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EXISTENCE PRINCIPLES FOR HIGHER-ORDER NONLOCAL BOUNDARY-VALUE
PROBLEMS AND THEIR APPLICATIONS TO SINGULAR STURM–LIOUVILLE
PROBLEMS

S. Staněk UDC 517.9

We present existence principles for the nonlocal boundary-value problem

(φ(u(p−1)))′ = g(t, u, . . . , u(p−1)),

αk(u) = 0, 1 ≤ k ≤ p − 1,

where p ≥ 2, φ : R → R is an increasing and odd homeomorphism, g is a Carathéodory function
that is either regular or has singularities in its space variables, and αk : Cp−1[0, T ] → R is a continuous
functional. An application of the existence principles to singular Sturm–Liouville problems

(−1)n(φ(u(2n−1)))′ = f(t, u, . . . , u(2n−1)),

u(2k)(0) = 0, aku(2k)(T ) + bku(2k+1)(T ) = 0, 0 ≤ k ≤ n − 1,

is given.

1. Introduction

Let T > 0, R− = (−∞, 0), R+ = (0,∞), and R0 = R \ {0}. As usual, Cj [0, T ] denotes the set
of functions having the j th derivative continuous on [0, T ]. AC[0, T ] and L1[0, T ] are the sets of absolutely
continuous functions on [0, T ] and Lebesgue integrable functions on [0, T ], respectively. C0[0, T ] and L1[0, T ]
are equipped with the norms

‖x‖ = max
{|x(t)| : t ∈ [0, T ]

}
and ‖x‖L =

T∫
0

|x(t)| dt,

respectively.
Assume that G ⊂ R

p, p ≥ 2. Let Car
(
[0, T ]×G

)
denote the set of functions f : [0, T ]×G → R satisfying

the local Carathéodory conditions on [0, T ] × G, i.e.,

(i) for every (x0, . . . , xp−1) ∈ G, the function f(·, x0, . . . , xp−1) : [0, T ] → R is measurable,

(ii) for a.e. t ∈ [0, T ], the function f(t, ·, . . . , ·) : G → R is continuous, and
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(iii) for every compact set K ⊂ G, one has sup{|f(t, x0, . . . , xp−1)| : (x0, . . . , xp−1) ∈ K} ∈ L1[0, T ].

Let p ∈ N, p ≥ 2. Denote by A the set of functionals α : Cp−1[0, T ] → R that are

(a) continuous and

(b) bounded, i.e., α(Ω) is bounded for any bounded Ω ⊂ Cp−1[0, T ].

Let φ : R → R be an increasing odd homeomorphism. Assume that either g ∈ Car([0, T ] × R
p) or g ∈

Car([0, T ] × D∗), D∗ ⊂ R
p, and that it has singularities only at the value 0 of its space variables. Consider the

nonlocal boundary-value problem

(
φ(u(p−1))

)′ = g(t, u, . . . , u(p−1)), (1.1)

αk(u) = 0, αk ∈ A, 0 ≤ k ≤ p − 1, (1.2)

where αk satisfy the following compatibility condition: For every μ ∈ [0, 1], there exists a solution of the problem

(φ(u(p−1)))′ = 0, αk(u) − μαk(−u) = 0, 0 ≤ k ≤ p − 1.

This problem is equivalent to the fact that the system

αk

(
p−1∑
i=0

Ait
i

)
− μαk

(
−

p−1∑
i=0

Ait
i

)
= 0, 0 ≤ k ≤ p − 1, (1.3)

has a solution (A0, . . . , Ap−1) ∈ R
p for every μ ∈ [0, 1].

We say that u ∈ Cp−1[0, T ] is a solution of problem (1.1), (1.2) if φ(u(p−1)) ∈ AC[0, T ], u satisfies (1.2),
and the relation

(
φ(u(p−1)(t))

)′ = g
(
t, u(t), . . . , u(p−1)(t)

)
holds for a.e. t ∈ [0, T ].

The aim of this paper is

(1) to present existence principles for problem (1.1), (1.2) in the regular and singular cases and

(2) to give an application of these existence principles to singular Sturm–Liouville boundary-value problems.

Note that our existence principles are a generalization of those obtained for second-order differential equations
with φ-Laplacian in [1, 2].

Our Sturm–Liouville problem consists of the differential equation

(−1)n
(
φ(u(2n−1))

)′ = f(t, u, . . . , u(2n−1)) (1.4)

and the boundary conditions

u(2k)(0) = 0, aku
(2k)(T ) + bku

(2k+1)(T ) = 0, 0 ≤ k ≤ n − 1. (1.5)
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Here, n ≥ 2, φ : R → R is an increasing homeomorphism, f ∈ Car([0, T ] ×D) is positive,

D =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R+ × R0 × R− × R0 × . . . × R+ × R0︸ ︷︷ ︸
4�−2

if n = 2� − 1,

R+ × R0 × R− × R0 × . . . × R− × R0︸ ︷︷ ︸
4�

if n = 2�,

f may be singular at the value 0 of all its space variables, and

ak > 0, bk > 0, akT + bk = 1 for 0 ≤ k ≤ n − 1. (1.6)

We say that a function u ∈ C2n−1[0, T ] is a solution of problem (1.4), (1.5) if φ(u(2n−1)) ∈ AC[0, T ],
u satisfies the boundary conditions (1.5), and (−1)n

(
φ(u(2n−1)(t))

)′ = f
(
t, u(t), . . . , u(2n−1)(t)

)
for a.e. t ∈

[0, T ].
Singular problems of the Sturm–Liouville type for higher-order differential equations were considered in [3–5].

In [3], the authors discuss the differential equation u(n) + h1(t, u, . . . , u(n−2)) = 0 together with the boundary
conditions

u(j)(0) = 0, 0 ≤ j ≤ n − 3,

αu(n−2)(0) − βu(n−1)(0) = 0, γu(n−2)(1) + δu(n−1)(1) = 0,

(1.7)

where αγ+αδ+βγ > 0, β, δ ≥ 0, β+α > 0, δ+γ > 0, and h1 ∈ C0
(
(0, 1)×R

n−1
+

)
is positive. The existence

of a positive solution u ∈ Cn−1[0, 1]∩Cn(0, 1) is proved by a fixed-point theorem for mappings that are decreasing
with respect to a cone in a Banach space. Paper [4] deals with the problem u(n) + h2(t, u, . . . , u(n−1)) = 0,

(1.7), where h2 ∈ Car
(
[0, T ] × D∗

)
, D∗ = R

n−1
+ × R0, is positive. The existence of a positive solution

u ∈ ACn−1[0, T ] is proved by a combination of regularization and sequential techniques with a Fredholm-type
existence theorem. In [5], by constructing some special cones and using a Krasnosel’skii fixed point on a cone, the
existence of a positive solution u ∈ C4n−2[0, 1] ∩ C4n(0, 1) is proved for the problem

u(4n) = h3(t, u, u(4n−2)),

u(0) = u(1) = 0, au(2k)(0) − bu(2k+1)(0) = 0,

cu(2k)(1) + du(2k+1)(1) = 0, 1 ≤ k ≤ 2n − 1,

where h3 ∈ C
(
[0, 1]×R+×R−

)
is nonnegative, a, b, c, and d are nonnegative constants, and ac+ad+bc > 0.

