an exact functor, kerE(E0, E1, ψ) = Kerψ, cokE(P1, P0, φ) = Cokerφ,

and the following conditions are satisfied:
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(a) The functors cokE and kerE are full dense and restrict to the representation equivalences
kerE : Map2(E) −→ C-ComodEfc and cokE : P2(R

op
E ) −→ mod(RopE ). The right-hand part in the

diagram is defined as in [7] (Sec. 5) and [3, p. 476, 478], with RopE , G, cokE and Λ, Ξ, cok inter-
changed.

(b) If N is an indecomposable comodule in C-ComodEfc then there exists a unique, up to isomorphism, inde-
composable object (E0, E1, ψ) in Map1(E) such that kerE(E0, E1, ψ) ∼= N. In this case (E0, E1, ψ)
lies in Map2(E) and

cdn(N) = cdn(E0, E1, ψ) = σ(cdnHE(E0, E1, ψ)) = dimG−1HE(E0, E1, ψ)),

where we set σ(v′|v′′) = (v′′|v′).
(c) If the category C-ComodEfc is not of K-wild representation type ( shortly, K-wild ) then the additive

category repK(BE) of the K-linear representations of BE is not wild and, given a nonnegative vector

v = (v′|v′′) ∈ ZU × ZU ⊆ Z(IC) × Z(IC) ∼= K0(C)×K0(C),

there exist minimal bocses B1, . . . ,Bn, with Bi = (Bi,Wi), finitely E-copresented C-Bi-bicomodules
Ti and full functors Fi : repK(Bi) −→ C-Comodfc which reflect isomorphisms such that

(c1 ) Fi(X) = Ti ⊗Bi X, for all representations X in repK(Bi),

(c2 ) every indecomposable comodule N in C-ComodEfc, with cdn(N) = v, is isomorphic to Fi(X),
for some i and some representation X in repK(Bi),

(c3 ) the functors Fi induce group homomorphisms K0(Bi) −→ ZU ⊆ Z(IC) ∼= K0(C) taking the
dimension vector dim(X) of X to cdnFi(X).

Proof. By our assumption, the injective comodule E = EU is socle-finite and the K-algebra RE =
EndCE is finite-dimensional. Let D : modRopE −→ modRE be the standard duality given by L �→ D(L) =
HomK(L,K), for any L in modRopE . We define the contravariant functor h•E by setting h

(−)
E = HomC(−, E).

Since E is injective, the functor h•E is exact and, by [26] (Proposition 2.13), h•E is an equivalence of categories

such that (lgthN)u = (dimhNE )u = dimK(hNE )eu, for any comodule N in C-ComodfcEU and all u ∈ U,

where dimN ′ is the dimension vector of a left RU -module N ′. This means that resU (lgthN) = dimhNE , for

any comodule N in C-ComodfcEU , where resU : Z(IE) −→ ZU is the restriction homomorphism.

We define the functor HE on objects by setting HE(E0, E1, ψ) = (hE1
E , hE0

E , hψE), and on morphisms

by setting HE(f0, f1) = (hf1E , h
f0
E ). A direct calculation shows that (hE1

E , hE0
E , hψE) belongs to P1(R

op
E ) if

(E0, E1, ψ) ∈Map1(E) and that HE is well defined.

For a purpose of next steps of the proof (and in order to see a nature of Map1(E) as the bimodule problem

in the sense of Drozd [5], see also [4, 17]), we give a different detailed proof of the above fact.

Let K = add(E) be the full additive subcategory of C-Comod formed by finite direct sums of the injec-

tive C-comodules E(u), with u ∈ U, and let H = HE be the K-K-bimodule H(−, ·) = HE(−, ·) : Kop ×
K −→ modK defined by the formula

H(E′, E′′) = {g ∈ HomC(E′, E′′);ψ(socE′) = 0} ⊆ HomC(E′, E′′),

with E′, E′′ ∈ K. Note that H(E,E) = {ψ ∈ EndCE; ψ(socE) = 0} = J(RE) is the Jacobson radical of the

algebra RE .
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We construct HE as the composite functor

Map1(E)
H′−→� Mat(KHE

K
) H′−→� P1(R

op
E ), (3.6)

where Mat(KHE
K
) is the additive K-category of KHE

K
-matrices in the sense of Drozd [5], see also [4], [10], [18]

(Chap. 17), [20] (Sec. 2) for details. Recall that the objects of Mat(KHE
K
) are the triples (E′, E′′, ψ), where

E′, E′′ ∈ obK and ψ ∈ H(E′, E′′), and morphisms are defined in a natural way.

The functor H ′ is defined by attaching to any object (E0, E1, ψ) of Map1(E), with ψ ∈ HomC(E0, E1) =
H(E0, E1) and E0, E1 ∈ K, the triple H ′(E0, E1, ψ) = (E0, E1, ψ), viewed as an object of Mat(KHE

K
). Given

a morphism (f0, f1) : (E0, E1, ψ) −→ (E′0, E′1, ψ′), we set H ′(f0, f1) = (f0, f1). It is easy to see that H ′ is a

K-linear equivalence of categories.

Now we construct the functor H ′′. In the notation of [20] (Sec. 2), we denote by RE-pr the category of

finitely generated projective left RE-modules and we define the Nakayama equivalence ω : K
�−→ (RE-pr)op that

associates with any object x of K the finitely generated projective left RE-module ω(x) = hxE = HomC(x,E).
Hence, by applying the formula (2.9) in [20] to K = L = K = add(E) and the bimodule M = H, we

conclude that, for any pair x = E′, y = E′′ of objects in K, the (contravariant!) functor ω induces the natural

isomorphisms

H(E′, E′′) = H(x, y) ∼= HomRE (h
y
E ,H(x,E))

∼= HomRE (h
y
E ,H(E,E)⊗RE hxE)

∼= HomRE (h
y
E , J(RE)⊗RE hxE)

∼= HomRE (h
y
E , radh

x
E) = HomRE (h

E′′
E , radhE

′
E )

∼= HomRE (J(RE)
+ ⊗RE hyE , hxE)

∼= HomRE (J(RE)
+ ⊗RE hE

′′
E , hE

′
E ), (3.7)

where J(RE)+ = HomRE (J(RE), RE) is viewed as an RE-RE-bimodule.

Hence, if (E0, E1, ψ) is an object of Map1(E) (or of Mat(KHK) ) then ψ ∈ H(E′, E′′) and its image

ψ̂ : hE
′′

E −→ radhE
′

E under the composite isomorphism (3.7) is such that hψE = u · ψ̂, where u : radhE
′

E ↪→ hE
′

E

is the imbedding. It follows that (hE
′′

E , hE
′

E , h
ψ
E) lies in P1(RE) if and only if (E0, E1, ψ) lies in Map1(E).

