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EXACT CONSTANTS IN JACKSON-TYPE INEQUALITIES 
FOR  L2-APPROXIMATION ON AN AXIS

A. A. Ligun 
1  and  V. G. Doronin 

2 UDC 517.5

We investigate exact constants in Jackson-type inequalities in the space  L2   for the approxima-

tion of functions on an axis by the subspace of entire functions of exponential type. 

Let  L2   be the space of real-valued functions  f  defined and measurable on  (– , )∞ ∞   that satisfy the con-
dition 

f 2   =  
–

( )
∞

∞

∫ f x 2  < ∞

and let  L r
2,  r ≥ 0,  be the set of all functions  f  such that their  (r – 1) th derivatives on the axis are locally abso-

lutely continuous and  f r( )  ∈ L2  (if  r  is not an integer, then  f r( )   is the derivative in the sense of Weyl). 

Let  Eσ   denote the class of entire functions of exponential type  ≥ σ,  let 

Bσ   =  L2 ∩ Eσ ,

and let 

A fσ( )   =  inf –f g g Bσ σ σ∈{ } (1)

be the approximation of a function  f L∈ 2   by the set  Bσ . 
Denote the  p th integral modulus of smoothness of a function  f  by 

ω p f t( ; )   =  sup ( )Δη ηp f t⋅ ≤{ } , (2)

where  Δη
p f x( )  is the difference of order  p  of a function  f  at a point  x  with step  η. 

As usual, 

F f( ; )ω   =  l.i.m. exp(– ) ( )
–A A

A

i t f t dt
→∞

∫1
2π

ω (3)

is the Fourier transform of a function  f. 
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Inequalities of the form 

A fσ( )   ≤  ℵ ( )
σ

ω δ σr p
rf ( ); (4)

are called Jackson-type inequalities.  In these inequalities, the least constant 

ℵ  =  ℵσ δ, , ( )r p   =  sup
( )

;( )
f L

f

r

p
rr

A f

f∈
≠

( )2
const

σ
ω δ σ

σ (5)

is called exact. 
The problem of the determination of exact constants in Jackson-type inequalities in the space  L2   was

studied in many works (see, e.g., [1 – 5] and the bibliography therein). 
The aim of the present paper is to generalize exact Jackson-type inequalities for the best approximations of

periodic functions by trigonometric polynomials in the space  L2   (which were investigated in [3, 4]) to the case
of approximation of functions by entire functions of exponential type on the entire axis in the space  L2 . 

The following theorem is true: 

Theorem 1.  For any  a > 1,  σ > 0,  r ≥ 0,  and  p = 1, 2, …  and any nonzero nonnegative summable

function  θ( )t ,  0 < t < b < π,  the following inequalities are true: 

sup
( )

; ( )( )f L
f

r

p
rr

A f

f t t dt∈
≠ ( )2

2 2

2

0const

σ

ω σ θ
σ

bb

∫
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a
y

r

r
p

y a
b r p

2

2 1

1

1
2

–
inf ( ; ), ,

–

≤ ≤

⎧
⎨
⎩

⎫
⎬
⎭

Φ θ , (6)

where 

Φb r p y, , ( ; )θ   =  y yt t dtr
b

p2

0

1∫ ( – cos ) ( )θ . (7)

Proof.  It is known [1] that, for any function  f L∈ 2 ,  one has 

A fσ
2( )   =  

ω σ

ω ω
≥
∫ F f d( ; ) 2 . (8)

Hence, taking into account that the function  F f w( ; )   is even by virtue of the fact that  f  is real-valued, we

conclude that the following relation holds for any function  f Lr∈ 2 : 

A fσ
2( )   =  2 2

σ

ω ω
∞

∫ F f d( ; )   =  
μ σ

σ

μ

μ

ω ω
=

∞
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+

0

2

1

2
a

a
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( ; ) – cos ( )

inf ( ; ), ,Φ
. (9)

Using the fundamental properties of the Fourier transformation, we obtain 

F fp rΔη ω( );( )   =  ( ) – ( ; )i e F fr i p
ω ωηω 1( ) . (10)