To our best knowledge, there is no paper considering singular problems of the Sturm–Liouville type in our
generalization (1.4), (1.5). In addition, any solution u of problem (1.4), (1.5) has the maximal smoothness, u and
its even derivatives (≤ 2n−2) “start” at the singular points of f, and its odd derivatives (≤ 2n−1) “go through”
singularities of f somewhere inside [0, T ].

Throughout the paper, we work with the following conditions on the functions φ and f in Eq. (1.4):

(H1) φ : R → R is an increasing odd homomorphism such that φ(R) = R,
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(H2) f ∈ Car([0, T ] ×D) and there exists a > 0 such that

a ≤ f(t, x0, . . . , x2n−1)

for a.e. t ∈ [0, T ] and all (x0, . . . , x2n−1) ∈ D,

(H3) the following relation holds for a.e. t ∈ [0, T ] and all (x0, . . . , x2n−1) ∈ D :

f(t, x0, . . . , x2n−1) ≤ h

⎛
⎝t,

2n−1∑
j=0

|xj |
⎞
⎠ +

2n−1∑
j=0

ωj(|xj |),

where h ∈ Car([0, T ] × [0,∞)) is positive and nondecreasing in the second variable, ωj : R+ → R+ is
nonincreasing,

lim sup
v→∞

1
φ(v)

T∫
0

h(t, 2n + Kv) dt < 1 (1.8)

with

K =

⎧⎪⎪⎨
⎪⎪⎩

2n if T = 1,

T 2n − 1
T − 1

if T 
= 1,

(1.9)

and

1∫
0

ω2n−1(φ−1(s)) ds < ∞,

1∫
0

ω2j(s) ds < ∞ for 0 ≤ j ≤ n − 1,

1∫
0

ω2j+1(s2) ds < ∞ for 0 ≤ j ≤ n − 2.

Remark 1.1. If φ satisfies (H1), then φ(0) = 0. Under assumption (H3), the functions ω2n−1(φ−1(s)),
ω2j(s), 0 ≤ j ≤ n − 1, and ω2i+1(s2), 0 ≤ i ≤ n − 2, are locally Lebesgue integrable on [0,∞) because ωk,

0 ≤ k ≤ 2n − 1, is nonincreasing and positive on R+.

The rest of the paper is organized as follows: In Sec. 2, we present existence principles for a regular and a
singular problem (1.1), (1.2). The regular existence principle is proved by the Leray–Schauder degree (see, e.g.,
[6]). An application of both principles to the Sturm–Liouville problem (1.4), (1.5) is given in Sec. 3.

2. Existence Principles

The following result states conditions for the solvability of problem (1.1), (1.2) in the case where g in Eq. (1.1)
is regular.



EXISTENCE PRINCIPLES FOR HIGHER-ORDER NONLOCAL BOUNDARY-VALUE PROBLEMS 281

Theorem 2.1. Let (H1) hold. Let g ∈ Car([0, T ] × R
p) and ϕ ∈ L1[0, T ]. Suppose that there exists a

positive constant L independent of λ and such that

‖u(j)‖ < L, 0 ≤ j ≤ p − 1,

for all solutions u of the differential equations

(φ(u(p−1)))′ = (1 − λ)ϕ(t), λ ∈ [0, 1], (2.1)

(φ(u(p−1)))′ = λg(t, u, . . . , u(p−1)) + (1 − λ)ϕ(t), λ ∈ [0, 1], (2.2)

satisfying the boundary conditions (1.2). Also assume that there exists a positive constant Λ such that

|Aj | < Λ, 0 ≤ j ≤ p − 1, (2.3)

for all solutions (A0, . . . , Ap−1) ∈ R
p of system (1.3) with μ ∈ [0, 1].

Then problem (1.1), (1.2) has a solution u ∈ Cp−1[0, T ], φ(u(p−1)) ∈ AC[0, T ].

Proof. Let

Ω =
{

x ∈ Cp−1[0, T ] : ‖x(j)‖ < max{L,ΛK1} for 0 ≤ j ≤ p − 1
}

,

where

K1 =

⎧⎪⎪⎨
⎪⎪⎩

p if T = 1,

T p − 1
T − 1

if T 
= 1.

Then Ω is an open subset of the Banach space Cp−1[0, T ] symmetric with respect to 0 ∈ Cp−1[0, T ]. Define an
operator P : [0, 1] × Ω → Cp−1[0, T ] by the formula

P(ρ, x)(t) =

t∫
0

(t − s)p−2

(p − 2)!
φ−1

⎛
⎝φ(x(p−1)(0) + αp−1(x)) +

s∫
0

V (ρ, x)(v) dv

⎞
⎠ds

+
p−2∑
j=0

x(j)(0) + αj(x)
j!

tj (2.4)

where

V (ρ, x)(t) = ρg(t, x(t), . . . , x(p−1)(t)) + (1 − ρ)ϕ(t).

It follows from the continuity of φ and αj , 0 ≤ j ≤ p−1, the inclusion g ∈ Car([0, T ]×R
p), and the Lebesgue

dominated-convergence theorem that P is a continuous operator. We now prove that P([0, T ] × Ω
)

is relatively
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compact in Cp−1[0, T ]. Note that the boundedness of Ω in Cp−1[0, T ] guarantees the existence of a positive
constant r and ψ ∈ L1[0, T ] such that

|αk(x)| ≤ r and
∣∣g(t, x(t), . . . , x(p−1)(t))

∣∣ ≤ ψ(t)

for a.e. t ∈ [0, T ] and all x ∈ Ω and 0 ≤ k ≤ p − 1. Then

∣∣(P(ρ, x))(j)(t)
∣∣ ≤ (

r + max{L,ΛK1}
) p−j−2∑

i=0

T i

i!

+
T p−j−1

(p − j − 2)!
φ−1

(
φ(r + max{L,ΛK1}

)
+ ‖ψ‖L + ‖ϕ‖L),

∣∣(P(ρ, x))(p−1)(t)
∣∣ ≤ φ−1

(
φ
(
r + max{L,ΛK1}

)
+ ‖ψ‖L + ‖ϕ‖L

)
,

∣∣∣φ((P(ρ, x))(p−1)(t2)) − φ((P(ρ, x))(p−1)(t1))
∣∣∣ ≤

∣∣∣∣∣∣
t2∫

t1

(ψ(s) + |ϕ(s)|) ds

∣∣∣∣∣∣
for t, t1, t2 ∈ [0, T ], (ρ, x) ∈ [0, T ]×Ω, and 0 ≤ j ≤ n− 2. Hence, P([0, T ]×Ω

)
is bounded in Cp−1[0, T ],

and the set {φ((P(ρ, x))(p−1)) : (ρ, x) ∈ [0, 1] × Ω} is equicontinuous on [0, T ]. Since φ : R → R is increasing

and continuous, the set
{

(P(ρ, x))(p−1) : (ρ, x) ∈ [0, 1] × Ω
}

is equicontinuous on [0, T ] too. By the Arzelà–

Ascoli theorem, P([0, 1]×Ω) is relatively compact in Cp−1[0, T ]. We have proved that P is a compact operator.