We define H ′′ (and HE ) on objects (E0, E1, ψ) by setting

H ′′(E0, E1, ψ) = HE(E0, E1, ψ) = (hE
′′

E , hE
′

E , h
ψ
E),

and on morphisms (f0, f1) by H ′′(f0, f1) = HE(f0, f1) =
(
hf1E , h

f0
E

)
. Obviously, H = H ′′ ◦H ′. Since, up to

isomorphism, all objects of P1(RE) are of the form (hE
′′

E , hE
′

E , h
ψ
E), with (E0, E1, ψ) ∈Map1(E), the functors

H ′′ and HE are equivalences of categories making the square in (3.5) commutative.

(a) The fact that the functors ker and cok are full and dense follows immediately form the definitions. It

is easy to see that (P1, P0, φ) is an object of P1(RE) if and only if P1
φ−→ P0 → Cokerφ → 0 is a minimal



974 D. SIMSON

projective presentation of Cokerψ in mod(RopE ). Analogously, (E0, E1, ψ) is an object of Map1(E) if and

only if 0 → Kerψ → E0
ψ−→ E1 is a minimal injective E-copresentation of Kerψ. Hence easily follows that

the functors cokE and kerE restrict to the representation equivalences kerE :Map2(E) −→ C-ComodEfc and

cokE : P2(R
op
E ) −→ mod(RopE ). The remaining statements in (a) follow from the definitions and [3] (Sec. 6).

(b) Let N be an indecomposable comodule in C-ComodEfc. Then N admits a minimal injective E-

copresentation 0 → N → E0
ψ−→ E1 in C-Comod, with E0, E1 ∈ add(E) and, therefore, (E0, E1, ψ) is

an object of Map1(E). It follows that

HE(E0, E1, ψ) = (hE1
E , hE0

E , hψE) ∈ P2(RE)

and, hence, hE1
E

hψE−→ hE0
E −→ hNE → 0 is a minimal projective presentation of hNE in modRopE . Hence the equali-

ties cdn(N) = cdn(E0, E1, ψ) = σ(cdnHE(E0, E1, ψ)) easily follow. The equality σ(cdnHE(E0, E1, ψ)) =
dimG−1HE(E0, E1, ψ)) is proved in [7] (Sec. 5) and [3] (Sec. 6).

(c) First we show that the functor G in (3.5) is the composite functor

P1(R
op
E )

G′←−� R̂E-modprpr
G′′←−� repK(BE), (3.8)

where R̂E-modprpr is the additive K-category of finite-dimensional propartite left modules over the finite-

dimensional bipartite K-algebra

R̂E =

⎡⎣RE J(RE)+

0 RE

⎤⎦ (3.9)

in the sense of [20], with J(RE)+ = HomRE (J(RE), RE). First we note that if X = (X ′, X ′′, ξ : J(RE)+⊗RE
X ′ −→ X ′′), is a propartite left R̂E-module then, up to isomorphism, the projective left RE-modules X ′, X ′′

have the forms X ′ = hE
′′

E , X ′′ = hE
′

E , where E′, E′′ ∈ add(E). Then, in view of the isomorphisms

HomRE (J(RE)
+ ⊗RE hE

′′
E , hE

′
E ) ∼= HomRE (h

E′′
E , J(RE)⊗RE hE

′
E ) ∼= HomRE (h

E′′
E , radhE

′
E )

given in (3.7), we can view X as the triple X = (X ′, X ′′, ξ̃), where ξ̃ = u ◦ ξ is the composition

hE
′′

E

ξ−→ radhE
′

E
u−→ hE

′
E of the image ξ of ξ ∈ HomRE (J(RE)

+ ⊗RE hE
′′

E , hE
′

E ), under the composite iso-

morphism, with the canonical imbedding u. In other words, the triple G′(X) = (X ′, X ′′, φ) = (hE
′′

E , hE
′

E , φ) is

an object of P1(R
op
E ). This defines the equivalence G′, and we set G′′ = G ◦ (G′)−1. It is clear that the functor

TK = (G′′)−1 is the equivalence TK : R̂E-modprpr
�−→ repK(BE) defined in [20] ((4.11)).

Following an observation of Drozd [7] (see also [3] and [20, p. 44, 45]), given a finitely generated K-algebra

S, the category rep(BE , S) of right S-module representations of the bocs BE = (A,AVA) has as objects the

A-S-bimodules AXS in modfp(A⊗ Sop) (the category of finitely presented left (A⊗ Sop)-modules), which are

finitely generated projective, when viewed as right S-modules, see [7], [3] and [20, p. 44, 45] for details. We set

repK(BE) = rep(BE ,K).
By [20] (Proposition 4.9), there is an equivalence of categories

TS : (R̂E ⊗ Sop)-modprpr
�−−→ rep(BE , S), (3.10)
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for any finitely generated K-algebra S, where

(R̂E ⊗ Sop) =
⎡⎣RE ⊗ Sop J(RE)+ ⊗ Sop

0 RE ⊗ Sop

⎤⎦.
The objects of (R̂E ⊗ Sop)-modprpr are R̂E-S-bimodules that are (RE ⊗ Sop)-(RE ⊗ Sop)-propartite and finitely

generated projective as left S-modules.

Following the above construction of the functor G′, we can construct equivalences of categories

P1((RE ⊗ Sop)op)
G′
E,S←−−− (R̂E ⊗ Sop)-modprpr

G′′
E,S←−−− rep(BE , S), (3.11)

and we extend the diagram (3.5) to the following commutative diagram:

Map1(E ⊗ Sop)
HE,S−→� P1((RE ⊗ Sop)op) GE,S←−� rep(BE , S)

ker

⏐⏐� cok

⏐⏐�
(C ⊗ Sop)-ComodfcE⊗Sop

h•S−→� mod((RE ⊗ Sop)op),

(3.12)

where GE,S = G′E,S ◦G′′E,S and T−1
S = G′′E,S . We set Ĉ = C ⊗ Sop and view it as an Sop-coalgebra with the

comultiplication Δ̂ = Δ ⊗ Sop and the counit ε̂ = ε ⊗ Sop. Then Ê = E ⊗ Sop is an injective object in the

category Ĉ-Comod of left Ĉ-comodules, which is projective, when viewed as a right S-module.

We define Ĉ-Comodfc
bE = (C ⊗ Sop)-ComodfcE⊗S

op
to be the full subcategory Ĉ-Comod whose objects

are the finitely Ê-copresented Ĉ-comodules, i.e., finitely E ⊗ Sop-copresented Ĉ-bicomodules. The categories

Map1(E ⊗ Sop), P1(RE ⊗ Sop), and the functors ker = kerE⊗Sop , cok = cokRE⊗Sop are defined in an

obvious way.