According to the Plancherel theorem, since  Δη
p f r( )  ∈  L2,  the functions  F fp rΔη

( )( )   belong to  L2  and have
equal norms.  Taking (10) into account, we get 

Δη
p rf ( ) ( )⋅

2
  =  2 2 1

0

2 2
∞

∫ F f dp r p( ; ) ( – cos )ω ω ηω ω . (11)

With regard for the definition of modulus of smoothness [relation (2)], we obtain 

0

1 2 22 1
∞

+∫ p r pF f x d( ; ) ( – cos )ω ω ω ω   ≤  ω p
rf x2 ( );( ) . (12)

Applying this estimate to (9), we obtain the following relation for any function  f L r∈ 2 : 

A fσ
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≤ ≤

⎧
⎨
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⎭

( )∫Φ θ
σ

ω σ θ . (13)

Finally, passing in the inequality obtained to the supremum over  f Lr∈ 2,  f ≠ const,  we get inequality (6). 
Theorem 1 is proved. 

Let  h > 0  and  αk ≥ 0 .  Consider the functions 

δh t( )  =  1 2 0 2/ ( / ); ( / )h t h t h< ≥{ }
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and 

θh t( )  =  
k

n

k h kt
=
∑

1

α δ ξ( – ),

where  0 < ξ1 < ξ2 < … < ξn   and  b ≥ ξn  + h / 2. 

Setting  θ( )t  = θh t( )  in Theorem 1 and passing to the limit as  h → 0,  we obtain the following result: 

Corollary 1.  For any  a > 1,  σ  > 0,  r ≥ 0,  p = 1, 2, … ,  αk  ≥ 0,  and  0 < ξ1 < ξ2 < … < ξn ,  the fol-
lowing inequality is true: 
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Passing to the limit as  a → ∞  in relations (6) and (14), we obtain 
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Note that these results agree well with the results of [5] (the upper bounds in Corollaries 1 and 2). 
We set 

cr p,   =  4 2 2 2
– – / – /r p p( ) (17)

and 

ξ  =  ξr p,   =  2 2 1

π
arcsin –( / )–r p . (18)

The following statement is true: 

Theorem 2.  Suppose that  r ≥ p  are such that, for every irreducible fraction  l L/ ,  one has 

ξ – /l L   ≥  4 1L r p–( / )– . (19)

Then, for any  σ > 0  and  δ ≥ (1 + ξ π) ,  the following inequalities are true: 

ℵσ δ, , ( )r p   ≤  cr p, . (20)
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Proof.  We choose 

a  =  ξ  +  
r

pπ
πξtan( ) , (21)

α1  =  ( )/1 2+ α ,      α2  =  ( – )/1 2α , (22)

ξ1  =  ( – )1 ξ π ,      ξ2  =  ( )1 + ξ π. (23)

It follows from (14) that, for any function  f Lr∈ 2  and any  a > 1,  one has 
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2–

; ( ) /

inf ( )
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,

ω ξ π σ
θ
+( )

≤ ≤

, (24)

where 

θr p y, ( )  =  y y yr p p2
1 21 1 1 1α ξ π α ξ π– cos( – ) – cos( )( ) + +( ){ }. (25)

Passing to the limit as  a → ∞,  for any function  f Lr∈ 2  we get 

σ σ
2 2r A f( )  ≤  

ω ξ π σ
θ

p
r

p

y
r p

f

y

2

1

1

2

( )

,

; ( ) /

inf ( )

+( )
≥

. (26)

The quantity 

inf ( ),
y

r p y
≥1
θ

was studied in [4], where it was shown that 

inf ( ),
y

r p y
≥1
θ   =  θr p, ( )1   =  2 1 2 2 2p r p p

– – ( / )–( ) . (27)

Using this result and inequality (26), we establish that the following relation holds for any function  f Lr∈ 2  and

any  δ ≥ (1 + ξ π)  : 
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σ σ
2 2r A f( )  ≤  
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2 2 1
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2
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rf

+
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+( )

( / )

( )

–
; ( ) /ω ξ π σ   ≤  c fr p p

r
,

( ); /2 2ω δ σ( ). (28)

This yields inequality (20). 
Theorem 2 is proved. 