Suppose that x∗ is a fixed point of the operator P(1, ·). Then

x∗(t) =
p−2∑
j=0

x
(j)
∗ (0) + αj(x∗)

j!
tj

+

t∫
0

(t − s)p−2

(p − 2)!
φ−1

⎛
⎝φ(x(p−1)

∗ (0) + αp−1(x∗)) +

s∫
0

g(v, x∗(v), . . . , x(p−1)
∗ (v))dv

⎞
⎠ ds

for t ∈ [0, T ]. Hence, αk(x∗) = 0 for 0 ≤ k ≤ p − 1, and x∗ is a solution of Eq. (1.1). Consequently, x∗ is a
solution of problem (1.1), (1.2). In order to prove the assertion of our theorem it suffices to show that

deg (I − P(1, ·),Ω, 0) 
= 0 (2.5)

where “deg” stands for the Leray–Schauder degree and I is the identical operator on Cp−1[0, T ]. To show this,
let the compact operator K : [0, 2] × Ω → Cp−1[0, T ] be defined by
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K(μ, x)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p−1∑
j=0

[
x(j)(0) + αj+1(x) − (1 − μ)αj(−x)

] tj

j!
if μ ∈ [0, 1],

t∫
0

(t − s)p−2

(p − 2)!
φ−1

(
φ(x(p−1)(0) + αp−1(x))

+ (μ − 1)

s∫
0

ϕ(v) dv

)
ds +

p−2∑
j=0

x(j)(0) + αj(x)
j!

tj if μ ∈ (1, 2].

Then K(0, ·) is odd
(
i.e., K(0,−x) = −K(0, x) for x ∈ Ω

)
and

K(2, x) = P(0, x) for x ∈ Ω. (2.6)

Assume that K(μ0, u0) = u0 for some (μ0, u0) ∈ [0, 1] × Ω. Then

u0(t) =
p−1∑
j=0

[
u

(j)
0 (0) + αj(u0) − (1 − μ0)αj(−u0)

] tj

j!
, t ∈ [0, T ],

and, therefore,

u0(t) =
p−1∑
j=0

Ãj
tj

j!
,

where

Ãj = u
(j)
0 (0) + αj(u0) − (1 − μ0)αj(−u0).

Consequently, u
(j)
0 (0) = Ãj and, hence,

αj(u0) − (1 − μ0)αj(−u0) = 0 for 0 ≤ j ≤ p − 1,

which means that

αk

⎛
⎝p−1∑

j=0

Ãj
tj

j!

⎞
⎠− (1 − μ0)αk

⎛
⎝−

p−1∑
j=0

Ãj
tj

j!

⎞
⎠ = 0, 0 ≤ k ≤ p − 1.

Then, by our assumption, ∣∣∣∣∣Ãj

j!

∣∣∣∣∣ < Λ for 0 ≤ j ≤ p − 1,

and we have

∥∥u
(j)
0

∥∥ < Λ
p−1∑
j=0

T j = ΛK1, 0 ≤ j ≤ p − 1.
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Hence, u0 
∈ ∂Ω and, therefore, by the Borsuk antipodal theorem and the homotopy property, we get

deg (I − K(0, ·),Ω, 0) 
= 0 (2.7)

and

deg (I − K(0, ·),Ω, 0) = deg (I − K(1, ·),Ω, 0). (2.8)

We come to show that

deg (I − K(1, ·),Ω, 0) = deg (I − K(2, ·),Ω, 0). (2.9)

If K(μ1, u1) = u1 for some (μ1, u1) ∈ (1, 2] × Ω, then

u1(t) =
p−2∑
j=0

u
(j)
1 (0) + αj(u1)

j!
tj

+

t∫
0

(t − s)p−2

(p − 2)!
φ−1

⎛
⎝φ(u(p−1)

1 (0) + αp−1(u1)) + (μ1 − 1)

s∫
0

ϕ(v) dv

⎞
⎠ds

for t ∈ [0, T ]. Hence, u1 satisfies the boundary conditions (1.2) and is a solution of the differential equation (2.1)

with λ = 2 − μ1 ∈ [0, 1). By our assumptions, ‖u(j)
1 ‖ < L for 0 ≤ j ≤ p − 1. Therefore, u1 
∈ ∂Ω and

equality (2.9) follows from the homotopy property. Finally, suppose that P(ρ̃, ũ) = ũ for some (ρ̃, ũ) ∈ [0, 1]×Ω.

Then ũ is a solution of problem (2.2), (1.2) with λ = ρ̃, and, therefore, ‖ũ(j)‖ < L for 0 ≤ j ≤ p − 1. Hence,
ũ 
∈ ∂Ω and, by the homotopy property,

deg (I − P(0, ·),Ω, 0) = deg (I − P(1, ·),Ω, 0).

This and (2.6)–(2.9) yield (2.5), which completes the proof.

Remark 2.1. If a functional αk ∈ A is linear for 0 ≤ k ≤ p − 1, then system (1.3) has the form

p−1∑
j=0

Ajαk(tj) = 0, 0 ≤ k ≤ p − 1.

All of its solutions (A0, . . . , Ap−1) ∈ R
p are bounded exactly if det (αk(tj))

p−1
k,j=0 
= 0

(
and then Aj = 0 for

0 ≤ j ≤ p− 1
)
, which is equivalent to the fact that problem

(
φ(u(p−1))

)′ = 0, (1.2) has only the trivial solution.

If the function g ∈ Car([0, T ]×D∗), D∗ ⊂ R
p, in Eq. (1.1) has singularities only at the value 0 of its space

variables, then the following result holds for the solvability of problem (1.1), (1.2):

Theorem 2.2. Suppose that condition (H1) is satisfied. Let g ∈ Car([0, T ] × D∗), D∗ ⊂ R
p, have sin-

gularities only at the value 0 of its space variables. Let the function gm ∈ Car
(
[0, T ] × R

p
)

in the differential
equation (

φ(u(p−1))
)′ = gm(t, u, . . . , u(p−1)) (2.10)
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satisfy the following condition for a.e. t ∈ [0, T ] and all (x0, . . . , xp−1) ∈ R
p
0 and m ∈ N :

0 ≤ νgm(t, x0, . . . , xp−1) ≤ q
(
t, |x0|, . . . , |xp−1|

)
, (2.11)

where q ∈ Car([0, T ] × R
p
+) and ν ∈ {−1, 1}. Suppose that, for each m ∈ N, the regular problem (2.10), (1.2)

has a solution um and there exists a subsequence {ukm} of {um} converging in Cp−1[0, T ] to some u.

Then φ(u(p−1)) ∈ AC[0, T ] and u is a solution of the singular problem (1.1), (1.2) if u(j) has a finite
number of zeros for 0 ≤ j ≤ p − 1 and

lim
m→∞ gkm

(
t, ukm(t), . . . , u(p−1)

km
(t)

)
= g

(
t, u(t), . . . , u(p−1)(t)

)
(2.12)

for a.e. t ∈ [0, T ].