We only prove that the functor h•S : (C ⊗ Sop)-ComodfcE⊗S
op −→ mod((RE ⊗ Sop)op) in (3.12) defined by

Z �→ hZS = Hom
bC
(Z, Ê), is an equivalence of categories. The fact that HE,S is an equivalence of categories can

be proved by applying the properties of h•S and the isomorphism

χE′,E′′ : HomC(E′, E′′)⊗ Sop −→ Hom
bC
(E′ ⊗ Sop, E′′ ⊗ Sop), (3.13)

with E′, E′′ ∈ add(E), given by g⊗ s �→ [(g⊗ id) · s : E′⊗Sop −→ E′′⊗Sop], because the bimodule problem

arguments used above extend almost verbatim to our situation. The homomorphism χE′,E′′ is an isomorphism of

S-modules for each pair E′, E′′ of comodules in add(E), because it is functorial with respect to homomorphisms

E′ → E′1 and E′′ → E′′1 of C-comodules and it is proved in [28] ((2.10)) that χE′,E′′ is bijective for E′ =
E′′ = E if the algebra RE is finite-dimensional.

Hence easily follows that a left Ĉ-comodule Z lies in (C ⊗ Sop)-ComodfcE⊗S
op

if and only if there is an

exact sequence 0 −→ Z −→ E0⊗Sop −→ E1⊗Sop, with E0, E1 ∈ add(E). By applying Hom
bC
(−, E⊗Sop)

and the isomorphism χE′,E′′ , we get the exact sequence

h
E′

1
E ⊗ Sop −→ hE0

E ⊗ Sop −→ hZS −→ 0
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of left (RE ⊗ Sop)-modules that is a projective presentation of hZS = Hom
bC
(Z,E ⊗ Sop). Hence, we conclude

that the functor h•S in (3.12) is an equivalence of categories. It follows that the functor HE,S in (3.12) is an

equivalence of categories making the diagram (3.12) commutative.

Note that, by [20] (Proposition 4.9(b)) and the definition of the functors GE,S , HE,S in (3.12) and the

functors GE and HE in (3.5), for every module L in the category fin(Sop) of finite-dimensional left S-modules

and every R̂E-S-bimodule
bRE
XS in the category R1((RE ⊗ Sop)op) there exist isomorphisms

G−1
E (

bRE
X ⊗S L) ∼= G−1

E,S( bRE
XS)⊗S L,

and

H−1
E (

bRE
X ⊗S L) ∼= H−1

E,S( bRE
XS)⊗S L

that are functorial with respect to the S-module homomorphisms L→ L′ and R̂E-S–bimodule homomorphisms

bRE
XS → bRE

X ′S .
By applying the diagram (3.12), we reduce the proof of (c) to [7] (Propositions 11 and 13), and to [3] (Theo-

rem B). Here we follow closely the notation and the proof of [3] (Theorem B). We recall that our functor GE in

(3.5) is just the functor Ξ: repK(BE) −−−−→ P1(RE) in [3, p. 476], where repK(BE) = rep(BE ,K).
Assume that the category C-ComodEfc is not K-wild. Then the category C-ComodEfc is not K-wild and, by

[28] (Proposition 2.8 (a)), the finite-dimensional K-algebras RE and RopE are not wild. Hence, according to [3]

(Theorem B) and its proof, the category repK(BE) is not wild and there exist minimal bocses B1, . . . ,Bn, with

Bi = (Bi,Wi), finitely generated RE-Bop
i -bimodules T ′i and full functors F ′i : repK(Bi) −→ RE-mod which

reflect isomorphisms such that the conditions (c1), (c2) and (c3) stated in (c) are satisfied with C-ComodEfc,
Fi : repK(Bi) −→ C-ComodEfc and RE-mod, F ′i : repK(Bi) −→ RE-mod interchanged. Moreover, it is

shown in the proof of [3] (Theorem B) that, for each i = 1, . . . , n, the RE-Bop
i -bimodules T ′i are of the form

T ′i = cokBi(T̂
′
i ), where T̂ ′i ∈ P1(RE ⊗ Bi

op), and F̂ ′i (X) = T̂ ′i ⊗Bi X, for all representations X of the

bocs Bi.

Let T̂i = H−1
E,Bi

(T ′i ) ∈ Map1(E ⊗ Bi
op) be the preimage of T ′i under the functor HE,S in (3.12), with

S = Bi. Finally, let Ti = ker(T̂i) ∈ Ĉ-Comodfc
bE be the image of T̂i under the functor ker in (3.12), applied to

S = Bi. Then Ti is a finitely E-copresented C-Bi-bicomodule and we set Fi(−) = Ti ⊗Bi (−).
In view of (a), (b) and the properties of the functors F ′i : repK(Bi) −→ RE-mod listed above, the condi-

tions (c 1 )–(c 3 ) are satisfied, because the arguments given in the proof of [3] (Theorem B) extends almost verbatim.

The details are left to the reader.

Corollary 3.1. Under the assumption made in Theorem 3.1, for a given socle-finite injective direct summand
E of CC such that dimK EndCE <∞, the following conditions are equivalent:

(a) The category C-ComodEfc is K-wild.

(b) C-ComodEfc is properly fc-wild ( or smooth ) [20] (Sec. 6), i.e., for every finitely generated K-algebra
Λ ( equivalently, for Λ = K〈t1, t2〉, or Λ = Γ3(K)) there exists a finitely E-copresented C-Λ-
bicomodule CNΛ that induces a representation imbedding CN ⊗Λ (−) : fin(Λop) −→ C-ComodEfc.

(c) The finite-dimensional K-algebras RopE and RE are wild.

(d) The additive K-category repK(BE) is wild, where BE is the Roiter bocs of RopE , see (3.5).

(e) The additive K-category R̂E-modprpr is wild, where R̂E is the bipartite algebra (3.9).
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Proof. Since the functor h•E : C-ComodEfc −→ RE-mod in (3.5) is an exact equivalence of categories, con-

dition (a) implies (c). The inverse implication (c) ⇒ (a) and the equivalence of (a) and (b) follows from [28]

(Corollary 2.12). The implication (d) ⇒ (a) follows from Theorem 3.1 (c). The equivalence (d) ⇔ (e) follows

from [20] (Proposition 4.9). Since (c) ⇔ (d) follows from [7] (Sec. 5) and [3], the proof is complete.

