ON THE SOLUTION OF THE BASIC INTEGRAL EQUATION OF ACTUARIAL MATHEMATICS BY THE METHOD OF SUCCESSIVE APPROXIMATIONS

B. V. Norkin UDC 519.21

We study the basic integral equation of actuarial mathematics for the probability of (non)ruin of an insurance company regarded as a function of the initial capital. We establish necessary and sufficient conditions for the existence of a solution of this equation, general sufficient conditions for its existence and uniqueness, and conditions for the uniform convergence of the method of successive approximations for finding the solution.

Consider a random risk process (with random claims and deterministic and random premiums) ξ*t* that describes the evolution of the capital of an insurance company in time *t* and satisfies the stochastic equation [1]

$$
\xi_t = u + \int_0^t c(\xi_s) ds - S_t, \quad t \ge 0,
$$
\n(1)

where $u \ge 0$ is the initial capital, $c(\cdot)$ is a nonnegative piecewise-continuous function that describes the intensity of arrival of deterministic premiums as a function of the current capital, $S_t = \sum_{k=1}^{N_t} z_k$ are aggregated random insurance claims and premiums, z_k are independent random variables (claims in the case $z_k \ge 0$ or random premiums in the case $z_k \le 0$) with common distribution function $F(z)$, and N_t is the number of random claims and premiums arrived by time *t* (an ordinary renewal process with time distribution function between successive events $K(t)$). We consider the ruin probability of the insurance company $\psi(u) = P\{\exists t \geq 0 : \xi_t < 0\}$ on an infinite time interval $t \in [0, +\infty)$ and the corresponding nonruin probability $\varphi(u) = 1 - \psi(u)$ as functions of the initial capital $u \geq 0$.

We define the function of growth of capital in the absence of insurance claims $U(u, t)$ as the solution of the following Cauchy problem for an ordinary differential equation:

$$
\frac{dU}{dt} = c(U), \quad U(u,0) = u.
$$

For example, if $c(\cdot) \equiv a$, then $U(u, t) = u + at$. If the capital of the insurance company is deposited with continuous interest rate δ and $c(\xi_t) \equiv a + \delta \xi_t$, $\delta > 0$, then

$$
\frac{dU}{dt} = a + \delta U, \quad U(u,0) = u,
$$

Institute of Cybernetics, Ukrainian National Academy of Sciences, Kiev.

1902 0041–5995/07/5912–1902 © 2007 Springer Science+Business Media, Inc.

Translated from Ukrains'kyi Matematychnyi Zhurnal, Vol. 59, No. 12, pp. 1689 – 1698, December, 2007. Original article submitted March 30, 2006.

and, thus,

$$
U(u,t) = ue^{\delta t} + \frac{a}{\delta} \left(e^{\delta t} - 1\right) \ge u + (a + \delta u)t. \tag{2}
$$

Assumption 1. *The function* $c(\cdot)$ *satisfies the condition* $c(\cdot) \geq 0$, *and, hence,* $U(u, t)$ *does not decrease with respect to its variables.*

It was shown in [2, 3] that the function of nonruin probability $\varphi(u)$ satisfies the following integral equation [the basic equation of actuarial mathematics (see also Eq. (3.74) in [4] with $U(u, t) = u + at$ and $F(0) = 0$]]:

$$
\varphi(u) = A\varphi(u),\tag{3}
$$

where the integral operator *A* is defined by the expression

$$
A\,\varphi(u) \; := \; \int\limits_0^\infty \int\limits_{-\infty}^{U(u,t)} \varphi(U(u,t)-z) \, dF(z) \, dK(t), \qquad u \; \geq \; 0. \tag{4}
$$

Here, the functions $\varphi(\cdot)$ and $U(\cdot, \cdot)$ are monotone with respect to their variables and the integrals are understood in the Lebesgue–Stieltjes sense. This is a linear homogeneous integral equation with operator *A* with unbounded domain of integration and nonnegative kernel, and the operator *A* is defined on bounded nondecreasing functions $\varphi(u)$, $u \ge 0$. Equation (3), (4) always has the trivial (zero) solution. We are interested in a solution $\varphi(u)$, $0 \leq \varphi(u) \leq 1$, that does not decrease with respect to *u* and satisfies the following boundary condition at infinity:

$$
\varphi(+\infty) = \lim_{u \to +\infty} \varphi(u) = 1. \tag{5}
$$

This condition means that the insurance company is not ruined in the case of unbounded initial capital.