Proof. Assume that (2.12) holds for a.e. t ∈ [0, T ] and let 0 ≤ ξ1 < . . . < ξ� ≤ T be all zeros of u(j) for

0 ≤ j ≤ p−1. Since ‖u(j)
km

‖ ≤ L for each m ∈ N and 0 ≤ j ≤ p−1, where L is a positive constant, it follows
that

T∫
0

νgkm

(
t, ukm(t), . . . , u(p−1)

km
(t)

)
dt = ν

[
φ
(
u

(p−1)
km

(T )
)− φ

(
u

(p−1)
km

(0)
)] ≤ 2φ(L)

for m ∈ N. Relations (2.11) and (2.12) and the Fatou lemma [7, 8] now give

T∫
0

νg(t, u(t), . . . , u(p−1)(t)) dt ≤ 2φ(L).

Hence, νg
(
t, u(t), . . . , u(p−1)(t)

) ∈ L1[0, T ], and so g
(
t, u(t), . . . , u(p−1)(t)

) ∈ L1[0, T ]. We set ξ0 = 0 and
ξ�+1 = T. Let us show that the equality

φ(u(p−1)(t)) = φ

(
u(p−1)

(
ξi+1 + ξi

2

))
+

t∫
(ξi+1+ξi)/2

g(s, u(s), . . . , u(p−1)(s)) ds (2.13)

is satisfied on [ξi, ξi+1] for each i ∈ {0, . . . , �} such that ξi < ξi+1. Indeed, let i ∈ {0, . . . , �} and ξi < ξi+1.

We choose an arbitrary

ρ ∈
(

0,
ξi+1 + ξi

2

)

and consider the interval [ξi + ρ, ξi+1 − ρ]. We know that |u(j)| > 0 on (ξi, ξi+1) for 0 ≤ j ≤ p − 1 and,
therefore, |u(j)(t)| ≥ ε for t ∈ [ξi + ρ, ξi+1 − ρ] and 0 ≤ j ≤ p − 1, where ε is a positive constant. Hence,
there exists m0 ∈ N such that

∣∣u(j)
km

(t)
∣∣ ≥ ε

2
for t ∈ [ξi + ρ, ξi+1 − ρ], 0 ≤ j ≤ p − 1, m ≥ m0.
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This gives [see (2.11)]

∣∣gkm(t, ukm(t), . . . , u(p−1)
km

(t))
∣∣

≤ sup

{
q(t, x0, . . . , xp−1) : t ∈ [0, T ], xj ∈

[
ε

2
, L

]
for 0 ≤ j ≤ p − 1

}
∈ L1[0, T ]

for a.e. t ∈ [ξi + ρ, ξi+1 − ρ] and all m ≥ m0. Letting m → ∞ in

φ
(
u

(p−1)
km

(t)
)

= φ

(
u

(p−1)
km

(
ξi+1 + ξi

2

))
+

t∫
(ξi+1+ξi)/2

gkm

(
s, ukm(s), . . . , u(p−1)

km
(s)

)
ds,

we get (2.13) for t ∈ [ξi + ρ, ξi+1 + ρ] by the Lebesgue dominated-convergence theorem. Since

ρ ∈
(

0,
ξi+1 + ξi

2

)

is arbitrary, equality (2.13) holds on the interval (ξi, ξi+1), and, using the fact that g
(
t, u(t), . . . , u(p−1)(t)

) ∈
L1[0, T ], we conclude that (2.13) is also satisfied at t = ξi and ξi+1. From equality (2.13) on [ξi, ξi+1]

(
for

0 ≤ i ≤ �
)
, we deduce that φ(u(p−1)) ∈ AC[0, T ] and u is a solution of Eq. (1.1). Finally, it follows from the

fact that αj(ukm) = 0 for 0 ≤ j ≤ p − 1 and m ∈ N and from the continuity of αj that αj(u) = 0 for
0 ≤ j ≤ p − 1. Consequently, u is a solution of problem (1.1), (1.2).

The theorem is proved.

3. Sturm–Liouville Problem

3.1. Auxiliary Results. Throughout the next part of this paper, we assume that the numbers ak and bk in
the boundary conditions (1.5) satisfy condition (1.6). For each j ∈ {0, . . . , n − 2}, denote by Gj the Green
function of the Sturm–Liouville problem

−u′′ = 0, u(0) = 0, aju(T ) + bju
′(T ) = 0.

Then

Gj(t, s) =

⎧⎪⎨
⎪⎩

s(1 − ajt) for 0 ≤ s ≤ t ≤ T,

t(1 − ajs) for 0 ≤ t < s ≤ T.

Hence, Gj(t, s) > 0 for (t, s) ∈ (0, T ] × (0, T ], and Gj(t, s) = Gj(s, t) for (t, s) ∈ [0, T ] × [0, T ]. We set
G[1](t, s) = Gn−2(t, s) for (t, s) ∈ [0, T ] × [0, T ] and define G[j] recursively by the formula

G[j](t, s) =

T∫
0

Gn−j−1(t, v)G[j−1](v, s) dv, (t, s) ∈ [0, T ] × [0, T ], (3.1)



EXISTENCE PRINCIPLES FOR HIGHER-ORDER NONLOCAL BOUNDARY-VALUE PROBLEMS 287

for 2 ≤ j ≤ n − 1. It follows from the definition of the function G[j] that the equalities

u(2n−2j)(t) = (−1)j−1

T∫
0

G[j−1](t, s)u(2n−2)(s) ds, 2 ≤ j ≤ n, (3.2)

are true on [0, T ] for every u ∈ C2n−2[0, T ] satisfying the boundary conditions (1.5).

Lemma 3.1. For 1 ≤ j ≤ n − 1, the following inequality is true:

G[j](t, s) ≥ T 2j−3(1 − αT )j

3j−1
ts for (t, s) ∈ [0, T ] × [0, T ], (3.3)

where

α = max{ak : 0 ≤ k ≤ n − 2}
(

<
1
T

)
. (3.4)

Proof. Since

Gj(t, s) =

⎧⎪⎨
⎪⎩

s(1 − ajt) ≥ s(1 − ajT ) for 0 ≤ s ≤ t ≤ T,

t(1 − ajs) ≥ t(1 − ajT ) for 0 ≤ t < s ≤ T

for 0 ≤ j ≤ n − 2, we have

Gj(t, s) ≥ 1 − ajT

T
st ≥ 1 − αT

T
st

for (t, s) ∈ [0, T ] × [0, T ] and 0 ≤ j ≤ n − 2. Consequently,

G[1](t, s) = Gn−2(t, s) ≥ 1 − αT

T
st

for (t, s) ∈ [0, T ]×[0, T ], and, therefore, inequality (3.3) holds for j = 1. We now proceed by induction. Assume
that (3.3) is true for j = i (< n − 1). Then

G[i+1](t, s) =

T∫
0

Gn−i−2(t, v)G[i](v, s) dv ≥
T∫

0

1 − αT

T
tv

T 2i−3(1 − αT )i

3i−1
vs dv

=
T 2i−4(1 − αT )i+1

3i−1
ts

T∫
0

v2ds =
T 2i−1(1 − αT )i+1

3i
ts

for (t, s) ∈ [0, T ] × [0, T ]. Therefore (3.3) is true with j = i + 1.

