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IMPROVED SCALES OF SPACES AND ELLIPTIC BOUNDARY-VALUE PROBLEMS. II

V. A. Mikhailets1 and A. A. Murach2 UDC 517.944

We study improved scales of functional Hilbert spaces over Rn and smooth manifolds with boundary.
The isotropic Hörmander–Volevich–Paneyakh spaces are elements of these scales. The theory of elliptic
boundary-value problems in these spaces is developed.

Introduction

In the present paper, we study an improved scale of Hilbert functional spaces introduced by the authors in [1].
The smoothness properties of the functions in the spaces of this scale are determined not by a family of numbers
but by a functional parameter in the form of a regularly varying function of one real variable. This functional
parameter enables one to give more precise characteristics of smoothness of a function according to the properties
of its Fourier transform at infinity.

The aim of the present paper is to show that the properties of the improved scale and the classical scales of
spaces of Bessel potentials are, to a significant extent, similar. This enables one to extend the theory of elliptic
boundary-value problems to improved scales. The indicated analogy of the properties is a consequence of the fact
that each space of the improved scale can be obtained as a result of interpolation of a couple of spaces of Bessel
potentials with proper functional parameter. In the analyzed case, the required parameter should be chosen in the
form of a function regularly varying at +∞.

The paper consists of four sections. In Sec. 1, we consider some properties of slowly varying functions neces-
sary for what follows. In Sec. 2, we show that a function of order θ, where 0 < θ < 1, regularly varying at +∞
can play the role of an interpolation parameter, i.e., it generates an interpolation functor in the category of pairs
of Hilbert spaces. On the basis of this result, in Sec. 3, by the method of interpolation, we study improved scales
over the space Rn, half-space Rn

+, and a compact differentiable manifold of the class C∞. In Sec. 4, also by the
method of interpolation, we establish a theorem on the Noether property of the operator of the elliptic boundary-
value problem in the improved scale of spaces of differentiable functions on a manifold. Sections 1 and 2 were
published in the first part of the paper (see [2]).

It should be noted that spaces in which smoothness is described with the help of functional parameters were,
for the first time, introduced and studied in [3, 4]. At present, these spaces are extensively investigated (see, e.g.,
[5, pp. 381–415], [6], and the bibliography therein). Thus, in particular, regular elliptic boundary-value problems
in some spaces of this sort were studied on Euclidean domains by the method of interpolation in [7].

3. Improved Scales of Spaces

First, we consider improved scales of functional spaces over Rn, where n ≥ 1, and over the half-space
Rn

+ = {(x′, xn) : x′ ∈ Rn−1, xn > 0}
(
for n = 1, we have Rn

+ = (0; +∞)
)
. Then, on the basis of these scales,

1 Institute of Mathematics, Ukrainian Academy of Sciences, Kiev.
2 Chernigov Technological University, Chernigov.

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 58, No. 3, pp. 352–370, March, 2006. Original article submitted October 11,
2005.

398 0041–5995/06/5803–0398 c© 2006 Springer Science+Business Media, Inc.



IMPROVED SCALES OF SPACES AND ELLIPTIC BOUNDARY-VALUE PROBLEMS. II 399

using the standard procedure of local rectification, we construct improved scales over smooth compact manifolds.
The spaces that form these scales depend on two parameters (numerical and functional). The functional parameter
runs through a certain set M, which we define below.

Let M denote the collection of all positive functions ϕ defined on [1; +∞) and such that (a) ϕ is a Borel

measurable function on [1; +∞), (b) the functions ϕ and
1
ϕ

are bounded on every segment [1; b], where 1 <

b < +∞, and (c) ϕ is a function slowly varying at +∞.

Let s ∈ R and ϕ ∈ M. By Hs,ϕ(Rn) we denote the collection of all distributions u of slow growth defined
on Rn and such that the Fourier transform û of the distribution u is a function locally Lebesgue summable on
Rn and such that ∫

〈ξ〉2sϕ2(〈ξ〉) |û(ξ)|2 dξ < ∞. (3.1)

Here and below, the integral, unless otherwise stated, is taken over Rn, and 〈ξ〉 = (1 + ξ2
1 + . . . + ξ2

n)1/2 is
the smoothed modulus of the vector ξ = (ξ1, . . . , ξn) ∈ Rn. In the space Hs,ϕ(Rn), as the scalar product of its
elements u and v, we take the quantity ∫

〈ξ〉2sϕ2(〈ξ〉) û(ξ) v̂(ξ)dξ,

which generates the norm equal to the square root of the left-hand side of inequality (3.1).

Remark 3.1. The spaces Hs,ϕ(Rn) are a special case of the Hörmander and Volevich–Paneyakh spaces.
Namely, Hs,ϕ(Rn) = B2,k = Hμ, where k(ξ) = μ(ξ) = 〈ξ〉sϕ(〈ξ〉), B2,k is the space introduced by Hörmander
in [3, p. 54], and Hμ is the space introduced by Volevich and Paneyakh in [4, p. 14]. Note that the spaces B2,k

and Hμ are defined in the mentioned papers for an arbitrary positive weight function k(ξ) = μ(ξ) of ξ ∈ Rn.