Theorem 3.  For any  σ > 0,  r ≥ 0,  p = 1, 2, … ,  and  δ > 0,  the following inequalities are true: 

ℵσ δ, , ( )r p   ≥  sup
max ( – cos ), , ,β β β

δ

β

β1 2

1
2

1
2 22 1…

=

≤ =

∑
∑m

k

m
k

p

t k

m r
k

pk kt
. (29)

Proof.  Under the conditions of the theorem, we choose an arbitrary vector  B = (β1, β2, … , βm)  and con-
sider a sequence of even functions  f Ln B, ∈ 2 ,  namely, 

f xn B, ( )  =  

k

n

k n

n
k

n

k n

k x x n

x k x n x n

x n

=

=

∑

∑
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π
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, ( ) ,
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where 

ψn x( )   =  H k y
n
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x

n
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m
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r
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cos –
( )

2 1
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2 1
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=
∫ ∑ +⎛

⎝
⎞
⎠

π

β π
,

the constant  Hr   is defined by the condition  ψn ( )2nπ  = 1,  and  αn = 1 / n . 
By analogy with [1], we first construct the Fourier transform  F fn B( , ; ω)  of the sequence  f xn B, ( )  and

then use relation (8).  As a result, we obtain the asymptotic equality 

A fn Bσ
2( ),   =  2 1 1

1

2n o
k

m

kπ β
=
∑ +{ }( ) ,      n → ∞. (31)

In what follows, we use the quantity  ω p n B
rf2
,
( )( ; δ σ/ ) .  For this reason, we first construct (step by step with

respect to  p )  the function  Δη
p f xn B

r
,
( ) ( )  and then establish the following asymptotic equality for each  p = 1, 2, …

as  n → ∞: 

Δη
p

n B
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( ) ( )⋅
2
  =  2 1 1 1 11 2
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2 2p
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pn o k k o+
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⎥
⎥

∑π σ α β σ α η( ) ( ) – cos ( ) ( ) . (32)
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This implies that, for any fixed  σ,  B,  r,  p,  and  η,  the following relation holds uniformly in  σ,  0 ≤ σ ≤ π:
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rf ,

( ) 2
  =  2 1 1 11 2
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Using the definition of the exact constant in a Jackson-type inequality [see (5)] and relations (31) and (33), for

any vector  B = (β1, β2, … , βm)  we get 
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Passing to the upper bound over  B = (β1, β2, … , βm),  we complete the proof of Theorem 3. 

Theorem 4.  For any  σ > 0,  r ≥ 0,  p = 1, 2, … ,  and  δ ≥ (1 – ξ)π,  the following inequality is true: 

ℵσ δ, , ( )r p   ≥  cr p, . (35)

Proof.  In Theorem 3, we set  ( , )β β1 2  = (1, β).  Using (30), we obtain the following relation for any  δ ≥
(1 – ξ)π  : 
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and 

Ψβ( )u   =  ( – ) ( )1 1 2 12 2u up r p p+ +[ ]+ β . (37)

In [4], it was proved, in particular, that, for  β = βr p, ,  where 

βr p,
–2   =  2 2 12 1( / ) –r p +( ), (38)

the function  Ψβr p
u

,
( )  is equal to zero at the point  u∗ ∈ uδ, 1[ ],  where 

u∗  =  cos( – )1 ξ π   =  2 2 1– ( / )–r p   –  1. (39)

Using this result, we get 
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u
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Finally, by virtue of (36) and (40), we obtain 
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2 .

Theorem 4 is proved. 

Comparing Theorems 2 and 4, we establish the following statement: 

Theorem 5.  Suppose that the conditions of Theorem 2 are satisfied.  Then the following equality holds for

all  δ ≥ (1 + ξ)π  : 

ℵσ δ, , ( )r p   =  cr p, .
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