The lemma is proved.
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Let φ satisfy (H1). We choose an arbitrary a > 0 and put

Ba =
{

u ∈ C2n−1[0, T ] : φ(u(2n−1)) ∈ AC[0, T ],

(−1)n
(
φ(u(2n−1)(t))

)′ ≥ a for a.e. t ∈ [0, T ], and u satisfies (1.5)
}

. (3.5)

The properties of functions belonging to the set Ba are given in the following lemma:

Lemma 3.2. Let u ∈ Ba. Then there exists {ξ2j+1}n−1
j=0 ⊂ (0, T ) such that

u(2j+1)(ξ2j+1) = 0, 0 ≤ j ≤ n − 1, (3.6)

and

∣∣u(2n−1)(t)
∣∣ ≥ φ−1

(
a|t − ξ2n−1|

)
, (3.7)

∣∣u(2n−2j+1)(t)
∣∣ ≥ T 2j−4S

2 · 3j−2
(1 − αT )j−2(t − ξ2n−2j+1)2, 2 ≤ j ≤ n, (3.8)

(−1)n+ju(2n−2j)(t) ≥ T 2j−2S

3j−1
(1 − αT )j−1t, 1 ≤ j ≤ n, (3.9)

for t ∈ [0, T ], where

S =
1
T

min

⎧⎪⎨
⎪⎩bn−1

T/2∫
0

φ−1(at) dt,
bn−1

an−1
φ−1

(
aT

2

)⎫⎪⎬
⎪⎭ (3.10)

and α is given in (3.4).

Proof. Since φ is increasing and

(
φ((−1)nu(2n−1)(t))

)′
= (−1)n

(
φ(u(2n−1)(t))

)′ ≥ a for a.e. t ∈ [0, T ],

it follows that (−1)nu(2n−1) is increasing on [0, T ], and (−1)n−1u(2n−2) is concave on this interval. If
u(2n−1)(t) 
= 0 for t ∈ (0, T ), then

∣∣an−1u
(2n−2)(T ) + bn−1u

(2n−1)(T )
∣∣ =

∣∣∣∣∣∣an−1

T∫
0

u(2n−1)(t)dt + bn−1u
(2n−1)(T )

∣∣∣∣∣∣ > 0,

contrary to the fact that an−1u
(2n−2)(T ) + bn−1u

(2n−1)(T ) = 0 by (1.5) with k = n − 1. Consequently,
u(2n−1)(ξ2n−1) = 0 for a unique ξ2n−1 ∈ (0, T ). The integration of the equality

(
φ((−1)nu(2n−1)(t))

)′ ≥ a

over [t, ξ2n−1] and [ξ2n−1, t] now gives
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(−1)n−1u(2n−1)(t) ≥ φ−1
(
a(ξ2n−1 − t)

)
, t ∈ [0, ξ2n−1], (3.11)

(−1)nu(2n−1)(t) ≥ φ−1
(
a(t − ξ2n−1)

)
, t ∈ [ξ2n−1, T ], (3.12)

which shows that (3.7) holds. In order to prove inequality (3.9) for j = 1 we consider two cases, namely ξ2n−1 <
T

2
and ξ2n−1 ≥ T

2
.

Case 1. Let ξ2n−1 <
T

2
. Then [see (3.12)]

(−1)nu(2n−1)(T ) ≥ φ−1(a(T − ξ2n−1)) > φ−1

(
aT

2

)
,

and, therefore [see (1.5) with k = n − 1],

(−1)n−1u(2n−2)(T ) = (−1)n bn−1

an−1
u(2n−1)(T ) >

bn−1

an−1
φ−1

(
aT

2

)
. (3.13)

Case 2. Let ξ2n−1 ≥ T

2
. Then (3.11) yields

(−1)n−1u(2n−2)

(
T

2

)
= (−1)n−1

T/2∫
0

u(2n−1)(t) dt ≥
T/2∫
0

φ−1
(
a(ξ2n−1 − t)

)
dt

≥
T/2∫
0

φ−1

(
a

(
T

2
− t

))
dt =

T/2∫
0

φ−1(at) dt =: L.

Let ε := (−1)nu(2n−1)(T ). We know that (−1)nu(2n−1) is increasing on [0, T ] and u(2n−1)(ξ2n−1) = 0.

Hence, ε > 0 and

(−1)n−1u(2n−2)(t) = (−1)n−1u(2n−2)(ξ2n−1) + (−1)n−1

t∫
ξ2n−1

u(2n−1)(s) ds

> (−1)n−1u(2n−2)(ξ2n−1) − ε(t − ξ2n−1) ≥ (−1)n−1u(2n−2)

(
T

2

)
− ε(t − ξ2n−1)

for t ∈ (ξ2n−1, T ]. Consequently,

(−1)n−1u(2n−2)(T ) > L − ε(T − ξ2n−1) > L − εT.

Then



290 S. STANĚK

bn−1

an−1
ε = (−1)n bn−1

an−1
u(2n−1)(T ) = (−1)n−1u(2n−2)(T ) > L − εT,

and so [see (1.6)]

ε > L

(
bn−1

an−1
+ T

)−1

= an−1L.

It follows that

(−1)n−1u(2n−2)(T ) = (−1)n bn−1

an−1
u(2n−1)(T ) =

bn−1

an−1
ε > bn−1L. (3.14)

Relations (3.13) and (3.14) now imply that (−1)n−1u(2n−2)(T ) > ST, where S is given in (3.10).
This, the equality u(2n−2)(0) = 0, and the fact that (−1)n−1u(2n−2) is concave on [0, T ] guarantee that
(−1)n−1u(2n−2)(t) ≥ St for t ∈ [0, T ], which proves (3.9) for j = 1.

Combining (3.2), (3.3), and (3.9) (with j = 1), we get

(−1)n+ju(2n−2j)(t) = (−1)n−1

T∫
0

G[j−1](t, s)u(2n−2)(s) ds

≥ T 2j−5S

3j−2
(1 − αT )j−1t

T∫
0

s2 ds =
T 2j−2S

3j−1
(1 − αT )j−1t

for t ∈ [0, T ] and 2 ≤ j ≤ n. We have proved that (3.9) is true.
Since, by (3.9), |u(2n−2j)| > 0 on (0, T ] for 1 ≤ j ≤ n and u satisfies (1.5), essentially the same reasoning

as in the beginning of this proof shows that u(2j+1)(ξ2j+1) = 0 for a unique ξ2j+1 ∈ (0, T ), 0 ≤ j ≤ n − 2.