In the proof of the fc-tame-wild dichotomy we use the following lemma:

Lemma 3.2. Under the assumption made in Theorem 3.1, for a given socle-finite injective direct summand
E = EU of CC such that RE = EndCE is of finite dimension,

(a) the fc-tameness of the category C-ComodEfc implies the tameness of the additive K-categories
Map1(E) ∼= repK(BE) ∼= R̂E-modprpr and the tameness of the algebras RE and Rop, where R̂E
is the bipartite algebra (3.9) and BE is the Roiter bocs of RopE , see (3.5),

(b) given a proper bipartite vector v = (v′|v′′) ∈ ZU × ZU ⊆ K0(C)×K0(C) we have

μ̂ 1
C(v) = μ̂ 1

bRE
(σ(v)) = μ̂ 1

RopE
(σ(v)),

where μ̂ 1
bRE
(σ(v)) and μ̂ 1

RopE
(σ(v)) is the minimal cardinality of an almost parametrizing family for

indσ(v)(R̂E-modprpr) and indσ(v)(mod(RopE )), respectively.

Proof. Assume that the category C-ComodEfc is fc-tame, i.e., for any proper nonnegative bipartite vector

v = (v′|v′′) ∈ ZU × ZU ⊆ K0(C)×K0(C), there exist a nonzero polynomial h ∈ K[t], C-K[t]h-bicomodules

L(1), . . . , L(rv) that are finitely E-K[t]h-copresented and form an almost parametrizing family for the family

indv(C-ComodEfc) of all indecomposable C-comodules M with cdnM = v. It follows that all L(j) lie in

C-ComodfcE⊗K[t]h . Then, for each j ∈ {1, . . . , rv}, there is an exact sequence

0 −→ CL
(j)
K[t]h

−→ E
(j)
0 ⊗K[t]h ψ(j)

−→ E
(j)
1 ⊗K[t]h

in C-ComodfcE⊗K[t]h , with E
(j)
0 , E

(j)
1 in add(E), such that

L̂(j) = (E(j)
0 ⊗K[t]h, E(j)

1 ⊗K[t]h, ψ(j))

is an object of Map1(E ⊗ K[t]h), see (3.12). By applying Theorem 3.1, one can show that the objects

L̂(1), . . . , L̂(rv) form a finitely E-copresented almost parametrizing family for indv(Map1(E)), i.e., all but

finitely many indecomposable objects (E′, E′′, g) in Map1(E), with cdn(E′, E′′, g) = v, are of the form

(E′, E′′, g) ∼= L̂(s) ⊗K[t]h := (E(s)
0 ⊗K[t]h, E(s)

1 ⊗K[t]h, ψ(j) ⊗K1
λ),

where s ≤ rv, K
1
λ = K[t]/(t − λ) and λ ∈ K. This shows that the category Map1(E) is tame. The functor

G−1
S ◦ HE,S in the diagram (3.12), with S = K[t]h, carries each of the objects L̂(s) to some object U (s) ∈

rep(BE ,K[t]h)) such that all but finitely many indecomposable objects X in repK(BE), with dim(X) = σ(v),
are of the form X ∼= U (j) ⊗ K1

λ, where s ≤ rv. This shows that the category repK(BE) is tame and, by [3]

(Sec. 6) and [7], the algebra RopE and RE are tame. Since, by Proposition 4.9 (b) and Theorem 6.5 in [20], the

category repK(BE) is tame if and only if R̂E-modprpr is tame, the proof of (a) is complete.
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Moreover, it follows that, given a proper vector v = (v′|v′′) ∈ ZU × ZU , any almost parametrizing fam-

ily for indv(C-ComodEfc) consisting of finitely E-copresented bicomodules L(1), . . . , L(rv) leads to an almost

parametrizing family L̂(1), . . . , L̂(rv) ∈Map1(E⊗S), with S = K[t]h, for indv(Map1(E)) . By applying the

functor HE,S in (3.12) and then the functor (G′E,S)
−1 in (3.11), to L̂(1), . . . , L̂(rv), we get an almost parametriz-

ing family
̂̂
L(1), . . . ,

̂̂
L(rv) ∈ (R̂E ⊗ S)-modprpr, for indv(R̂E-modprpr). Since the vector v = (v′|v′′) is proper,

up to a localization of S = K[t]h, by applying the functor cok in (3.12) we get an almost parametrizing family

cok(̂̂L(1)), . . . , cok(̂̂L(rv)) for indσ(v)(mod(RopE )).
By Lemma 3.1, any finitely copresented family for indv(C-Comodfc) can be corrected to a finitely E-

copresented almost parametrizing family for indv(C-Comodfc) = indv(C-ComodEfc), for any v = (v′|v′′) ∈
ZU × ZU . Hence (b) follows and the proof is complete.

We are now able to give an alternative proof of the fc-tame-wild dichotomy for computable coalgebras estab-

lished in [28].

Theorem 3.2. Assume that C is a basic coalgebra over an algebraically closed field K such that
dimK HomK(E′, E′′) is finite for each pair E′, E′′ of indecomposable direct summands of CC. Then C is
either of tame fc-comodule type or of wild fc-comodule type, and these two types are mutually exclusive.

Proof. Since C is basic, CC has a decomposition (1.1). Assume that C is not of fc-wild comod-

ule type. To show that C is of fc-tame comodule type, fix a nonnegative bipartite vector v = (v′|v′′) ∈
Z(IC) × Z(IC) ∼= K0(C) × K0(C). Since the support Uv = supp(v) of v is a finite subset of IC , the in-

jective C-comodule E = EUv =
⊕

j∈Uv E(j) is socle-finite and, according to our assumption the algebra

RE = EndCE is finite-dimensional. Moreover, every left C-comodule N, with cdn(N) = v lies in the

subcategory C-ComodEfc of C-Comodfc. Then indv(C-Comodfc) = indv(C-ComodEfc) and, by our assump-

tion, the category C-ComodEfc is not of K-wild comodule type. Then, by Theorem 3.1, there exist minimal

bocses B1, . . . ,Bn, with Bi = (Bi,Wi), finitely E ⊗ Ri-copresented C-Bi-bicomodules Ti and full functors

Fi(−) = Ti⊗Bi (−) : repK(Bi) −→ C-ComodEfc which reflect isomorphisms such that the conditions (c 1 )–(c 3 )

in Theorem 3.1 are satisfied. In particular, every indecomposable comodule N in C-ComodEfc with cdn(N) = v

is isomorphic to Fi(X), for some i and some representation X in repK(Bi). Hence we conclude, as in the proof

of [3] (Corollary C), that there is a finite set of pairs (Ri, L(i)), where each Ri = K[t]h is a localization of K[t]
and L(i) is a finitely E-copresented C-Ri-bicomodule such that

L(i) ∈ (C ⊗Ropi )-ComodfcE⊗R
op
i (3.14)

and all but finitely many indecomposable left C-comodules N in C-Comodfc, with cdn(N) = v, are of the

form N ∼= L(s) ⊗ Y, for some i and some indecomposable Ri-module Y. Hence we conclude, as in the proof

of Theorem 14.18 in [18, p. 297], that there exist finitely E-copresented C-K[t]h-bicomodules L̂(1), . . . , L̂(rv)

such that all but finitely many indecomposable left C-comodules N in C-Comodfc, with cdn(N) = v, are of

the form N ∼= L̂(s) ⊗K1
λ, where s ≤ rv, K

1
λ = K[t]/(t − λ) and λ ∈ K. Consequently, the coalgebra is of

fc-tame comodule type.