In the classical case of the so-called compound Poisson process (Cramér–Lundberg model), in which $U(u, t) = u + at$, $K(t) = 1 - e^{-\alpha t}$, and $F(z) = 0$ for $z \le 0$, problem (3)–(5) for the (non)ruin probability reduces to the solution of an integral renewal equation (a Volterra-type equation with kernel dependent on the difference of arguments, see [1, 4]). An extensive literature is devoted to the investigation of this case in the theory of random walks and actuarial mathematics (see [5] and the bibliography therein). However, in the general case, problem (3)–(5) does not reduce to a Volterra equation and should be studied independently.

In $[2, 3]$, sufficient conditions for the existence and uniqueness of a solution of problem (3) – (5) were established and the method of successive approximations for the solution of this problem was justified, namely,

$$
\varphi^{k+1}(u) = \int_{0}^{\infty} \int_{-\infty}^{U(u,t)} \varphi^{k}(U(u,t)-z) dF(z) dK(t), \quad k = 0, 1, ..., \qquad (6)
$$

where *k* is the number of iteration and $0 \leq \varphi^{0}(u) \leq 1$. Results of numerical experiments were also presented in [2, 3]. The case of $K(t) = 1 - e^{-\alpha t}$ (a Poisson flow of insurance claims with intensity $\alpha > 0$) was considered in [2]. The case of the general distribution $K(t)$ was considered in [3]. Model (1) admits both positive payments (claims) and negative payments (premiums) at random times. Therefore, for $K(t) = 1 - e^{-\alpha t}$, it comprises the models with random premiums considered in [6, 7], where it was assumed that $c(\cdot) \equiv 0$.

In the present paper, we generalize the results given in [2, 3], namely,

the more general model (1) of a risk process, which admits both random claims and stochastic premiums, is considered;

the problem of the existence of a solution of problem $(3) - (5)$ and its determination is considered from the general operator point of view, and the properties of monotonicity (Lemma 1) and contraction (Corollary 3) are established for the operator *A* from (4);

general necessary and sufficient conditions for the existence of a solution of problem (3) – (5) are established (Theorem 2);

new general sufficient conditions for the existence and uniqueness of a solution of problem $(3) - (5)$ are established (Corollary 5);

we prove not only the pointwise convergence but also the uniform convergence of the method of successive approximations (6) (Theorem 4).

Let Φ denote a (metric) space of functions $\phi(u)$ nonincreasing with respect to $u \in [0, +\infty)$ and such that $0 \le \varphi(u) \le 1$ with the following distance between functions $\varphi_1, \varphi_2 \in \Phi$:

$$
\rho(\varphi_1, \varphi_2) := \sup_{u \ge 0} |\varphi_1(u) - \varphi_2(u)|.
$$

We introduce a partial order on Φ as follows: $\varphi_1 \leq \varphi_2$ if $\varphi_1(u) \leq \varphi_2(u)$ for any $u \geq 0$.

Lemma 1. *The linear integral operator A acts from* Φ *into* Φ *and is monotone, i.e., for any* $\phi_1 \leq \phi_2$, *one has* $A\varphi_1 \leq A\varphi_2$, *and nonexpanding* (*and, hence, continuous with respect to the metric* $\rho(\cdot,\cdot)$):

$$
\rho(A\varphi_1, A\varphi_2) \leq \rho(\varphi_1, \varphi_2) \quad \forall \varphi_1, \varphi_2 \in \Phi.
$$

Proof. Since the function $\phi_{u,t}(z) = \phi(U(u,t) - z)$ is monotone and bounded, the integral

$$
\int_{-\infty}^{U(u,t)} \varphi(U(u,t)-z) dF(z) = \Psi_u(t)
$$

is defined. In turn, the function $\psi_u(t)$ is also monotone in t and $0 \leq \psi_u(t) \leq 1$. Therefore, integral (4) exists. For any $\varphi(u)$, $0 \leq \varphi(u) \leq 1$, it is obvious that $A\varphi(u) \geq 0$ and

$$
A\varphi(u) \leq \int_{0}^{\infty} \int_{-\infty}^{U(u,t)} dF(z) dK(t) \leq \int_{0}^{\infty} F(U(u,t)) dK(t) \leq 1.
$$

The fact that the function $A\phi(u)$ does not decrease with respect to *u* follows from the monotonicity of $U(\cdot, t)$ and $\varphi(\cdot)$. Thus, $A : \Phi \to \Phi$. The monotonicity of the integral operator A follows from the linearity and nonnegativity of the kernel. Finally, for any φ_1 and φ_2 , we have

$$
\rho(A\varphi_1, A\varphi_2) \leq \int\limits_0^\infty \int\limits_{-\infty}^{U(u,t)} \sup_{u\geq 0} |\varphi_1(u) - \varphi_2(u)| dF(z) dK(t) \leq \int\limits_0^\infty F(U(u,t)) dK(t) \rho(\varphi_1, \varphi_2) \leq \rho(\varphi_1, \varphi_2).
$$

Thus, the operator *A* is nonexpanding.