Using (3.9), we obtain

∣∣u(2n−2j+1)(t)
∣∣ =

∣∣∣∣∣∣∣
t∫

ξ2n−2j+1

u(2n−2j+2)(s) ds

∣∣∣∣∣∣∣ ≥
T 2j−4S

3j−2
(1 − αT )j−2

∣∣∣∣∣∣∣
t∫

ξ2n−2j+1

s ds

∣∣∣∣∣∣∣
=

T 2j−4S

2 · 3j−2
(1 − αT )j−2|t2 − ξ2

2n−2j+1| ≥
T 2j−4S

2 · 3j−2
(1 − αT )j−2(t − ξ2n−2j+1)2

for t ∈ [0, T ] and 2 ≤ j ≤ n. Hence, (3.8) is true, which completes the proof.

3.2. Auxiliary Regular Problems. Let (H2) and (H3) hold. For each m ∈ N, we define χm, ϕm, τm ∈
C0(R) and Rm ⊂ R by the formulas

χm(v) =

⎧⎪⎪⎨
⎪⎪⎩

v for v ≥ 1
m

,

1
m

for v <
1
m

,

ϕm(v) =

⎧⎪⎪⎨
⎪⎪⎩
− 1

m
for v > − 1

m
,

v for v ≤ − 1
m

,
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τm =

⎧⎪⎨
⎪⎩

χm if n = 2k − 1,

ϕm if n = 2k,

Rm = R \
(
− 1

m
,

1
m

)
.

We choose m ∈ N and use the function f to define fm ∈ Car
(
[0, T ] × R

2n
)

by the formula

fm(t, x0, x1, x2, x3, . . . , x2n−2, x2n−1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f(t, χm(x0), x1, ϕm(x2), x3, . . . , τm(x2n−2), x2n−1)

for (t, x0, x1, x2, x3, . . . , x2n−2, x2n−1) ∈ [0, T ] × R × Rm × R × Rm × . . . × R × Rm,

m

2

[
fm

(
t, x0,

1
m

, x2, x3, . . . , x2n−2, x2n−1

)(
x1 +

1
m

)

−fm

(
t, x0,− 1

m
, x2, x3, . . . , x2n−2, x2n−1

)(
x1 − 1

m

)]

for (t, x0, x1, x2, x3, . . . , x2n−2, x2n−1)

∈ [0, T ] × R ×
[
− 1

m
,

1
m

]
× R × Rm × . . . × R × Rm,

m

2

[
fm

(
t, x0, x1, x2,

1
m

, . . . , x2n−2, x2n−1

)(
x3 +

1
m

)

−fm

(
t, x0, x1, x2,− 1

m
, . . . , x2n−2, x2n−1

)(
x3 − 1

m

)]

for (t, x0, x1, x2, x3, . . . , x2n−2, x2n−1) ∈ [0, T ] × R
3 ×

[
− 1

m
,

1
m

]
× . . . × R × Rm,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m

2

[
fm

(
t, x0, x1, x2, . . . , x2n−2,

1
m

)(
x2n−1 +

1
m

)

−fm

(
t, x0, x1, x2, . . . , x2n−2,− 1

m

)(
x2n−1 − 1

m

)]

for (t, x0, x1, x2, . . . , x2n−2, x2n−1) ∈ [0, T ] × R
2n−1 ×

[
− 1

m
,

1
m

]
.

Then conditions (H2) and (H3) give

a ≤ (1 − λ)a + λfm(t, x0, . . . , x2n−1) (3.15)
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for a.e. t ∈ [0, T ] and all (x0, . . . , x2n−1) ∈ R
2n and λ ∈ [0, 1], and

(1 − λ)a + λfm(t, x0, . . . , x2n−1) ≤ h

⎛
⎝t, 2n +

2n−1∑
j=0

|xj |
⎞
⎠ +

2n−1∑
j=0

ωj

(|xj |
)

(3.16)

for a.e. t ∈ [0, T ] and all (x0, . . . , x2n−1) ∈ R
2n
0 and λ ∈ [0, 1].

Consider the family of approximate regular differential equations

(−1)n
(
φ(u(2n−1))

)
= λfm(t, u, . . . , u(2n−1)) + (1 − λ)a, λ ∈ [0, 1]. (3.17)

Lemma 3.3. Let (H1)–(H3) hold. Then there exists a positive constant W independent of m ∈ N and
λ ∈ [0, 1] and such that

‖u(j)‖ < W, 0 ≤ j ≤ 2n − 1, (3.18)

for all solutions u of problem (3.17), (1.5).

Proof. Let u be a solution of problem (3.17), (1.5). Then (−1)n
(
φ(u(2n−1)(t))

)′ ≥ a for a.e. t ∈ [0, T ] by
(3.15), and, consequently, u ∈ Ba, where the set Ba is given in (3.5). Hence, by Lemma 3.2, u satisfies (3.6) and
(3.7), where ξ2j+1 ∈ (0, T ) is the unique zero of u(2j+1), 0 ≤ j ≤ n − 1, and

∣∣u(2n−2j+1)(t)
∣∣ ≥ Qj(t − ξ2n−2j+1)2, 2 ≤ j ≤ n,

(−1)n+iu(2n−2i)(t) ≥ Pit, 1 ≤ i ≤ n,

for t ∈ [0, T ], where

Qj =
T 2j−4S

2 · 3j−2
(1 − αT )j−2, Pi =

T 2i−2S

3i−1
(1 − αT )i−1 (3.19)

with α and S given in (3.4) and (3.10), respectively. Accordingly,

2n−1∑
j=0

T∫
0

ωj

(|u(j)(t)|) dt ≤
n∑

j=1

T∫
0

ω2n−2j(Pjt) dt

+
n∑

j=2

T∫
0

ω2n−2j+1

(
Qj(t − ξ2n−2j+1)2

)
dt +

T∫
0

ω2n−1(φ−1(a|t − ξ2n−1|)
)
dt

<

n∑
j=1

1
Pj

PjT∫
0

ω2n−2j(s) ds + 2
n∑

j=2

1√
Qj

√
QjT∫

0

ω2n−2j+1(s2) ds

+
2

aT

aT∫
0

ω2n−1(φ−1(s)) ds =: Λ. (3.20)
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By (H3), we have Λ < ∞. Since u(2j)(0) = 0 and u(2j+1)(ξ2j+1) = 0 for 0 ≤ j ≤ n − 1, we get

‖u(j)‖ ≤ T 2n−j−1‖u(2n−1)‖, 0 ≤ j ≤ 2n − 2. (3.21)

Combining (3.16), (3.20), (3.21), and the equality u(2n−1)(ξ2n−1) = 0, we obtain

φ
(|u(2n−1)(t)|) =

∣∣∣∣∣∣∣
t∫

ξ2n−1

[(1 − λ)a + λfm(s, u(s), . . . , u(2n−1)(s))] ds

∣∣∣∣∣∣∣

<

T∫
0

h

⎛
⎝t, 2n +

2n−1∑
j=0

|u(j)(t)|
⎞
⎠dt +

2n−1∑
j=0

T∫
0

ωj

(|u(j)(t)|) dt

<

T∫
0

h

⎛
⎝t, 2n + ‖u(2n−1)‖

2n−1∑
j=0

T j

⎞
⎠dt + Λ =

T∫
0

h(t, 2n + K‖u(2n−1)‖) dt + Λ

for t ∈ [0, T ], where K is given in (1.9). Hence,

φ
(‖u(2n−1)‖) <

T∫
0

h
(
t, 2n + K‖u(2n−1)‖) dt + Λ. (3.22)

It follows from condition (1.8) that there exists a positive constant W∗ such that

T∫
0

h(t, 2n + Kv) dt < φ(v)

whenever v ≥ W∗. This and (3.22) yields ‖u(2n−1)‖ < W∗. Consequently, (3.21) shows that (3.18) is satisfied
with W = W∗ max

{
1, T 2n−1

}
.