According to Volevich and Paneyakh, the last statement means the continuity of μ and the validity of the estimate
μ(ξ)
μ(η)

≤ c(1 + |ξ − η|l), ξ, η ∈ Rn, where the constants c and l are independent of ξ and η.
(
According

to Hörmander, the inequality
k(ξ)
k(η)

≤ (1 + c|ξ − η|)l must be true, but, as follows from the remark given in [3,

p. 54], the functions k lead to the same class of spaces as the functions μ.
)

For arbitrary ϕ ∈ M, according
to Proposition 1.3(a) and the definition of the set M, there exists a function ϕ1 ∈ M continuous on [1; +∞)
and such that c1ϕ1(t) ≤ ϕ(t) ≤ c2ϕ1(t) for t ≥ 1, where c1 and c2 are finite positive constants independent
of t. Therefore, Hs,ϕ(Rn) = Hs,ϕ1(Rn) with equivalence of norms. Furthermore, by virtue of Lemma 1.1,
μ1(ξ) = 〈ξ〉sϕ1(〈ξ〉) is a weight function:

μ1(ξ)/μ1(η) = (〈ξ〉/〈η〉)sϕ1(〈ξ〉)/ϕ1(〈η〉) ≤ c(1 + |〈ξ〉 − 〈η〉||s|+1) ≤ c(1 + |ξ − η||s|+1).

Thus, all facts established by Hörmander in [3, pp. 54–67] for the space B2,k and by Volevich and Paneyakh in [4,
pp. 14–54] for the space Hμ are also true for the spaces Hs,ϕ(Rn), s ∈ R, ϕ ∈ M. We are mainly interested
in the specific properties of the spaces Hs,ϕ(Rn) caused by the fact that ϕ ∈ SV.

For ϕ ≡ 1, we denote the space Hs,ϕ(Rn) also by Hs(Rn). This is the well-known space of Bessel poten-
tials of order s over Rn.

Lemma 3.1. For any s ∈ R and ϕ, ϕ1 ∈ M, the following imbeddings are true:

Hs+ε(Rn) ↪→ Hs,ϕ(Rn) ↪→ Hs−ε(Rn), ε > 0, (3.2)
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Hs+ε,ϕ1(Rn) ↪→ Hs,ϕ(Rn), ε > 0. (3.3)

Proof. Let ε > 0. Since ϕ ∈ M ⊂ SV, by virtue of Proposition 1.3(b) we have t−ε ≤ ϕ(t) ≤ tε for
t � 1. Using this result and condition (b) in the definition of the class M, we establish that there exist positive
constants c0 and c1 such that c0t

−ε ≤ ϕ(t) ≤ c1t
ε for all t ≥ 1. Setting here t = 〈ξ〉, ξ ∈ Rn, we immediately

obtain the continuous imbeddings (3.2), which obviously lead to (3.3).
Lemma 3.1 is proved.

Consider the family

{Hs,ϕ(Rn) : s ∈ R, ϕ ∈ M} (3.4)

of spaces of distributions on Rn. In this family, according to Lemma 3.1, the numerical parameter s defines the
main smoothness of the space, and the functional parameter ϕ defines the additional smoothness subordinate to
the main one. Briefly speaking, ϕ improves the main s-smoothness. For this reason, family (3.4) is called an
improved scale over Rn (with respect to the scale {Hs(Rn) : s ∈ R} of spaces of Bessel potentials).

There is a close relationship between these scales, as a result of which their properties are analogous in many
respects. According to this relationship, every space Hs,ϕ(Rn) can be obtained by interpolation with functional
parameter in the scale of spaces of Bessel potentials. Namely, the following theorem is true:

Theorem 3.1. Suppose that a function ϕ ∈ M and positive numbers ε and δ are given. We set ψ(t) =
tε/(ε+δ) ϕ(t1/(ε+δ)) for t ≥ 1 and ψ(t) = ϕ(1) for 0 < t < 1. Then the following assertions are true:

(a) the function ψ satisfies all conditions of Theorem 2.1 and, hence, is an interpolation parameter;

(b) for arbitrary s ∈ R, the following equality of spaces with equivalence of norms in them is true:[
Hs−ε(Rn), Hs+δ(Rn)

]
ψ

= Hs,ϕ(Rn).

Proof. Since ϕ ∈ M, it is obvious that ψ satisfies conditions (a) and (b) of Theorem 2.1. Further, by virtue
of the condition ϕ ∈ M ⊂ SV and Proposition 1.3(d), the function ϕ(t1/(ε+δ)) of t ≥ 1 is slowly varying at

+∞. Therefore, ψ is a function of order θ =
ε

ε + δ
∈ (0; 1) regularly varying at +∞. Thus, ψ satisfies all

conditions of Theorem 2.1 and is an interpolation parameter by virtue of this theorem. Assertion (a) is proved.
Let us prove assertion (b). Assume that s ∈ R. By virtue of the properties of the Hilbert scale of spaces

of Bessel potentials [8, pp. 250–253; 9, pp. 211–216], the pair [Hs−ε(Rn), Hs+δ(Rn)] is admissible, and, fur-
thermore, a pseudodifferential operator with symbol 〈ξ〉ε+δ is the generating operator A for this pair. Using the
Fourier transformation F : Hs−ε(Rn) ↔ L2(Rn, 〈ξ〉2(s−ε)dξ), we reduce the operator A to the form of multipli-
cation by the function 〈ξ〉ε+δ of ξ ∈ Rn. Since the operator ψ(A) is reduced to the form of multiplication by the
function ψ(〈ξ〉ε+δ) = 〈ξ〉εϕ(〈ξ〉), it has the following domain of definition:[

Hs−ε(Rn), Hs+δ(Rn)
]
ψ

=
{

u ∈ Hs−ε(Rn) : 〈ξ〉εϕ(〈ξ〉) û(ξ) ∈ L2(Rn, 〈ξ〉2(s−ε)dξ)
}

=
{

u ∈ Hs−ε(Rn) :
∫

〈ξ〉2sϕ2(〈ξ〉) |û(ξ)|2 dξ < ∞
}

= Hs−ε(Rn) ∩ Hs,ϕ(Rn) = Hs,ϕ(Rn);
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the last equality here holds by virtue of the right imbedding in (3.2). Furthermore, for the square of the norm of the
distribution u in the space [Hs−ε(Rn), Hs+δ(Rn)]ψ, we have

‖u‖2
Hs−ε(Rn) + ‖ψ(A)u‖2

Hs−ε(Rn) = ‖u‖2
Hs−ε(Rn) +

∫
|〈ξ〉εϕ(〈ξ〉) û(ξ)|2〈ξ〉2(s−ε) dξ

= ‖u‖2
Hs−ε(Rn) + ‖u‖2

Hs,ϕ(Rn).