It remains to prove that the coalgebra C cannot be both of fc-tame and of fc-wild comodule type. Assume

to the contrary that C is of fc-tame and of fc-wild comodule type. Let T : modΓ3(K) −→ C-Comodfc be an

exact K-linear representation imbedding, where Γ3(K) =

⎡⎣K K3

0 K

⎤⎦. Let S1 be the unique simple injective right

Γ3(K)-module, and let S2 be the unique simple projective right Γ3(K)-module, up to isomorphism. Since T (S1)
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and T (S2) lie in C-Comodfc, there are exact sequences 0 → T (S1) → E
(1)
0 −→ E

(1)
1 and 0 → T (S2) →

E
(2)
0 −→ E

(2)
1 , where E

(1)
0 , E

(1)
1 , E

(2)
0 , E

(2)
1 are socle-finite injective C-modules.

Let E be a socle-finite direct summand of C such that the comodules E
(1)
0 , E

(1)
1 , E

(2)
0 , E

(2)
1 lies in

add(E). We show that ImT ⊆ C-ComodEfc. Indeed, if N = T (X) lies in ImF, where X is a module in

modΓ3(K), then there is an exact sequence 0 → Sn2 → X → Sm1 → 0, with n,m ≥ 0. Since T is exact, we

get the exact sequence 0→ T (S2)n → N → T (S1)m → 0 in C-Comod. The comodules T (S1)m and T (S2)n

obviously lie in C-ComodEfc and, hence, also N lies in C-ComodEfc. This shows that ImT ⊆ C-ComodEfc
and, hence, the category C-ComodEfc is fc-wild and, according to Corollary 3.1, the finite-dimensional algebra

RE is wild.

On the other hand, in view of the fc-parametrization correction lemma (Lemma 3.1), the assumption that C is

of fc-tame comodule type implies that C-ComodEfc is fc-tame. Hence, by Lemma 3.2, the finite-dimensional al-

gebra RE is tame and we get a contradiction with the tame-wild dichotomy [7] for finite-dimensional K-algebras.

We can now complete [28] (Proposition 2.8 (a)) as follows:

Corollary 3.2. Under the assumption made in Theorem 3.1, for a given socle-finite injective direct summand
E = EU of CC such that the algebra RE = EndCE is of finite dimension, the following conditions are equiva-
lent:

(a) The category C-ComodEfc is fc-tame.

(b) The finite-dimensional K-algebra RE is tame.

(c) The additive K-categories Map1(E) ∼= repK(BE) are tame, where BE is the additive Roiter bocs of
RopE , see (3.5).

(d) The additive K-category R̂E-modprpr is tame, where R̂E is the bipartite algebra (3.9).

Moreover, if C-ComodEfc is fc-tame then, given a proper bipartite vector v = (v′|v′′) ∈ ZU × ZU ⊆
K0(C)×K0(C), we have μ̂ 1

C(v) = μ̂ 1
bRE
(σ(v)) = μ̂ 1

RopE
(σ(v)). In particular, C-ComodEfc is of polynomial

growth if and only if R̂E-modprpr is of polynomial growth.

Proof. The equivalence (b) ⇔ (c) follows from the theorem of Drozd [7] (see also [3], [28] (Proposition 2.8)

and from the proof of Theorem 3.1. The equivalence (c) ⇔ (d) follows from [20] (Theorem 6.5) (or from the proof

of Theorem 3.1). To prove (c) ⇒ (a), note that, according to [7], if repK(BE) is tame, it is not wild. Then, by

Theorem 3.2 and its proof, the category C-ComodEfc is fc-tame. Since (a) ⇒ (c) follows from Lemma 3.2 (a),

the conditions (a)–(d) are equivalent. The remaining statement follows from Lemma 3.2 (b).

Corollary 3.3. Let C be a basic coalgebra over an algebraically closed field K such that
dimK HomK(E′, E′′) is finite for each pair E′, E′′ of indecomposable direct summands of CC. The following
conditions are equivalent:

(a) The coalgebra C is of tame fc-comodule type.

(b) For any proper bipartite vector v = (v′|v′′) ∈ K0(C) × K0(C), there is a finitely EUv -copresented
almost parametrizing family for indv(C-Comodfc) = indv(C-ComodfcEUv ), where Uv = supp(v) ⊆
Z(IC) is the support of v and EUv =

⊕
j∈Uv E(j).

(c) For any socle-finite direct summand E of CC, C-ComodEfc is fc-tame.

(d) For any socle-finite direct summand E of CC, C-ComodEfc is not fc-wild.
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(e) For any socle-finite direct summand E of CC, the finite-dimensional K-algebra RE = EndCE is tame.

(f) For any socle-finite direct summand E of CC, the category R̂E-modprpr is tame, where R̂E is the
bipartite algebra (3.9).

The coalgebra C is of fc-discrete comodule type if and only if, for any proper bipartite vector v = (v′|v′′) ∈
K0(C)×K0(C), the family indv(C-ComodfcEUv ), with Uv = supp(v) ⊆ Z(IC), is finite up to isomorphism, or
equivalently, the family indv(R̂EUv−modprpr) is finite up to isomorphism.

Proof. The implication (b) ⇒ (a) is obvious. The implication (c) ⇒ (b) and the equivalence of the statements

(c)–(f) is an immediate consequence of previous results.

To prove (a) ⇔ (b), we fix a proper bipartite vector v = (v′|v′′) ∈ Z(IC) × Z(IC) and set Uv = supp(v),
EUv =

⊕
j∈Uv E(j). It is clear that indv(C-Comodfc) = indv(C-ComodfcEUv ). Since C is fc-tame, there

are finitely copresented C-K[t]h-bimodules L(1), . . . , L(rv) forming an almost parametrizing family of for

indv(C-Comodfc). By Lemma 3.1, the family corrects to an almost parametrizing family L̃(1), . . . , L̃(rv) for

indv(C-Comodfc) = indv(C-ComodfcEUv ) consisting of finitely EUv -copresented bicomodules. Hence (b) fol-

lows and the conditions (a)–(f) are equivalent. Since the remaining statement of corollary is a consequence of

Lemma 3.2 (b), the proof is complete.

4. A Geometry Context for Computable Coalgebras

Throughout we assume that K is an algebraically closed field and C a basic computable K-coalgebra with a

fixed decomposition CC =
⊕

j∈IC E(j) (1.1). Following [7, 17, 19, 20], we introduce in Definitions 4.1 and 4.2

a geometry context for a coalgebra C, compare with [15]. We use it in the study of comodules over a K-coalgebra

C by applying the geometry of orbits. In particular, we give a geometric characterization of fc-tame coalgebras.