The lemma is proved.

Assumption 2. *There exists a nondecreasing function* $\varphi_*(u)$ *such that* $0 \le \varphi_*(u) \le 1$, $\lim_{u \to +\infty} \varphi_*(u) = 1$, $u \rightarrow +\infty$ $and A\varphi_*(u) \geq \varphi_*(u).$

The theorem presented below gives sufficient conditions for the existence of a function $\varphi_*(u)$ that satisfies Assumption 2.

Assumption 3. *There exist constants* $u_* \geq 0$, $c_* \geq 0$, and $L > 0$ *such that*

(a)
$$
U(u, t) \ge u + c_* t
$$
 for all $u \ge u_*$;

(b)
$$
\int_{-\infty}^{+\infty} e^{Lz} dF(z) \int_{0}^{+\infty} e^{-c_* Lt} dK(t) \leq 1;
$$

(c)
$$
\lim_{z \to +\infty} e^{Lz} (1 - F(z)) = 0.
$$

Theorem 1. *Suppose that Assumptions 1 and 3 are satisfied. Then Assumption 2 with the function*

$$
\varphi_*(u) = \max\{0, 1 - e^{-L(u - u_*)}\}
$$

is satisfied.

Proof. It suffices to verify that $A\varphi_*(u) \geq \varphi_*(u)$. Consider

$$
A \varphi_*(u) = \int_{0}^{+\infty} \int_{-\infty}^{U(u,t)} \varphi_*(U(u,t) - z) dF(z) dK(t)
$$

\n
$$
= \int_{0}^{+\infty} \int_{-\infty}^{U(u,t)} \max\{0, 1 - e^{-L(U(u,t) - u_* - z)}\} dF(z) dK(t)
$$

\n
$$
= \int_{0}^{+\infty} \int_{-\infty}^{U(u,t) - u_*} (1 - e^{-L(U(u,t) - u_* - z)}) dF(z) dK(t).
$$

Integrating the inner integral by parts and using the fact that $F(-\infty) = 0$, we get

$$
\int_{-\infty}^{U(u,t)-u_*} (1 - e^{-L(U(u,t)-u_*-z)}) dF(z)
$$
\n
$$
= (1 - e^{-L(U(u,t)-u_*-z)}) F(z) \Big|_{-\infty}^{U(u,t)-u_*} + e^{-L(U(u,t)-u_*)} L \int_{-\infty}^{U(u,t)-u_*} e^{Lz} F(z) dz
$$
\n
$$
= e^{-L(U(u,t)-u_*)} L \int_{-\infty}^{U(u,t)-u_*} e^{Lz} F(z) dz.
$$

We transform

$$
U^{(u,t)-u_*}\n\int_{-\infty}^{U(u,t)-u_*} e^{Lz} F(z) dz = L \int_{-\infty}^{U(u,t)-u_*} e^{Lz} (1 - (1 - F(z))) dz
$$
\n
$$
= e^{L(U(u,t)-u_*)} - L \int_{-\infty}^{U(u,t)-u_*} e^{Lz} (1 - F(z)) dz
$$
\n
$$
\geq e^{L(U(u,t)-u_*)} - L \int_{-\infty}^{+\infty} e^{Lz} (1 - F(z)) dz = e^{L(U(u,t)-u_*)} - \int_{-\infty}^{+\infty} e^{Lz} dF(z).
$$

Thus, for $u \geq u_*$, with regard for Assumption 3a, we obtain

$$
A \varphi_*(u) \geq \int_0^{+\infty} dK(t) e^{-L(U(u,t)-u_*)} \left(e^{L(U(u,t)-u_*)} - \int_{-\infty}^{+\infty} e^{Lz} dF(z) \right)
$$

= $1 - \int_{-\infty}^{+\infty} e^{Lz} dF(z) \int_0^{+\infty} e^{-L(U(u,t)-u_*)} dK(t)$
 $\geq 1 - e^{-L(u-u_*)} \int_{-\infty}^{+\infty} e^{Lz} dF(z) \int_0^{+\infty} e^{-c_*Lt} dK(t) \geq 1 - e^{-L(u-u_*)}.$

Since $A \varphi_* \geq 0$, we get

$$
A\varphi_*(u) \ge \max\{0, 1 - e^{-L(u-u_*)}\}\ = \varphi_*(u) \quad \text{for all} \quad u \ge 0.
$$

The theorem is proved.