By virtue of the right continuous imbedding in (3.2), we obtain the equivalence of norms formulated in assertion (b)
of the theorem, which completes the proof of Theorem 3.1.

Remark 3.2. In the context of the last theorem, we note the work of Shlenzak [7, p. 54], where the inter-
polation with functional parameter was applied to the scale of spaces of Bessel potentials, as a result of which
several Hörmander–Volevich–Paneyakh Hilbert spaces were obtained. Though the scale of these spaces is called
improved, the main (power) and improved (functional) smoothnesses of spaces cannot be selected in it, in contrast
to our scale (3.4).

We now establish several properties of the improved scale (3.4) over Rn. Recall that, as usual, C∞
0 (Rn) is

the set of all functions infinitely differentiable on Rn and having compact support. Let Cρ(Rn), ρ ≥ 0, denote
Hölder spaces over Rn (see, e.g., [9, p. 242 ]). It is clear that, for integer ρ ≥ 0, a function u ∈ Cρ(Rn) is
continuous and bounded on Rn together with its partial derivatives up to the order ρ inclusive.

Theorem 3.2. Let s ∈ R and ϕ, ϕ1 ∈ M. Then the following assertions are true:

(a) the space Hs,ϕ(Rn) is complete;

(b) the continuous imbeddings (3.2) and (3.3) are dense;

(c) the set C∞
0 (Rn) is dense in Hs,ϕ(Rn);

(d) if there exists a constant c > 0 such that ϕ(t) ≤ cϕ1(t) for t � 1, then the continuous dense imbedding
Hs,ϕ1(Rn) ↪→ Hs,ϕ(Rn) is true;

(e) if

+∞∫
1

dt

t ϕ2(t)
< +∞, (3.5)

then the following continuous imbedding is true:

Hρ+n/2, ϕ(Rn) ↪→ Cρ(Rn) for ρ ≥ 0; (3.6)

(f) the spaces Hs,ϕ(Rn) and H−s,1/ϕ(Rn) are mutually dual with respect to the extension of the scalar
product in L2(Rn) = H0(Rn) by continuity.

Proof. It is well known that the spaces of Bessel potentials are complete. Therefore, by virtue of Theorem 3.1,
the space Hs,ϕ(Rn) is compete as a result (up to equivalence of norms) of interpolation of two Hilbert spaces. By
virtue of Theorem 3.1 and Lemma 2.1, the continuous imbedding (3.2) is dense. Therefore, (3.3) is also dense.
Assertions (a) and (b) are proved. The left imbedding (3.2), together with the already known denseness of the set
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C∞
0 (Rn) in Hs+ε(Rn), yields assertion (c). Assertion (d) becomes obvious if one takes into account that, for the

functions ϕ, ϕ1 ∈ M, it means the following: ϕ(t) ≤ c1ϕ1(t) for t ≥ 1 and a certain constant c1 > 0. Let us
prove assertion (e). Passing from Cartesian coordinates to spherical ones and performing the change of variables
t = (1 + r2)1/2, we obtain

∫
〈ξ〉−nϕ−2(〈ξ〉) dξ = c2

+∞∫
0

(1 + r2)−n/2 ϕ−2((1 + r2)1/2) rn−1dr

= c2

+∞∫
1

t−nϕ−2(t) (t2 − 1)(n−1)/2 t dt

(t2 − 1)1/2
≤ c2

+∞∫
1

dt

ϕ2(t) (t2 − 1)1/2
,

where c2 is a certain positive constant. Since the function
1

ϕ2(t)
is bounded in the neighborhood of the point

t = 1, the last integral is finite by virtue of (3.5). Thus,

J =
∫

〈ξ〉−nϕ−2(〈ξ〉) dξ < ∞.

Further reasonings are analogous to the proof of Theorem 9.1 in [4, pp. 52, 53]. (This theorem cannot be directly
used because it contains anisotropic Hölder spaces such that Cρ(Rn) is not their special case.) We represent the
number ρ ≥ 0 in the form ρ = ρ0 + ρ1, where ρ0 is the integer part of ρ and 0 ≤ ρ1 < 1. Assume that the
nonnegative integers r1, . . . , rn satisfy the inequality r1 + . . . + rn ≤ ρ0. Then, for arbitrary u ∈ C∞(Rn) and
x ∈ Rn, we have

∣∣ ∂r1
x1

. . . ∂rn
xn

u(x)
∣∣ =

1
(2π)n

∣∣∣∣∫ ξr1
1 . . . ξrn

n û(ξ) e−ixξ dξ

∣∣∣∣ ≤ 1
(2π)n

∫
〈ξ〉ρ |û(ξ)|dξ ≤ J1/2

(2π)n
‖u‖H .