Definition 4.1. Given a computable K-coalgebra C (1.1) and a bipartite nonnegative vector v = (v′|v′′) ∈
Z(IC) × Z(IC), we define an action

∗ : GC
v ×MapCv −→ MapCv (4.1)

of an algebraic (parabolic) group GC
v on an affine K-variety MapCv as follows:

(a) GC
v = AutCE(v′) × AutCE(v′′) viewed as an algebraic group with respect to Zariski topology, where

E(v′) =
⊕

i∈IC E(j)
v′i and E(v′′) =

⊕
j∈IC E(j)

v′′j are the standard injective C-comodules (2.2) with
lgthE(v′) = (v′|0) and lgthE(v′′) = (v′′|0).

(b) MapCv = {ψ ∈ HomC(E(v′),E(v′′));ψ(socE(v′)) = 0} ⊆ HomC(E(v′),E(v′′)) is viewed as an
affine K-variety (Zariski closed subset of the affine space HomC(E(v′),E(v′′)) of finite K-dimension).

(c) The algebraic group (left) action (4.1) of GC
v on MapCv is defined by the conjugation (f ′, f ′′) ∗ ψ =

f ′′ ◦ g ◦ (f ′)−1, where ψ ∈MapCv , f
′ ∈ AutCE(v′) and f ′′ ∈ AutCE(v′′).

Definition 4.2. Given a computable K-coalgebra C and a bipartite nonnegative vector v = (v′|v′′) ∈
Z(IC) × Z(IC) = K0(C)×K0(C), the open subset

ComodCv = {ψ ∈MapCv ; socE(v
′′) ⊆ Imψ} (4.2)

of the variety MapCv is called a variety of C-comodules N with cdn(N) = v.
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We start with the following useful facts:

Lemma 4.1. Let C be a computable K-coalgebra and v = (v′|v′′) ∈ Z(IC) × Z(IC) = K0(C)×K0(C) a
nonnegative bipartite vector.

(a) ComodCv is a GC
v -invariant and Zariski open subset of the affine variety MapCv .

(b) The map ψ �→ Kerψ defines a bijection between the GC
v -orbits of ComodCv and the isomorphism

classes of comodules N in C-Comodfc such that cdn(N) = v.

Proof. (a) To see that ComodCv is a Zariski open subset of MapCv , note that, given a ∈ supp(v′′) ⊆ IC ,

the subset Da of MapCv consisting of all ψ ∈ MapCv such that ψ : E(v′) −→ E(v′′) has a factorization

through the subcomodule E(v′′)a =
⊕

j 
=aE(j)
v′′j of E(v′′) is Zariski closed. Since the set supp(v′′) is finite,

D =
⋃

a∈supp(v′′)
Da is closed and therefore ComodCv = MapCv \ D is open. The fact that ComodCv is a

GC
v -invariant subset of MapCv follows by applying the definitions.

(b) Note that a C-comodule homomorphism ψ : E(v′) −→ E(v′′) is an element of ComodCv if and only if

0 −→ Kerψ −→ E(v′) ψ−→ E(v′′) is a minimal injective copresentation of Kerψ in C-Comodfc. Hence every

comodule N in C-Comodfc, with cdn(N) = v, is isomorphic to Kerψ, for some ψ : E(v′) −→ E(v′′) in

ComodCv . Obviously, two elements ψ : E(v′) −→ E(v′′) and ψ′ : E(v′) −→ E(v′′) of ComodCv lie in the

same GC
v -orbits if and only if the comodules Kerψ and Kerψ′ are isomorphic. Hence (b) follows.

The lemma is proved.

Now we characterize computable K-coalgebras of fc-discrete comodule type in terms of the GC
v -orbits of

ComodCv as follows:

Proposition 4.1. Let K be an algebraically closed field and C a computable K-coalgebra. The following
four conditions are equivalent:

(a) The coalgebra C is fc-tame of discrete comodule type.

(b) For every bipartite vector v = (v′|v′′) ∈ K0(C) × K0(C), there is only a finite number of indecom-
posable objects (E0, E1, ψ) in Map1(EUv) with cdn(E0, E1, ψ) = v, up to isomorphism, where
Uv = supp(v).

(c) The number of GC
v -orbits in ComodCv is finite for every bipartite vector v = (v′|v′′) ∈ K0(C) ×

K0(C).

(d) The number of GC
v -orbits in MapCv is finite for every bipartite vector v = (v′|v′′) ∈ K0(C)×K0(C).

Proof. (a) ⇒ (b) Assume that C is fc-tame of discrete comodule type. Let v = (v′|v′′) be a bipar-

tite vector in K0(C) × K0(C) and let (E0, E1, ψ) be an indecomposable object of Map1(EU )) such that

cdn(E0, E1, ψ) = (v′|v′′), where we set U = Uv = supp(v).
If v′ = 0 then E0 = 0, E1

∼= E(a), with a ∈ U, and therefore the number of the indecomposable

objects (E0, E1, ψ) of Map1(EU )) with cdn(E0, E1, ψ) = (0|v′′) equals the cardinality of the finite subset

U = supp(v) of IC .

Assume that v′ �= 0, i.e., the vector v is proper. Since (E0, E1, ψ) is indecomposable, it lies in

Map2(EU ), because it has no nonzero direct summand of the form (0, Z, 0), By Proposition 4.1 (a), with
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E and EU interchanged, the functor kerEU in the diagram (3.5) restrict to the representation equivalence

kerEU : Map2(EU ) −→ C-ComodEUfc . Then Kerψ = kerEU (E0, E1, ψ) is an indecomposable comodule in

C-ComodEUfc such that cdn(Kerψ) = cdn(E0, E1, ψ) = v, see Proposition 4.1 (b). Since C is fc-tame of

discrete comodule type, the number of the isomorphism classes of such comodules is finite and, hence, the number

of the isomorphism classes of indecomposable objects (E0, E1, ψ) in Map1(EU ) with cdn(E0, E1, ψ) = v is

also finite.

(b) ⇒ (d) Let v = (v′|v′′) ∈ K0(C)×K0(C) be a vector with nonnegative coordinates and let (E0, E1, ψ)
be an object in Map1(EU ). Since the coalgebra C is assumed to be computable, the endomorphism ring End(ψ)
of (E0, E1, ψ) is a finite dimension K-algebra, and End(ψ) is a local algebra if (E0, E1, ψ) is indecomposable.

It follows that Map1(EU ), with U = supp(v) ⊆ IC , is a Krull–Schmidt category such that each of its objects

is a finite direct sum of indecomposable objects, and every such a decomposition is unique up to isomorphism and

a permutation of the indecomposables.