Remark 1. In [2, 3], the role of $\varphi_*(u)$ was played by the Cramér–Lundberg limit $\varphi_*(u) = 1 - e^{-Lu}$, where L is a certain positive (Lundberg) constant.

Remark 2. If insurance claims are bounded with probability one, i.e., $F(z) = 1$ for all sufficiently large z. then condition 3c is *a fortiori* satisfied and condition 3b is satisfied for any c_* > max $\{0, \bar{z}/\tau\}$ with $\bar{z} \ge 0$ and for any $c_* \geq 0$ with $\overline{z} < 0$, where

$$
\bar{z} = \int_{-\infty}^{+\infty} z \, dF(z)
$$

is the average value of payments and

$$
\tau = \int_{0}^{+\infty} t \, dK(t)
$$

is the average time between payments. For $U(u, t)$ of the form (2), there *a fortiori* exist $u_* \geq 0$ and $c_* > 0$ such that c_* > max $\{0, \bar{z}/\tau\}$ and $U(u, t) \ge u + c_* t$ for all $u \ge u_*$, and, hence, condition 3a is satisfied.

We define the subset $\Phi^* \subset \Phi$ of nondecreasing functions $\varphi(u)$: $[0, +\infty) \to [0, 1]$ such that $\varphi_*(u) \leq$ $\varphi(u) \leq 1$, where $\varphi_*(u)$ satisfies Assumption 2.

Lemma 2. $A: \Phi^* \to \Phi^*$.

The statement of the lemma obviously follows from Lemma 1 and Assumption 2.

By virtue of Lemma 1, the operator $A : \Phi \to \Phi$ is nonexpanding, but, generally speaking, it is not a contraction operator on the set of functions Φ. Therefore, we cannot use the contracting-mapping principle. Though $A: \Phi^* \to \Phi^*$ and Φ^* is a compact set with respect to the topology of pointwise convergence (by virtue of the second Helly theorem), this is also insufficient for the proof of the existence of a fixed point of *A* in Φ^* , i.e., of the existence of a solution of problem (3)–(5). The theorem below establishes the existence of a solution of problem (3)–(5) on the basis of the monotonicity of the operator $A : \Phi^* \to \Phi^*$.

Theorem 2 (on necessary and sufficient conditions for the existence of a solution)**.** *Suppose that Assumption 1 is satisfied. For the existence of a solution of problem (3) –(5), it is necessary and sufficient that there exist a function* ϕ∗ (*u*) *that satisfies Assumption 2.*

Proof. The *necessity* is obvious. As $\varphi_*(u)$, we can take any solution of problem (3)–(5). To prove the *sufficiency*, we construct a sequence of functions that converge pointwise to a solution of the problem. Namely, we consider the sequence of approximations

$$
\left\{\varphi^{k+1}(u) = A\varphi^k(u), \ \varphi^0(u) \equiv 1, \ k = 0, 1, \dots \right\}.
$$

By virtue of the monotonicity of $U(\cdot, t)$, all functions $\varphi^{k}(u)$ do not decrease with respect to *u*. By induction, we prove that the sequence $\{\varphi^k(u), k = 0, 1, ...\}$ is monotonically decreasing. Indeed,

$$
\varphi^1(u) = A \varphi^0(u) = \int_{0}^{\infty} \int_{-\infty}^{U(u,t)} dF(z) dK(t) = \int_{0}^{\infty} F(U(u,t)) dK(t) \leq 1 = \varphi^0(u).
$$

By virtue of the monotonicity of the operator *A*, the assumption that $\varphi^{k}(u) \leq \varphi^{k-1}(u)$ yields

$$
\varphi^{k+1}(u) \ = \ A \varphi^k(u) \ \leq \ A \varphi^{k-1}(u) \ = \ \varphi^k(u) \, .
$$