The lemma is proved.

Remark 3.1. Assume that c > 0. If follows from the proof of Lemma 3.3 that any solution u of problem
(−1)n

(
φ(u(2n−1))

)′ = c, (1.5) satisfies the inequality

‖u(j)‖ < φ−1(cT ) max{1, T 2n−1}

for 0 ≤ j ≤ 2n − 1.

We are now in a position to show that, for each m ∈ N, there exists a solution um of the regular differential
equation

(−1)n
(
φ(u(2n−1))

)′ = fm(t, u, . . . , u(2n−1)) (3.23)

that satisfies the boundary conditions (1.5).
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Lemma 3.4. Let (H1)–(H3) hold. Then, for each m ∈ N, there exists a solution um ∈ C2n−1[0, T ],
φ(u(2n−1)) ∈ AC[0, T ] of problem (3.23), (1.5) and

‖u(j)
m ‖ < W for m ∈ N and 0 ≤ j ≤ 2n − 1, (3.24)

where W is a positive constant. In addition, the sequence
{
u

(2n−1)
m

}
is equicontinuous on [0, T ].

Proof. Choose an arbitrary m ∈ N. Let W be the positive constant in Lemma 3.3. In order to prove
the existence of a solution of problem (3.23), (1.5) we use Theorem 2.1 with p = 2n, g = (−1)nfm, and
ϕ = (−1)na in Eqs. (2.1) and (2.2) and with

α2k(u) = u(2k)(0), α2k+1(u) = aku
(2k)(T ) + bku

(2k+1)(T ), 0 ≤ k ≤ n − 1, (3.25)

in the boundary conditions (1.2).

Due to Lemma 3.3 and Remark 3.1, all solutions u of problems (3.17), (1.5) and (−1)n
(
φ(u(2n−1))

)′ = λa,

(1.5) (0 ≤ λ ≤ 1) satisfy inequality (3.18). Moreover, αk [defined in (3.25)] belongs to the set A (with p = 2n)
for 0 ≤ k ≤ 2n − 1. The system [see (1.3)]

αk

(
2n−1∑
i=0

Ait
i

)
− μαk

(
−

2n−1∑
i=0

Ait
i

)
= 0, 0 ≤ k ≤ 2n − 1, (3.26)

has the form [see (3.25)]

(1 + μ)

(
2n−1∑
i=0

Ait
i

)(2k) ∣∣∣∣∣
t=0

= 0, 0 ≤ k ≤ n − 1, (3.27)

(1 + μ)

[
ak

(
2n−1∑
i=0

Ait
i

)(2k) ∣∣∣∣∣
t=T

+ bk

(
2n−1∑
i=0

Ait
i

)(2k+1) ∣∣∣∣∣
t=T

]
= 0, 0 ≤ k ≤ n − 1. (3.28)

It follows from (3.27) that A2k = 0 for 0 ≤ k ≤ n − 1, and then we deduce from (3.28) and the equality
akT + bk = 1 that A2j+1 = 0 for 0 ≤ j ≤ n − 1. Consequently, (A0, . . . , A2n−1) = (0, . . . , 0) ∈ R

2n is the
unique solution of (3.26) for every μ ∈ [0, 1]. Hence, all assumptions of Theorem 2.1 are satisfied, and, therefore,
for each m ∈ N, there exists a solution um ∈ C2n−1[0, T ], φ(u(2n−1)) ∈ AC[0, T ] of problem (3.23), (1.5) that
satisfies inequality (3.24).

It remains to show that the sequence {u(2n−1)
m } is equicontinuous on [0, T ]. Note that um ∈ Ba for all

m ∈ N, where the set Ba is given in (3.5). Then, by Lemma 3.2, there exists {ξ2j+1,m}n−1
j=0 ⊂ (0, T ), m ∈ N,

such that

u(2j+1)
m (ξ2j+1,m) = 0, 0 ≤ j ≤ n − 1, m ∈ N, (3.29)
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and

∣∣u(2n−1)
m (t)

∣∣ ≥ φ−1
(
a|t − ξ2n−1,m|),

∣∣u(2n−2j+1)
m (t)

∣∣ ≥ Qj(t − ξ2n−2j+1,m)2, 2 ≤ j ≤ n, (3.30)

(−1)n+ju(2n−2j)
m (t) ≥ Pjt, 1 ≤ j ≤ n,

for t ∈ [0, T ] and m ∈ N, where Qj and Pj are given in (3.19). Let 0 ≤ t1 < t2 ≤ T. Then [see (3.16) with
λ = 1, (3.24), and (3.30)]

∣∣∣φ(u(2n−1)
m (t2)

)− φ
(
u(2n−1)

m (t1)
)∣∣∣

=

t2∫
t1

fm

(
t, um(t), . . . , u(2n−1)

m (t)
)
dt

≤
t2∫

t1

h

⎛
⎝t, 2n +

2n−1∑
j=0

‖u(j)
m ‖

⎞
⎠ dt +

2n−1∑
j=0

t2∫
t1

ωj

(|u(j)
m (t)|) dt

≤
t2∫

t1

h(t, 2n(1 + W )) dt +

t2∫
t1

ω2n−1

(
φ−1(a|t − ξ2n−1,m|) dt

+
n∑

j=2

t2∫
t1

ω2n−2j+1

(
Qj(t − ξ2n−2j+1,m)2

)
dt +

n∑
j=1

t2∫
t1

ω2n−2j(Pjt) dt (3.31)

for m ∈ N. By assumption (H3),

h(t, 2n(1 + W )) ∈ L1[0, T ]

and

ω2n−1(φ−1(s)), ω2j(s), 0 ≤ j ≤ n − 1, ω2i+1(s2), 0 ≤ i ≤ n − 2,

are locally integrable on [0,∞). These facts, (3.31), and the relations
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t2∫
t1

ω2n−1

(
φ−1(a|t − ξ2n−1,m|)) dt

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
a

a(ξ2n−1,m−t1)∫
a(ξ2n−1,m−t2)

ω2n−1

(
φ−1(t)

)
dt, if t2 ≤ ξ2n−1,m,

1
a

⎡
⎢⎣

a(ξ2n−1,m−t1)∫
0

ω2n−1

(
φ−1(t)

)
dt +

a(t2−ξ2n−1,m)∫
0

ω2n−1

(
φ−1(t)

)
dt

⎤
⎥⎦ if t1 < ξ2n−1,m < t2,

1
a

a(t2−ξ2n−1,m)∫
a(t1−ξ2n−1,m)

ω2n−1

(
φ−1(t)