In this proof, ‖u‖H and ‖u‖C denote the norms of the distribution u in Hρ+n/2, ϕ(Rn) and Cρ(Rn), respec-
tively. Furthermore, for arbitrary h ∈ Rn, h �= 0, we write

|h|−ρ1
∣∣∂r1

x1
. . . ∂rn

xn
(u(x + h) − u(x))

∣∣ = |h|−ρ1(2π)−n

∣∣∣∣∫ ξr1
1 . . . ξrn

n (û(ξ)e−ihξ − û(ξ)) e−ixξ d ξ

∣∣∣∣
≤ |h|−ρ1(2π)−n

∫
〈ξ〉ρ0 |û(ξ)|

∣∣∣e−ihξ − 1
∣∣∣ dξ

≤ |h|−ρ1 (2π)−n ‖u‖H

(∫ 〈ξ〉2ρ0
∣∣e−ihξ − 1

∣∣2
〈ξ〉2ρ+n ϕ2(〈ξ〉) dξ

)1/2

= (2π)−n ‖u‖H

(∫
〈ξ〉−n ϕ−2(〈ξ〉) 4 sin2

(
1
2 ξ η

)
(〈ξ〉 |h|)2ρ1

dξ

)1/2

≤ 2(2π)−n‖u‖HJ1/2.
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The last inequality here follows from the fact that, since 0 ≤ ρ1 < 1, the fraction under the last integration
sign does not exceed 4. Thus, ‖u‖C ≤ const ‖u‖H , u ∈ C∞

0 (Rn). By virtue of assertion (c), this yields the
continuous imbedding (3.6). Assertion (e) is proved. Finally, assertion (f) is a special case of the statement on a
dual space in [3, p. 61] (Theorem 2.2.9) and [4, p. 15] [relation (2.3)]. Note that, by virtue of Proposition 1.3(c),

we have ϕ ∈ M ⇔ 1
ϕ

∈ M. Therefore, the space H−s,1/ϕ(Rn) is defined.

Theorem 3.2 is proved.

Remark 3.3. Let ρ be an integer such that ρ ≥ 0. By virtue of the known Sobolev imbedding theorem, we

have Hs(Rn) ↪→ Cρ(Rn) for s > ρ +
n

2
. However, Hρ+n/2(Rn) � Cρ(Rn). Theorem 3.2(e) enables one

to improve, using the parameter ϕ, the main smoothness of the space so that imbedding (3.6) is true. Thus, the
scale of the spaces Hs,ϕ(Rn) enables one to characterize the smoothness of the distribution more precisely on the
basis of properties of its Fourier transform. Note that statements analogous to assertion (e) of Theorem 3.2 were
established for the Hörmander and Volevich–Paneyakh spaces in [3, p. 59] and [4, pp. 33, 52]. The results obtained
in these papers imply, in particular, that condition (3.5) is necessary and sufficient for inclusion (3.6) for integer
ρ ≥ 0.

Further, we define an improved scale over the half-space Rn
+. Let s ∈ R and ϕ ∈ M. Let Hs,ϕ(Rn

+) denote
the factor space of the Hilbert space Hs,ϕ(Rn) with respect to the subspace

{
w ∈ Hs,ϕ(Rn) : supp w ⊆ Rn\Rn

+

}
. (3.7)

This subspace is closed because it is continuously imbedded into the topological space D′(Rn) of distributions
on Rn. [The last fact follows from relation (3.2) and the known continuous imbedding Hs−ε(Rn) ↪→ D′(Rn).]
Therefore, Hs,ϕ(Rn

+) is a Hilbert space. In this space, the scalar product of cosets of distributions u1, u2 ∈
Hs,ϕ(Rn) is equal to the scalar product in Hs,ϕ(Rn) of the distributions u1 − Πu1 and u2 − Πu2, where Π
is the orthoprojector onto subspace (3.7) in Hs,ϕ(Rn). Note that it is quite natural to interpret Hs,ϕ(Rn

+) as the
space of restrictions of all distributions from Hs,ϕ(Rn) to Rn

+. The norm of such a restriction v in Hs,ϕ(Rn
+) is

equal to

inf
{
‖u‖Hs,ϕ(Rn) : u ∈ Hs,ϕ(Rn), u = v on Rn

+

}
.

In the special case ϕ ≡ 1, we also denote the space Hs,ϕ(Rn
+) by Hs(Rn

+). This is the known space of
Bessel potentials on Rn

+ (see, e.g., [9, p. 265]).
The family

{
Hs,ϕ(Rn

+) : s ∈ R, ϕ ∈ M
}

is called an improved scale over Rn
+ . For this scale, the following

analogs of Theorems 3.1(b) and 3.2 are true:

Theorem 3.3. Suppose that a function ϕ ∈ M and positive numbers ε and δ are given. Then, for any
s ∈ R, the following equality of spaces with equivalence of norms in them is true:

[
Hs−ε(Rn

+), Hs+δ(Rn
+)

]
ψ

= Hs,ϕ(Rn
+). (3.8)

Here, ψ is the interpolation parameter from Theorem 3.1.

Proof. The pair of spaces on the left-hand side of (3.8) is obviously admissible. Consider the operator R+ of
restriction of a distribution u ∈ D′(Rn) to Rn

+. We have the following linear bounded surjective operators:
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R+ : Hs−ε(Rn) → Hs−ε(Rn
+), R+ : Hs+δ(Rn) → Hs+δ(Rn

+),

R+ : Hs,ϕ(Rn) → Hs,ϕ(Rn
+). (3.9)

According to Theorem 3.1(a), ψ is an interpolation parameter. Therefore, the first two operators yield the bound-
edness of the operator

R+ :
[
Hs−ε(Rn), Hs+δ(Rn)

]
ψ
→

[
Hs−ε(Rn

+), Hs+δ(Rn
+)

]
ψ

,

which, by virtue of Theorem 3.1(b), takes the form

R+ : Hs,ϕ(Rn) →
[
Hs−ε(Rn

+), Hs+δ(Rn
+)

]
ψ

.