By analogy, we prove by induction that $\varphi^k(u) \ge \varphi_*(u)$ for all *k*. Indeed, $\varphi^0(u) = 1 \ge \varphi_*(u)$. By virtue of the monotonicity of the operator *A*, the assumption that $\varphi^k(u) \ge \varphi_*(u)$ yields

$$
\varphi^{k+1}(u) = A \varphi^k(u) \geq A \varphi_*(u) \geq \varphi_*(u).
$$

Thus, the sequence of functions $\{\varphi^k(u)\}$ decreases monotonically and is bounded from below by the function $\varphi_*(u)$. Therefore, there exists the limit function $\varphi(u) = \lim_{k \to +\infty} \varphi^k(u)$, which, together with all $\varphi^k(u)$, does not decrease with respect to *u*, $1 \ge \varphi(u) \ge \varphi_*(u)$, and, hence, $\lim_{u \to +\infty} \varphi(u) = 1$. We now pass to the limit with respect to k in (6). By virtue of the Lebesgue theorem, we can pass to the limit under the sign of the integral operator. Thus, the limit function $\varphi(u)$ satisfies Eq. (3).

The theorem is proved.

Corollary 1. Under Assumptions 1 and 2, the sequence of approximations $\{\varphi^k(u)\}\$ *constructed according to (6) and beginning with* $\varphi^{0}(u) \equiv 1$ *decreases monotonically and converges pointwise to a certain solution of problem (3)–(5) from above.*

Corollary 2. Under Assumptions 1 and 2, the sequence of approximations $\{\varphi^k(u)\}\$ *beginning with* ^ϕ0() *^u* ⁼ϕ∗() *^u increases monotonically and converges pointwise to a certain solution of problem (3)–(5) from below.*

To guarantee the uniqueness of a solution of problem (3) – (5) , we make additional assumptions concerning the operator *A*.

Assumption 4. The functions $U(u, t)$, $F(z)$, and $K(t)$ in the operator A satisfy one of the following *conditions:*

- *(a)* $F(z)$ < 1 ∀ *z*;
- *(b)* $F(z) > 0$ ∀ *z*;
- *(c)* $K(t) < 1 \ \forall t \ge 0$, $F(z) = 1 \ \forall z \ge \bar{z} \ge 0$, and $\lim_{t \to +\infty} U(0, t) = +\infty$.

The lemma presented below shows that, under Assumptions 1, 2, and 4, the operator *A* possesses a certain contracting property on $\Phi^* \subset \Phi$, which implies (Corollary 3) that it is nonuniformly contracting on Φ^* . The property of nonuniform contraction is insufficient for the existence of a solution of problem $(3)-(5)$; for this reason, the existence has been independently proved in Theorem 2. For the proof of the uniqueness of a solution, the property of nonuniform contraction is sufficient (Corollary 4).

Lemma 3. *Suppose that Assumptions 1, 2, and 4 are satisfied. Then, for any* $\varepsilon > 0$, *there exists* $q^*(\varepsilon)$, $0 \leq q^*(\varepsilon) < 1$, *such that, for any* $\varphi_1, \varphi_2 \in \Phi^*$ *such that* $\rho(A\varphi_1, A\varphi_2) \geq \varepsilon$, *the following relation is true:*

$$
\rho(A\varphi_1, A\varphi_2) \leq q^*(\varepsilon) \cdot \rho(\varphi_1, \varphi_2).
$$

Proof. First, we prove the lemma under Assumption 4a. We fix $\varepsilon > 0$ and find a number $u^*(\varepsilon) \ge 0$ such that $1 - \varphi_*(u) \le \varepsilon/2$ for all $u \ge u^*(\varepsilon)$. We set

$$
q^*(\varepsilon) = \int\limits_0^\infty F(U(u^*(\varepsilon), t)) dK(t).
$$
 (7)

Since $F(\cdot) < 1$ and

$$
\int_{0}^{\infty} dK(t) = 1,
$$

we have $q^*(\varepsilon) < 1$. Let functions $\varphi_1, \varphi_2 \in \Phi^*$ be such that $\rho(A\varphi_1, A\varphi_2) \ge \varepsilon$. By definition, there exists a sequence $\{u^s\}$ such that

$$
\lim_{s \to +\infty} \left| A\varphi_1(u^s) - A\varphi_2(u^s) \right| = \rho(A\varphi_1, A\varphi_2) \ge \varepsilon > 0.
$$

Since $\varphi_*(u^s) \le A\varphi_1(u^s) \le 1$ and $\varphi_*(u^s) \le A\varphi_2(u^s) \le 1$, for sufficiently large *s* we get

$$
\frac{\varepsilon}{2} < \left| A \varphi_1(u^s) - A \varphi_2(u^s) \right| \leq 1 - \varphi_*(u^s).
$$