)
dt if ξ2n−1,m ≤ t1,

t2∫
t1

ω2n−2j+1

(
Qj(t − ξ2n−2j+1,m)2

)
dt

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
Qj

√
Qj(ξ2n−2j+1,m−t1)∫

√
Qj(ξ2n−2j+1,m−t2)

ω2n−2j+1(t2) dt if t2 ≤ ξ2n−2j+1,m,

1√
Qj

⎡
⎢⎢⎣
√

Qj(ξ2n−2j+1,m−t1)∫
0

ω2n−2j+1(t2) dt

+

√
Qj(t2−ξ2n−2j+1,m)∫

0

ω2n−2j+1(t2) dt

⎤
⎥⎥⎦ if t1 < ξ2n−2j+1,m < t2,

1√
Qj

√
Qj(t2−ξ2n−2j+1,m)∫

√
Qj(t1−ξ2n−2j+1,m)

ω2n−2j+1(t2) dt if ξ2n−2j+1,m ≤ t1,

imply that
{
φ(u(2n−1)

m )
}

is equicontinuous on [0, T ]. We now deduce the equicontinuity of
{
u

(2n−1)
m

}
on [0, T ]

from the equality

∣∣u(2n−1)
m (t2) − u(2n−1)

m (t1)
∣∣ =

∣∣∣φ−1
(
φ(u(2n−1)

m (t2))
)− φ−1

(
φ(u(2n−1)

m (t1))
)∣∣∣

for 0 ≤ t1 < t2 ≤ T and m ∈ N
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and the fact that
{
φ(u(2n−1)

m )
}

is bounded in C0[0, T ] and φ−1 is continuous and increasing on R.

The lemma is proved.

3.3. Existence Result and Example. The main result is presented in the following theorem:

Theorem 3.1. Let (H1)–(H3) hold. Then problem (1.4), (1.5) has a solution u ∈ C2n−1[0, T ], φ(u(2n−1)) ∈
AC[0, T ], (−1)ku(2k) > 0 on (0, T ], and u(2k+1)(ξ2k+1) = 0 for 0 ≤ k ≤ n − 1, where ξ2k+1 ∈ (0, T ).

Proof. By Lemma 3.4, for each m ∈ N there exists a solution um of problem (3.23), (1.5). Consider the
sequence {um}. Then inequality (3.24) is satisfied with a positive constant W, and since um ∈ Ba, Lemma 3.2
guarantees the existence of {ξ2j+1,m}n−1

j=0 ⊂ (0, T ) such that (3.29) and (3.30) hold for t ∈ [0, T ] and m ∈
N, where Qj and Pj are given in (3.19). Moreover, the sequence {u2n−1

m } is equicontinuous on [0, T ] by
Lemma 3.4. Hence, there exist a subsequence {ukm} converging in C2n−1[0, T ] and a subsequence {ξ2j+1,km},
1 ≤ j ≤ n − 1, converging in R. Let

lim
m→∞ukm = u and lim

m→∞ ξ2j+1,km = ξ2j+1, 1 ≤ j ≤ n − 1.

Letting m → ∞ in (3.24), (3.29), and (3.30) (with km instead of m), we get
(
for t ∈ [0, T ]

)
∣∣u(2n−1)(t)

∣∣ ≥ φ−1
(
a|t − ξ2n−1|

)
,

u(2j+1)(ξ2j+1) = 0 for 0 ≤ j ≤ n − 1,

∣∣u(2n−2j+1)(t)
∣∣ ≥ Qj(t − ξ2n−2j+1)2 for 2 ≤ j ≤ n − 1,

‖u(j)‖ ≤ W for 0 ≤ j ≤ 2n − 1,

and

(−1)n+ju(2n−2j)(t) ≥ Pjt for 1 ≤ j ≤ n. (3.32)

Hence, u(j) has exactly one zero in [0, T ] for 0 ≤ j ≤ 2n − 1, and

lim
m→∞ fkm

(
t, ukm(t), . . . , u(2n−1)

km
(t)

)
= f

(
t, u(t), . . . , u(2n−1)(t)

)
for a.e. t ∈ [0, T ].

In addition, by (3.32), we have (−1)ku(2k) > 0 on (0, T ] and (−1)ku(2k+1)(0) ≥ Pn−k > 0 for 0 ≤ k ≤ n−1.

Hence, (−1)ku(2k+1)(T ) < 0 for 0 ≤ k ≤ n − 1 by (1.5), which, combined with (−1)ku(2k+1)(0) > 0,

implies that ξ2k+1 ∈ (0, T ) for 0 ≤ k ≤ n − 1. Finally, having in mind the definition of the function fm and
inequality (3.16), we get

0 ≤ fm(t, x0, . . . , x2n−1) ≤ q
(
t, |x0|, . . . , |x2n−1|

)
for a.e. t ∈ [0, T ] and all (x0, . . . , x2n−1) ∈ R

2n
0 ,

where
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q(t, x0, . . . , x2n−1) = h

⎛
⎝t, 2n +

2n−1∑
j=0

xj

⎞
⎠ +

2n−1∑
j=0

ωj(xj) for t ∈ [0, T ] and (x0, . . . , x2n−1) ∈ R
2n
+ .

Clearly, q ∈ Car([0, T ]×R
2n
+ ). Hence, problem (1.4), (1.5) satisfies the assumptions of Theorem 2.2 with p = 2n,

g = (−1)nf, and gm = fm [i.e., ν = (−1)n in (2.11)] and with the boundary conditions (3.25), which are a
special case of the boundary conditions (1.2). Consequently, Theorem 2.2 guarantees that φ(u(2n−1)) ∈ AC[0, T ]
and u is a solution of problem (1.4), (1.5).

The theorem is proved.

Example 3.1. Assume that p > 1, α2n−1 ∈ (0, p − 1), α2j ∈ (0, 1) for 0 ≤ j ≤ n − 1, α2j+1 ∈
(

0,
1
2

)
for 0 ≤ j ≤ n − 2, βk ∈ (0, p − 1), ck > 0, dk ∈ L1[0, T ] for 0 ≤ k ≤ 2n − 1, dk is nonnegative,
r ∈ L1[0, T ], and r(t) ≥ a > 0 for a.e. t ∈ [0, T ]. Consider the differential equation

(−1)n
(|u(2n−1)|p−2u(2n−1)

)′ = r(t) +
2n−1∑
k=0

(
ck

|u(k)|αk
+ dk(t)|u(k)|βk

)
. (3.33)

Equation (3.33) satisfies conditions (H1)–(H3) with

φ(v) = |v|p−2v and h(t, v) = r(t) + (2n + vγ)
2n−1∑
j=0

dk(t),

where

γ = max{βk : 0 ≤ k ≤ 2n − 1} < p − 1 and ωk(v) =
ck

vαk
, 0 ≤ k ≤ 2n − 1.

Hence, Theorem 3.1 guarantees that problem (3.33), (1.5) has a solution u ∈ C2n−1[0, T ], φ(u(2n−1)) ∈
AC[0, T ], (−1)ku(2k) > 0 on (0, T ], and u(2k+1)(ξ2k+1) = 0 for 0 ≤ k ≤ n − 1, where ξ2k+1 ∈ (0, T ).
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