By virtue of the surjectivity of operator (3.9), this yields

Hs,ϕ(Rn
+) ⊆

[
Hs−ε(Rn

+), Hs+δ(Rn
+)

]
ψ

. (3.10)

Let us prove the inverse continuous imbedding. In [9, pp. 265, 266], for an arbitrary number k, a linear bounded
operator

Tk : Hσ(Rn
+) → Hσ(Rn), |σ| < k, (3.11)

that extends a distribution from Rn
+ to Rn was constructed. This means that R+Tk is the identity operator. We

take a number k such that |s− ε| < k and |s + δ| < k and consider the bounded operators (3.11) for σ = s− ε

and σ = s + δ. Since ψ is an interpolation parameter, they yield the boundedness of the operator

Tk :
[
Hs−ε(Rn

+), Hs+δ(Rn
+)

]
ψ
→

[
Hs−ε(Rn), Hs+δ(Rn)

]
ψ

,

whence, according to Theorem 3.1(b),

Tk :
[
Hs−ε(Rn

+), Hs+δ(Rn
+)

]
ψ
→ Hs,ϕ(Rn).

This and (3.9) yield the boundedness of the identity operator

I = R+Tk :
[
Hs−ε(Rn

+), Hs+δ(Rn
+)

]
ψ
→ Hs,ϕ(Rn

+).

Thus, parallel with inclusion (3.10), its inverse continuous imbedding holds. Therefore, the equality of spaces (3.8)
is true, and, furthermore, by virtue of the Banach theorem on an inverse operator, the norms in these spaces are
equivalent.

Theorem 3.3 is proved.
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Let Rn
+ be the closure of the space Rn

+. Let C∞
0 (Rn

+) and Cρ(Rn
+), ρ ≥ 0, denote the spaces of restrictions

of all functions from C∞
0 (Rn) and Cρ(Rn), respectively, to Rn

+. The space Cρ(Rn
+) is a Banach space with

respect to the norm

‖v‖Cρ(Rn
+) = inf

{
‖u‖Cρ(Rn) : u ∈ Cρ(Rn), u = v on Rn

+

}
.

Theorem 3.4. Assertions (a) – (e) of Theorem 3.2 remain true if, in its formulation and in relations (3.2)
and (3.3), Rn is replaced by Rn

+ in the notation of the spaces of the improved scale, C∞
0 (Rn) is replaced by

C∞
0 (Rn

+), and Cρ(Rn) is replaced by Cρ(Rn
+).

Theorem 3.4 obviously follows from Theorem 3.2 and the definition of the improved scale over Rn
+.

We now proceed to the construction of an improved scale over a manifold. Let M be an infinitely smooth
compact manifold of dimension n ≥ 1 with boundary ∂M. We set M = M \ ∂M. Note that we admit the
case where ∂M = ∅, i.e., where M = M is a closed manifold. Following [10, p. 636], we denote the space of
distributions extendable in M by D ′(M). (If M is closed, then D ′(M) is the space D′(M) of all distributions
on M.)

We take a finite atlas αj : Πj ↔ Uj , j = 1, . . . , r, from the C∞-structure on M. Here, Uj , j = 1, . . . , r,

are open (in the topology of the space M ) sets that form a finite covering of the manifold M, Πj denotes either
Rn or Rn

+, and Πj is the closure of the set Πj in Rn (i.e., Πj is either Rn or Rn
+, respectively). (For a

closed manifold M, we have Πj = Πj = Rn for all j.) In addition, we take a partition of unity χj ∈ C∞(M),
j = 1, . . . , r, on M that satisfies the condition suppχj ⊆ Uj . Let A denote the pair that consists of the atlas
and the partition of unity thus chosen.

As above, let s ∈ R and ϕ ∈ M. We denote by Hs,ϕ(M,A) the space of all f ∈ D ′(M) such that
(χjf) ◦ αj ∈ Hs,ϕ(Πj) for each j = 1, . . . , r. Here, (χjf) ◦ αj is the representation of the distribution χjf in
the local map αj . In Hs,ϕ(M,A), we introduce the scalar product by the relation

(f, g)Hs,ϕ(M,A) =
r∑

j=1

((χjf) ◦ αj , (χj g) ◦ αj)Hs,ϕ(Πj).

It generates the norm

‖f‖Hs,ϕ(M,A) =

⎛⎝ r∑
j=1

‖(χjf) ◦ αj‖2
Hs,ϕ(Πj)

⎞⎠1/2

.

The family {Hs,ϕ(M,A) : s ∈ R, ϕ ∈ M} is called an improved scale over M corresponding to the
pair A.

For ϕ ≡ 1, we also denote the space Hs,ϕ(M,A) by Hs(M,A). The space Hs(M,A) is the space of
Bessel potentials of order s on M. As is known, it is a Hilbert space independent (up to equivalence of norms) of
the choice of the pair A.

Let us show that any space Hs,ϕ(M,A), s ∈ R, ϕ ∈ M, can be obtained by interpolation in the scale of
spaces of Bessel potentials on M. This will imply that Hs,ϕ(M,A) is also independent of A.

Theorem 3.5. Suppose that a function ϕ ∈ M and positive numbers ε and δ are given. Then, for any
s ∈ R, the following equality of spaces with equivalence of norms in them is true:
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[
Hs−ε(M,A), Hs+δ(M,A)

]
ψ

= Hs,ϕ(M,A). (3.12)

Here, ψ is the interpolation parameter from Theorem 3.1.