This implies that $u^s \le u^*(\varepsilon)$ for all sufficiently large *s*. For large *s*, the following estimate is true:

$$
\left|A\varphi_1(u^s) - A\varphi_2(u^s)\right| \leq \int_0^\infty \int_0^{U(u^s, t)} \left|\varphi_1(U(u^s, t) - z) - \varphi_2(U(u^s, t) - z)\right| dF(z) dK(t)
$$

$$
\leq \rho(\varphi_1, \varphi_2) \int_0^\infty F(U(u^s, t)) dK(t) \leq \rho(\varphi_1, \varphi_2) \int_0^\infty F(U(u^*(\varepsilon), t)) dK(t).
$$

Passing here to the limit with respect to *s*, we obtain the statement of the lemma.

Let us prove Lemma 3 under Assumption 4b. By virtue of Lemma 1, we have

$$
\rho(\varphi_1, \varphi_2) \ge \rho(A\varphi_1, A\varphi_2) \ge \varepsilon.
$$

Using the fact that $|\varphi_1(u) - \varphi_2(u)| \leq 1 - \varphi_*(u)$, we obtain the estimates

$$
\begin{aligned}\n\left|A\varphi_1(u) - A\varphi_2(u)\right| &\leq \int_0^{+\infty} \int_0^{u(u,t)} \left|\varphi_1(U(u,t) - z) - \varphi_2(U(u,t) - z)\right| dF(z) dK(t) \\
&\leq \int_0^{+\infty} \int_0^{u(u,t)} \min\left\{\rho(\varphi_1, \varphi_2), 1 - \varphi_*(U(u,t) - z)\right\} dF(z) dK(t) \\
&\leq \int_0^{+\infty} \int_0^{+\infty} \min\left\{\rho(\varphi_1, \varphi_2), 1 - \varphi_*(\max\{0, -z\})\right\} dF(z) dK(t) \\
&\leq \rho(\varphi_1, \varphi_2) \int_0^{+\infty} \min\left\{1, \left(1 - \varphi_*(\max\{0, -z\})\right) / \varepsilon\right\} dF(z).\n\end{aligned}
$$

Under the assumptions made, we have

$$
q(\varepsilon) = \int_{-\infty}^{+\infty} \min\{1,(1-\varphi_*(\max\{0,-z\})) / \varepsilon\} dF(z) < 1
$$

This yields the statement of the lemma.

We now prove the lemma under Assumption 4c. Let $K(\cdot) < 1$ and let $F(z) = 1$ for $z \ge \overline{z} \ge 0$. It is obvious that $|\varphi_1(u) - \varphi_2(u)| \leq 1 - \varphi_*(u)$. Then, for any $u \geq 0$, the following estimates are true:

$$
\begin{aligned}\n\left|A\varphi_{1}(u)-A\varphi_{2}(u)\right| &\leq \int_{0}^{+\infty} \int_{-\infty}^{U(u,t)} \left|\varphi_{1}(U(u,t)-z)-\varphi_{2}(U(u,t)-z)\right| dF(z) dK(t) \\
&\leq \int_{0}^{+\infty} \int_{-\infty}^{U(u,t)} \min\left\{\rho(\varphi_{1},\varphi_{2}), 1-\varphi_{*}(U(u,t)-z)\right\} dF(z) dK(t) \\
&\leq \int_{0}^{+\infty} \int_{-\infty}^{\infty} \min\left\{U(u,t),\bar{z}\right\} \min\left\{\rho(\varphi_{1},\varphi_{2}), 1-\varphi_{*}(U(u,t)-z)\right\} dF(z) dK(t) \\
&\leq \int_{0}^{+\infty} \min\left\{U(u,t),\bar{z}\right\} \min\left\{\rho(\varphi_{1},\varphi_{2}), 1-\varphi_{*}(\max\left\{0,U(u,t)-\bar{z}\right\})\right\} dF(z) dK(t)\n\end{aligned}
$$

$$
\leq \int_{0}^{+\infty} \min\{\rho(\varphi_1, \varphi_2), 1 - \varphi_*(\max\{0, U(u, t) - \overline{z}\})\} F(\min\{U(u, t), \overline{z}\}) dK(t)
$$

$$
\leq \int_{0}^{+\infty} \min\{\rho(\varphi_1, \varphi_2), 1 - \varphi_*(\max\{0, U(u, t) - \overline{z}\})\} dK(t).
$$