By our assumption, there is only a finite number of indecomposable objects (E′0, E′1, ψ′) in Map1(EUv) with

cdn(E′0, E′1, ψ′) ≤ v, up to isomorphism. Let E1, . . . ,Esv be a complete set of such indecomposable objects.

Then, up to isomorphism, any object (E0, E1, ψ) in Map1(EUv), with cdn(E0, E1, ψ) = v, has the form

(E(v′),E(v′′), ψ) ∼= E
�1
1 ⊕ . . .⊕ E�svsv ,

where �(E(v′),E(v′′), ψ) = (�1, . . . , �sv) ∈ Nsv is a vector with nonnegative coordinates such that

�1 · cdn(E1) + . . .+ �sv · cdn(Esv) = v.

Obviously, the number of such vectors (�1, . . . , �sv) is finite. The unique decomposition property in Map1(EUv)
yields

�(E(v′),E(v′′), ψ) = �(E(v′),E(v′′), ψ′) if and only if (E(v′),E(v′′), ψ) ∼= (E(v′),E(v′′), ψ′),

or equivalently, if and only if the elements ψ and ψ′ of MapCv lie in the same GC
v -orbit. Hence the number of

GC
v -orbits in MapCv is finite and (d) follows.

Since the implication (d) ⇒ (c) is obvious and the implication (c) ⇒ (a) follows from Lemma 4.1 (b), the

proof is complete.

Now we present a characterization of computable fc-tame coalgebras in terms of geometry of the GC
v -orbits

of ComodCv .

Theorem 4.1. Let K be an algebraically closed field and C a computable K-coalgebra.

(a) C is fc-tame.

(b) For every bipartite vector v = (v′|v′′) ∈ K0(C) × K0(C), the category Map1(EUv), with Uv =
supp(v), is tame.

(c) For every bipartite vector v = (v′|v′′) ∈ K0(C) × K0(C), the subset indComodCv of ComodCv
defined by the indecomposable C-comodules is constructible and there exists a constructible subset C(v)
of indComodCv such that

GC
v ∗ C(v) = indComodCv and dim C(v) ≤ 1.
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(d) For every bipartite vector v = (v′|v′′) ∈ K0(C) × K0(C), the subset indMapCv of MapCv defined
by the indecomposable C-comodules is constructible and there exists a constructible subset Ĉ(v) of
indMapCv such that

GC
v ∗ Ĉ(v) = indMapCv and dim Ĉ(v) ≤ 1.

Proof. (a) ⇒ (b) Apply Lemma 3.2 (a) to E = EU =
⊕

j∈U E(j), where U = supp(v) ⊆ IC .

(b) ⇒ (a) Apply Corollary 3.3.

We prove the equivalence of (b), (c) and (d) by applying the arguments used by Drozd [7], see also [3], [18]

(Sec. 15.2) and [20] (Theorem 6.5).

(b) ⇒ (d) Fix a bipartite vector v = (v′|v′′) ∈ K0(C)×K0(C) and assume that the category Map1(EUv),
with Uv = supp(v), is tame. Then there is a parametrizing family of functors

L̂(1), . . . , L̂(r) : ind1(K[t]h) −→ Map1(EUv)

for the family indv(Map1(EUv), where h ∈ K[t] and Uv = supp(v). Here ind1(K[t]h) is the category of

one-dimensional K[t]h-modules. Hence we conclude, as in [18] (Lemma 14.30, Remark 14.27) that the functors

L̂(1), . . . , L̂(r) induce regular maps

�1, . . . , �r : modK[t]h(1) −→ MapCv

such that every point of indMapCv belongs to an GC
v –orbit of the set

Ĉ(v) = Im �1 ∪ . . . ∪ Im �r.

Here modK[t]h(1) is the variety of one-dimensional K[t]h-modules. Since dimmodK[t]h(1) = 1, according

to the Chevalley Theorem the subsets Im �1, . . . , Im �r of indMapCv are constructible and therefore Ĉ(v) is a

constructible subset of indMapCv . Moreover, it follows that dim(Im �j) ≤ 1, for j = 1, . . . , r, and therefore

dim Ĉ(v) ≤ 1, compare with [15] and [18, p. 317].

The equivalence (d)⇔ (c) easily follows from the fact that indMapCv \ indComodCv is a finite set and

ComodCv is an open subset of MapCv , by Lemma 4.1.

(d) ⇒ (b) Assume to the contrary that there is a bipartite vector v = (v′|v′′) ∈ K0(C)×K0(C) such that the

category Map1(EUv), with Uv = supp(v), is not tame. By Corollary 3.2, the finite-dimensional algebra RUv
is not tame. Then RUv is wild [7] and therefore the category Map1(EUv) is wild, by [3] (Sec. 6) and the proof

of Theorem 3.1.

Let W = K〈t1, t2〉 be the free polynomial K-algebra in two noncommuting indeterminates t1 and t2. Since

the category Map1(EUv) is wild, there exists an object CNW = (E′ ⊗W, E′′ ⊗W, ψ) in Map1(EUv ⊗W),
with E′, E′′ in add(EUv), such that the functor

N̂ = CN ⊗W (−) : fin(W) −→ Map1(EUv)

preserves the indecomposability and respects the isomorphism classes.
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Let w = (w′|w′′), where w′ = lgth(socE′) and w′′ = lgth(socE′′). It is well known that indMapCw is

a constructible subset of MapCw , compare with [18] (Lemma 14.32).

Note that Uw = supp(w) ⊆ Uv, cdn(N̂(X)) = w, and N̂(X)) ∼= (E(w′),E(w′′), ψ), for

some ψ ∈ indMapCw ⊆ MapCw if X ∈ fin(W) and dimK X = 1. It follows that the restriction

N̂ : ind1(W) −→ Map1(EUv) of N̂ to ind1(W) induces a regular map (see [18], Lemma 14.30)

�N : modW(1) −→ indMapCw ⊆MapCw .

Since modW(1) ∼= K2, the map �N is injective, and according to the Chevalley Theorem the set Im �N is

constructible, the variety dimension dim(Im �N ) of Im �N equals two. Hence, in view of (d) with v and w

interchanged, we get the contradiction 2 = dim(Im �N ) ≤ dim C(v) ≤ 1 (apply [12] (Lemma 3.16) or [18]

(Lemma 15.15)). This completes the proof.

5. On fc-Tameness for Arbitrary Coalgebras

The fc-tame-wild dichotomy for an arbitrary basic coalgebra C over an algebraically closed field K remains

an open problem. Some suggestions for the proof in case C is not computable is given in the following proposi-

tion, which collects important consequences of the technique described in Sec. 3. In particular, it shows that the

coalgebra C is fc-tame if and only if every socle-finite colocalization CE ∼= R◦E of C (in the sense of [11, 25])

is fc-tame.