Proof. It is known that the pair of spaces of Bessel potentials on the left-hand side of (3.12) is admissible. We
deduce equality (3.12) from Theorems 3.1 and 3.3 by using the standard method of “rectification of the manifold
M .” By the definition of improved scale over M, the linear mapping of “rectification”

T : f �→ ((χ1f) ◦ α1, . . . , (χrf) ◦ αr , f ∈ D ′(M),

defines the isometric operators

T : Hσ(M,A) →
r∏

j=1

Hσ(Πj), σ ∈ R, (3.13)

T : Hs,ϕ(M,A) →
r∏

j=1

Hs,ϕ(Πj). (3.14)

Since ψ is the interpolation parameter, using (3.13) for σ = s− ε and σ = s+ δ we obtain the bounded operator

T :
[
Hs−ε(M,A), Hs+δ(M,A)

]
ψ

→

⎡⎣ r∏
j=1

Hs−ε(Πj),
r∏

j=1

Hs+δ(Πj)

⎤⎦
ψ

.

By virtue of Proposition 2.1 and Theorems 3.1 (for Πj = Rn) and 3.3 (for Πj = Rn
+), we have

⎡⎣ r∏
j=1

Hs−ε(Πj),
r∏

j=1

Hs+δ(Πj)

⎤⎦
ψ

=
r∏

j=1

[
Hs−ε(Πj), Hs+δ(Πj)

]
ψ

=
r∏

j=1

Hs,ϕ(Πj) (3.15)

with equivalence of norms. Thus, the last bounded operator takes the form

T :
[
Hs−ε(M,A), Hs+δ(M,A)

]
ψ

→
r∏

j=1

Hs,ϕ(Πj). (3.16)

For T, we construct the left inverse operator K. For each j = 1, . . . , r, we take a function ηj ∈ C∞
0 (Πj)

such that ηj = 1 on the set α−1
j (supp χj). Consider the linear mapping

K : (h1, . . . , hr) �→
r∑

j=1

Θj

(
(ηjhj) ◦ α−1

j

)

defined on the vectors (h1, . . . , hr) whose components hj are distributions on Πj . Here, (ηjhj) ◦ α−1
j is a

distribution on Uj ∩ M such that its representative in the local map αj has the form ηjhj , and Θj is the
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operator of extension by zero from Uj ∩ M to M. It is obvious that Θj is well defined on distributions of the
form (ηjhj) ◦ α−1

j . By virtue of the choice of the functions χj and ηj , we have

KTf =
r∑

j=1

Θj

(
(ηj ((χjf) ◦ αj)) ◦ α−1

j

)
=

r∑
j=1

Θj

(
(χjf) ◦ αj ◦ α−1

j

)
=

r∑
j=1

χjf = f,

i.e.,

KTf = f,′ f ∈ D′(M). (3.17)

Let us show that the restriction of the mapping K is a bounded operator

K :
r∏

j=1

Hs,ϕ(Πj) → Hs,ϕ(M,A). (3.18)

For an arbitrary vector (h1, . . . , hr) from the left space in (3.18), we write

∥∥K(h1, . . . , hr)
∥∥2

Hs, ϕ(M,A)
=

r∑
l=1

∥∥(χl K(h1, . . . , hr)) ◦ αl

∥∥2

Hs, ϕ(Πl)

=
r∑

l=1

∥∥∥∥∥∥
⎛⎝χl

r∑
j=1

Θj

(
(ηjhj) ◦ α−1

j

)⎞⎠ ◦ αl

∥∥∥∥∥∥
2

Hs,ϕ(Πl)

=
r∑

l=1

∥∥∥∥∥∥
r∑

j=1

(ηj,l hj) ◦ βj,l

∥∥∥∥∥∥
2

Hs,ϕ(Πl)

≤
r∑

l=1

⎛⎝ r∑
j=1

∥∥(ηj,l hj) ◦ βj,l

∥∥
Hs,ϕ(Πl)

⎞⎠2

. (3.19)

Here, ηj,l = (χl◦αj) ηj ∈ C∞
0 (Πj) and, furthermore, if supp ηj,l ⊆ Rn

+ = Πj , then the function ηj,l is extended
by zero to Rn and then ηj,l ∈ C∞

0 (Rn); βj,l : Rn ↔ Rn is a C∞-diffeomorphism such that βj,l = α−1
j ◦αl in

the neighborhood (in the topology of the space Πj) of the set supp ηj,l and, moreover, βj,l(x) = x for all x ∈ Rn

sufficiently large in modulus. As is known [5, p. 247; 11, p. 46], the operator of multiplication by a function of the
class C∞

0 (Rn) and the operator of change of variables u �→ u ◦ βj,l are bounded in every space Hσ(Rn), where
σ ∈ R. Therefore, the linear operator u �→ (ηj,l u) ◦ βj,l is bounded as an operator from Hσ(Πj) into Hσ(Πl).
Taking σ = s − ε and then σ = s + δ and using the interpolation theorems (Theorems 3.1 and 3.3), we establish
that the mapping hj �→ (ηj,l hj) ◦ βj,l is a bounded operator acting from Hs,ϕ(Πj) into Hs,ϕ(Πl). Therefore,
relations (3.19) yield

∥∥K(h1, . . . , hr)
∥∥2

Hs,ϕ(M,A)
≤ c

r∑
j=1

∥∥hj

∥∥2

Hs,ϕ(Πj)
,
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where the constant c is independent of (h1, . . . , hr). This means that operator (3.18) is bounded for any s ∈ R
and ϕ ∈ M. In particular, this yields the boundedness of the operators

K :
r∏

j=1

Hσ(Πj) → Hσ(M,A), σ ∈ R.