By virtue of Lemma 1, we have

$$
\rho(\varphi_1, \varphi_2) \ge \rho(A\varphi_1, A\varphi_2) \ge \varepsilon.
$$

Hence,

$$
\rho(A\varphi_1, A\varphi_2) \leq \rho(\varphi_1, \varphi_2) \int\limits_0^{+\infty} \min\left\{1, \left(1-\varphi_*(\max\{0, U(0, t)-\overline{z}\})\right) / \varepsilon\right\} dK(t).
$$

Since, by assumption, $U(0, t) \rightarrow +\infty$, we conclude that

$$
(1 - \varphi_*(\max\{0, U(0, t) - \overline{z}\})) \to 0 \quad \text{as} \quad t \to +\infty
$$

and, hence,

$$
\min\{1, \, \big(1-\varphi_*(\max\{0, \, U(0,t)-\bar{z}\}\big)\big) \, / \, \varepsilon\} \, < \, 1
$$

for all sufficiently large *t*. Since

$$
\int_{0}^{+\infty} dK(t) = 1,
$$

this yields

$$
q(\varepsilon) = \int\limits_{0}^{+\infty} \min\left\{1, \left(1-\varphi_*(\max\left\{0, U(0,t)-\bar{z}\right\}\right)\right) / \varepsilon\right\} dK(t) < 1.
$$

The lemma is proved.

Corollary 3 (on nonuniform contraction)**.** *Under Assumptions 1, 2, and 4, the following inequality holds for any* $\varphi_1, \varphi_2 \in \Phi^*$, $\varphi_1 \neq \varphi_2$:

$$
\rho(A\varphi_1, A\varphi_2) < \rho(\varphi_1, \varphi_2).
$$

Corollary 4. Under Assumptions 1, 2, and 4, there exists a unique solution $\varphi(u)$ *of problem* (3)–(5) *on the set* Φ^* .

Corollary 4 does not exclude the possibility of the existence of other solutions of problem (3) – (5) on a broader set $\Phi \supset \Phi^*$.

Theorem 3. *Under Assumptions 1 and 4, only one solution of problem (3)–(5) can exist.*

Proof. Assume the contrary. Let there exist two solutions $\varphi_1 \neq \varphi_2$ (i.e., $\varphi_1(u) \neq \varphi_2(u)$ for a certain $u \ge 0$) of problem (3)–(5). We set $\varphi^0(u) = \max \{ \varphi_1(u), \varphi_2(u) \}$. Consider the sequence $\{ \varphi^k(u) := A \varphi^k(u) \}$. $k = 0, 1, \ldots$. It is obvious that $1 \ge \varphi^0(u) \ge \varphi_1(u)$ and $1 \ge \varphi^0(u) \ge \varphi_2(u)$. By virtue of Lemma 1 and the monotonicity of the operator A, we get $1 \ge \varphi^1(u) = A\varphi^0(u) \ge A\varphi_1(u) = \varphi_1(u)$ and $1 \ge \varphi^1(u) = A\varphi^0(u) \ge A\varphi_1(u)$ $A\varphi_2(u) = \varphi_2(u)$, whence $\varphi^1(u) \ge \max{\varphi_1(u), \varphi_2(u)} = \varphi^0(u)$. By virtue of the monotonicity of *A*, we establish by induction that $\varphi^{k+1}(u) \ge \varphi^k(u) \ge \varphi^0(u)$ for all $k \ge 0$. The sequence $\{\varphi^k(\cdot)\}\$ increases monotonically and is bounded from above by unity. Therefore, it has the pointwise limit $\varphi(u)$, $1 \ge \varphi(u) \ge \varphi^0(u)$, which is a solution of Eq. (3), (4) by virtue of the Lebesgue theorem on dominated convergence. It is obvious that the obtained function $\varphi(u)$ is a solution of problem (3)–(5) that differs from at least one of the solutions φ_1 or φ_2 , say, from φ_1 . We now take the function $\varphi_*(u) = \varphi_1(u)$, which satisfies Assumption 2. Then, on the corresponding set Φ^* , we have two different solutions $\varphi(u)$ and $\varphi_1(u)$ of problem (3)–(5), which contradicts Corollary 4.

The theorem is proved.