Proposition 5.1. Assume that K is an algebraically closed field and C is an arbitrary basic coalgebra with
a decomposition CC =

⊕
j∈IC E(j) (1.1).

(a) Given a socle-finite injective direct summand E = EU =
⊕

u∈U E(u) (3.1) of CC, with a finite subset
U of IC , the K-algebra RE = EndCE is semi-perfect and pseudocompact with respect to the topology
defined by (5.2) below. There is a commutative diagram

Map1(E)
HE−→� P1(R

op
E )

G′←−� R̂E-modprpr

kerE

⏐⏐� cokE

⏐⏐�
CE-Comodfc ∼= C-ComodfcE

h•E−→� modfp(R
op
E ),

(5.1)

where CE ∼= R◦E is the colocalization of C at E in the sense of [11, 25], modfp(R
op
E ) is the category

of finitely presented left RE-modules, R̂E-modprpr is the category of finitely generated propartite left mod-
ules over the bipartite K-algebra R̂E (3.9), HE and h•E = HomC(•, E) are K-linear contravariant
equivalences of categories defined as in (3.5), G′ is the covariant K-linear equivalence of categories
defined in (3.9), h•E is an exact functor, kerE(E0, E1, ψ) = Kerψ, cokE(P1, P0, φ) = Cokerφ.

(b) For any socle-finite comodule E = EU as in (a), the fc-tameness of the coalgebra C implies that the
category C-ComodEUfc is fc-tame, i.e., the coalgebra CEU is fc-tame.

(c) Conversely, if the category CEU -Comodfc ∼= C-ComodEUfc is fc-tame for all socle-finite injective direct
summands E = EU , then the coalgebra C is fc-tame.
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Proof. (a) Let E = EU be a socle-finite direct summand of C as in (a). The K-algebra RE = EndCE

has the decomposition RE =
⊕

u∈U euRE , where euRE = HomC(E,E(u)) is an indecomposable projective

right ideal of RE and eu is the primitive idempotent of RE defined by the summand E(u) of E. Since the set

U is finite,
∑

u∈U eu is the identity of RE , see [25, 26, 28]. It is easy to see that the Jacobson radical J(RE)
of RE has the form J(RE) = {h ∈ EndCE;h(socE) = 0}. It follows that the algebra RE is semiperfect and

pseudocompact with respect to the K-linear topology defined by the left ideals aβ = HomC(E/Vβ, E) ⊆ RE ,

where {Vβ}β is the directed set of all finite-dimensional subcomodules of E. Since E =
⋃
β Vβ, there are

isomorphisms

RE = EndCE ∼= lim←−β
HomC(Vβ, E) ∼= lim←−β

RE/aβ. (5.2)

The remaining statements in (a) follow from the proof of Theorem 3.1.

For the proof of (b) and (c), apply Lemma 3.1 and the arguments used in the proof of Theorem 3.1.

It follows from [28] (Corollaries 2.12 and 2.13) and the results of Sec. 3 that the fc-tameness and fc-wildness

of a computable coalgebra C is equivalent, respectively, to the K-tameness and the K-wildness of the finite-

dimensional algebra RE , for every socle-finite direct summand of C. Proposition 5.1 shows that the fc-tameness

and fc-wildness of a basic coalgebra C (that is not necessarily computable) can be studied by means of the

tameness and wildness of the categories R̂E-modprpr and modfp(R
op
E ) over the semiperfect algebras R̂E and RE

that are not finite-dimensional, in general.

We recall from [26] (Corollary 2.10) that a socle-finite coalgebra C is computable if and only if dimK C is

finite. Hence, if C is a cocommutative noncomputable coalgebra with simple socle then C is infinite-dimensional

and, in view of Proposition 5.1, we have the following consequence of Drozd [6]:

Corollary 5.1. Assume that K is an algebraically closed field and C is a basic infinite-dimensional cocom-
mutative K-coalgebra with a unique simple subcoalgebra S. If S is finitely copresented and C is not fc-wild
then

(i) C is a subcoalgebra of the path K-coalgebra K�(L2,Ω) (see [21] (Example 6.18), [22], [24]), where
L2 is the two loop quiver

L2 : β1 • β2

and Ω ⊆ KL2 is the ideal of the path algebra KL2 generated by the two zero-relations β1β2 and
β2β1, and

(ii) K�(L2,Ω) is a string coalgebra in the sense of [22] (Sec. 6),

(iii) the coalgebras K�(L2,Ω) and C are of tame comodule type, and K�(L2,Ω) is of nonpolynomial
growth.

Proof. By our assumption, C has a simple socle S and C = E(S) is the injective envelope of S, i.e., the

set IC in the decomposition (1.1) has one element and Proposition 5.1 applies to E = E(S) = C. It follows

that the K-algebra RE is pseudocompact, infinite-dimensional, commutative, local, and complete. Since C

is not fc-wild, the category modfp(RE) is not K-wild, by Proposition 5.1. Since S is finitely copresented,

C-comod ⊆ C-Comodfc and therefore fin(RE) ⊆ modfp(RE). It follows that the category fin(RE) is not

K-wild. Hence, by [6], the unique maximal ideal J(RE) of RE is generated by at most two elements and RE is

isomorphic to a quotient of the K-algebra K[[t1, t2]]/(t1t2), where K[[t1, t2]] is the power series K-algebra in

two commuting indeterminates t1, t2 and (t1t2) is the ideal of K[[t1, t2]] generated by t1t2.
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It is easy to see that the path coalgebra K�(L2,Ω) = Ω⊥ ⊆ K�L2 is isomorphic with the coalgebra

K[t1, t2] = K ⊕
∞⊕
n=1

Kt
n
1 ⊕

∞⊕
m=1

Kt
m
2 ,

where the comultiplication Δ: K[t1, t2] −−−−→ K[t1, t2] ⊗ K[t1, t2] and the counity ε : K[t1, t2] −→ K

are defined by the formulae Δ(tmj ) =
∑

r+s=m
t
r
j ⊗ t

s
j for j = 1, 2, ε(1) = 1 and ε(tsj) = 0 for s ≥ 1 and

j = 1, 2, see [21] (Example 6.18).

Moreover, it follows from [24] that C is isomorphic to a subcoalgebra of K�(L2,Ω). Since K�(L2,Ω) is

a string coalgebra, according to [21] (Example 6.18) and [22] (Theorem 6.2) K�(L2,Ω) ∼= K[t1, t2] is of tame

comodule type and, hence, the coalgebra C is of tame comodule type, too. It is shown in [21] (Example 6.18) that

K�(L2,Ω) ∼= K[t1, t2] is tame of nonpolynomial growth.
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