We take them for σ = s − ε and σ = s + δ and use interpolation with parameter ϕ. By virtue of (3.15), we
obtain the bounded operator

K :
r∏

j=1

Hs,ϕ(Πj) →
[
Hs−ε(M,A), Hs+δ(M,A)

]
ψ

. (3.20)

Using (3.14), (3.20), and (3.17), we establish the continuity of the imbedding

I = KT : Hs,ϕ(M,A) →
[
Hs−ε(M,A), Hs+δ(M,A)

]
ψ

.

The inverse continuous imbedding follows from (3.16) – (3.18). This proves the equality of spaces (3.12) with
equivalence of norms in them.

Theorem 3.5 is proved.

Corollary 3.1. For any s ∈ R and ϕ ∈ M, the space Hs,ϕ(M,A) is independent (up to equivalence of
norms) of the choice of the pair A.

Proof. It is known [3, p. 82] that the space of Bessel potentials on M is independent (up to equivalence of
norms) of the choice of the pair A. Taking, in addition to A, a pair A1 (of the same type as A), we establish
that the identity operator I realizes the topological isomorphisms I : Hs∓ε(M,A) ↔ Hs∓ε(M,A1), ε > 0.

Now let ψ be the interpolation parameter defined in Theorem 3.1 for ε = δ > 0. Applying the interpolation with
parameter ψ to these isomorphisms, we obtain the topological isomorphism

I :
[
Hs−ε(M,A), Hs+δ(M,A)

]
ψ

↔
[
Hs−ε(M,A1), Hs+δ(M,A1)

]
ψ

,

which, by virtue of Theorem 3.5 is such that I : Hs,ϕ(M,A) ↔ Hs,ϕ(M,A1), which was to be proved.

In what follows, according to Corollary 3.1, we can denote the space Hs,ϕ(M,A) by Hs,ϕ(M). In this case,
the scalar product in Hs,ϕ(M) is calculated with the use of some fixed pair A.

Properties of the improved scales over M and Rn (or Rn
+) are analogous. Furthermore, since the manifold

M is compact, certain imbeddings of spaces are compact for M.

Theorem 3.6. Suppose that s ∈ R and ϕ, ϕ1 ∈ M. Then the following assertions are true:

(a) the space Hs,ϕ(M) is complete;

(b) the following compact dense imbeddings are true:

Hs+ε(M) ↪→ Hs,ϕ(M) ↪→ Hs−ε(M), ε > 0, (3.21)

Hs+ε,ϕ1(M) ↪→ Hs,ϕ(M), ε > 0; (3.22)
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(c) the set C∞(M) is dense in Hs,ϕ(M);

(d) if there exists a constant c > 0 such that ϕ(t) ≤ c ϕ1(t) for t � 1, then the following continuous dense
imbedding is true:

Hs, ϕ1(M) ↪→ Hs, ϕ(M); (3.23)

this imbedding is compact if ϕ(t)/ϕ1(t) → 0 as t → +∞;

(e) if relation (3.5) holds, then the following compact imbedding is true:

Hρ+n/2, ϕ(M) ↪→ Cρ( M ) for ρ ≥ 0, (3.24)

where Cρ( M ) is the Hölder space of order ρ on M ;

(f) if the manifold M is closed, then the spaces Hs,ϕ(M) and H−s,1/ϕ(M) are mutually dual with respect
to the extension of the scalar product in H0(M) by continuity.

Proof. By virtue of Theorem 3.5, the space Hs,ϕ(M) is complete as the result of interpolation of two Hilbert
spaces of Bessel potentials. The continuous imbeddings (3.21) – (3.24) are obvious corollaries of Theorem 3.4 and
assertions (b), (d), and (e) of Theorem 3.2. By virtue of Theorem 3.5 and Lemma 2.1, imbeddings (3.21) are dense.
This and the known fact that the set C∞( M ) is dense in Hs+ε(M) imply that C∞( M ) is dense in Hs,ϕ(M).
Therefore, imbeddings (3.22) and (3.23) are also dense. Let us establish the compactness of imbeddings. We begin

with (3.23). Assume that
ϕ(t)
ϕ1(t)

→ 0 as t → +∞. Then, according to Theorem 2.2.3 in [3, p. 56] or Theorem 8.1

in [4, p. 48], for an arbitrary compact set E ⊆ Rn the following compact imbedding is true:

{u ∈ Hs,ϕ1(Rn) : suppu ⊆ E } ↪→ Hs,ϕ(Rn). (3.25)

We use the operator of “rectification” T and its left inverse K from the proof of Theorem 3.5. These operators
are bounded and have the forms

T : Hs,ϕ1(M) →
r∏

j=1

{u ∈ Hs,ϕ1(Πj) : suppu ⊆ Ej}

and (3.18), respectively. Here, Ej = α−1(suppχj) is a compact set in Rn. The compact imbedding (3.25)
involves the compact imbedding operator

I :
r∏

j=1

{u ∈ Hs,ϕ1(Πj) : suppu ⊆ Ej} →
r∏

j=1

Hs,ϕ(Πj).