Corollary 5 (sufficient conditions for the existence and uniqueness of a solution)**.** *Under Assumptions 1, 2 (or 3), and 4, there exists a unique solution of problem (3) –(5).*

Corollary 6 (convergence of the method of successive appropriations)**.** *Under Assumptions 1, 2, and 4, for any initial approximation* $\varphi^0 \in \Phi^*$ *the sequence* $\{\varphi^k(u), k = 0, 1, ...\}$ generated by algorithm (6) con*verges pointwise to a solution of problem (3) –(5).*

Remark 3. Corollaries 1, 2, 4, and 6 were proved in [2, 3] by using the special function $\varphi_*(u) = 1 - e^{-Lu}$ with certain constant $L > 0$, i.e., the existence and uniqueness of a solution of problem (3) – (5) were proved on a special subset $\Phi^* \subset \Phi$.

It turns out that, under the assumptions made, one has not only the pointwise convergence but also the uniform convergence of the sequence of approximations (6) to a solution of problem (3) – (5) . Note that the solution $\varphi(u)$ of problem (3)–(5) can also be a discontinuous function for the discontinuous function *K*(*t*) (see [6]).

Theorem 4 (on the uniform convergence and the rate of convergence of the method of successive approximations)**.** *Under Assumptions 1, 2 (or 3), and 4, the method of successive approximations (6) beginning with an initial approximation* $\varphi^0(u)$ *such that* $\varphi_*(u) \leq \varphi^0(u) \leq 1$ *converges uniformly and monotonically to the solution* $\varphi(u)$ *of problem* (3)–(5), *i.e.*, $\rho(\varphi^k, \varphi) = \sup_{u \geq 0} |\varphi^k(u) - \varphi(u)|$ *tends monotonically to zero; moreover, method (6) converges uniformly in any* ε*-neighborhood of the solution of problem (3)– (5) with the rate of geometric progression with denominator* $q(\varepsilon)$ *that depends on* ε , *i.e.*,

$$
\rho(\varphi^k, \varphi) \le (q(\varepsilon))^k \rho(\varphi^0, \varphi), \quad 0 \le q(\varepsilon) < 1,
$$

for all k such that $\rho(\varphi^k, \varphi) \ge \varepsilon$.

Proof. By virtue of Theorem 2 and Corollary 5, a solution $\varphi(u)$ of problem (3)–(5) exists and is unique. It follows from Lemma 1 that the sequence $\rho(\varphi^k, \varphi)$ decreases monotonically. By virtue of Lemma 3, for any $\varepsilon > 0$ there exists $q(\varepsilon)$, $0 \leq q(\varepsilon) < 1$, such that, for all k such that $p(\varphi^k, \varphi) \geq \varepsilon$, one has

$$
\rho(\varphi^k, \varphi) \leq q(\varepsilon) \rho(\varphi^{k-1}, \varphi) \leq (q(\varepsilon))^k \rho(\varphi^0, \varphi).
$$

It remains to show that

$$
\lim_{k \to \infty} \rho(\varphi^k, \varphi) = 0.
$$

Assume the contrary, i.e., let

$$
\lim_{k \to \infty} \rho(\varphi^k, \varphi) = \varepsilon > 0.
$$

Then, by virtue of the arguments presented above, we get $\varepsilon \le \rho(\varphi^k, \varphi) \le (q(\varepsilon))^k \rho(\varphi^0, \varphi)$ for all k, which is impossible for sufficiently large *k*.

The theorem is proved.

REFERENCES

- 1. R. E. Beard, T. Pentikäinen, and E. Pesonen, *Risk Theory. The Stochastic Basis of Insurance,* Chapman and Hall, New York (1984).
- 2. B. V. Norkin, "Method of successive approximations for the solution of integral equations in the theory of risk processes," *Kibern. Sist. Anal.,* No. 4, 10–18 (2004).
- 3. B. V. Norkin, "On the determination of the ruin probability of a non-Poisson risk process by the method of successive approximations," *Probl. Upravl. Inform.,* No. 2, 133–144 (2005).
- 4. M. M. Leonenko, Yu. S. Mishura, Ya. M. Parkhomenko, and M. I. Yadrenko, *Theoretical-Probability and Statistical Methods in Econometrics and Financial Mathematics* [in Ukrainian], Informtekhnika, Kyiv (1995).
- 5. S. Asmussen, *Ruin Probabilities,* World Scientific, Singapore (2000).
- 6. A. V. Boikov, "Cramér–Lundberg model with stochastic premiums," *Teor. Ver. Primen.,* **47**, Issue 3, 549–553 (2002).
- 7. L. S. Zhilina, "Estimation of the ruin probability of an insurance company for a certain insurance model," *Prikl. Statist., Aktuar. Finans. Mat. (Donetsk),* No. 1, 67–78 (2000).