Therefore, the imbedding operator (3.23) is compact because it is equal to KIT. This yields the compactness
of imbedding (3.22) for any ϕ, ϕ1 ∈ M because it is a composition of the compact and continuous imbeddings

Hs+ε, ϕ1(M) ↪→ Hs+ε, ϕ2(M) ↪→ Hs, ϕ(M), where the function ϕ2 ∈ M is chosen, e.g., so that ϕ2(t) =
ϕ1(t)
ln t

for t � 1. In this case, imbeddings (3.21) are also compact as special cases of (3.22). Let us prove the compactness
of the last imbedding (3.24). Assume that condition (3.5) is satisfied. As indicated in Remark 3.1, we can assume,
without loss of generality, that the function ϕ ∈ M is continuous. Then, by virtue of Proposition 1.3(d), the
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function ψ1 = ϕ2 satisfies the conditions of Lemma 1.2. Let ψ0 be the function from the formulation of this

lemma. Then ϕ0 =
√

ψ0 ∈ M satisfies the condition
ϕ0(t)
ϕ(t)

→ 0 as t → +∞ and inequality (3.5) with ϕ0

instead of ϕ. Hence, according to the results obtained above, we get

Hρ+n/2, ϕ(M) ↪→ Hρ+n/2, ϕ0(M) ↪→ Cρ( M ), ρ ≥ 0,

where the first imbedding is compact and the second is continuous. Thus, we have established the compactness of
imbedding (3.24). Assertions (a) – (e) of the theorem are proved. Assertion (f) is deduced from Theorem 3.2(f) by
analogy with the special case ϕ ≡ 1 of spaces of Bessel potentials.

The theorem is proved.

Note the important special case where M is an open set in Rn. Then Hs,ϕ(M) can be determined with the
use of global coordinates in Rn by analogy with the space Hs,ϕ(Rn

+). Namely, the following theorem is true:

Theorem 3.7. Suppose that a compact manifold M of the class C∞ with nonempty boundary ∂M is such
that M = M \ ∂M is an open set in Rn. Then Hs,ϕ(M), s ∈ R, ϕ ∈ M, consists of the restrictions of all
distributions from Hs,ϕ(Rn) to M. Moreover, the norm of the distribution g in Hs,ϕ(M) is equivalent to the
norm

inf
{∥∥f

∥∥
Hs,ϕ(Rn)

: f ∈ Hs,ϕ(Rn), f = g on M
}

.

Proof. For ϕ ≡ 1, this theorem is well known (see, e.g., [5, pp. 273–275], Proposition 3.2.3). For arbitrary
ϕ ∈ M, it is proved by analogy. However, this theorem can easily be obtained from the case ϕ ≡ 1 by inter-
polation. Indeed, in this case, there exists the linear bounded operator RM : Hσ(Rn) → Hσ(M), σ ∈ R, of
the restriction of a distribution from Rn to M. It is known [9, p. 386] that, for any integer k > 0, the operator
RM has the linear bounded right inverse TM,k : Hσ(M) → Hσ(Rn), |σ| < k, which extends the distribution
from M to Rn. Now assume that s ∈ R, ϕ ∈ M, and ε > 0. We take an integer k such that |s ∓ ε| < k.

Let ψ be the interpolation parameter defined in Theorems 3.1 and 3.5 for ε = δ. Using these theorems for the
spaces where the operators RM and TM,k considered for σ = s ∓ ε act, we obtain the bounded operators
RM : Hs,ϕ(Rn) → Hs,ϕ(M) and TM,k : Hs,ϕ(M) → Hs,ϕ(Rn). This immediately yields the statement of the
theorem.

In the conclusion of this section, we prove a theorem on traces of distributions on the boundary of a manifold
for the improved scale. Let Ω be an infinite smooth compact manifold of dimension n ≥ 2 with nonempty
boundary Γ. Since Γ is a closed manifold of dimension n − 1, the improved scales are defined over Γ as well
as over Ω = Ω \Γ.

Theorem 3.8. Consider the linear mapping

f → f � Γ (the trace of the function f on Γ ), f ∈ C∞(Ω). (3.26)

Then the following assertions are true:

(a) mapping (3.26) is extended by continuity to the bounded operator

RΓ : Hs+1/2, ϕ(Ω) → Hs,ϕ(Γ), s > 0, ϕ ∈ M, (3.27)
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which has the bounded right inverse

SΓ : Hs,ϕ(Γ) → Hs+1/2, ϕ(Ω), s > 0, ϕ ∈ M, (3.28)

such that SΓ is independent of s and ϕ;

(b) if ϕ ∈ M satisfies condition (3.5), then mapping (3.26) is extended by continuity to the bounded operator

RΓ : H1/2, ϕ(Ω) → H0, ϕ0(Γ), (3.29)

where the function ϕ0 ∈ M is defined by the relation

ϕ0(τ) =

⎛⎝ +∞∫
τ

d t

t ϕ2(t)

⎞⎠−1/2

, τ ≥ 1; (3.30)

this operator has the bounded right inverse

SΓ, ϕ : H0, ϕ0(Γ) → H1/2, ϕ(Ω), (3.31)

which depends on ϕ.

Proof. First, we establish assertion (a). We deduce it from an analogous theorem on traces for the spaces of
Bessel potentials on Rn

+. Consider a linear mapping R+
0 : v(x′, xn) �→ v(x′, 0), v ∈ C∞

0 (Rn
+), that associates

a function v(x′, xn) of variables x′ ∈ Rn−1 and xn ∈ R with its trace v(x′, 0) on the hyperplane xn = 0. It
is known [9, p. 267] that this mapping can be extended by continuity to a bounded operator R+

0 : Hσ+1/2(Rn
+) →

Hσ(Rn−1), σ > 0, that has the linear bounded right inverse S+
0 : Hσ(Rn−1) → Hσ+1/2(Rn

+), σ > 0, indepen-
dent of σ. Let s > 0 and ϕ ∈ M. Applying the interpolation theorems (Theorems 3.1 and 3.3) to the operators

R+
0 and S+

0 for σ = s ∓ ε, where ε =
s

2
> 0, we obtain the bounded operators

R+
0 : Hs+1/2, ϕ(Rn

+) → Hs, ϕ(Rn−1), (3.32)

S+
0 : Hs, ϕ(Rn−1) → Hs+1/2, ϕ(Rn

+). (3.33)

One can easily “glue” these operators to obtain RΓ and SΓ by using the operator T and its left inverse K

from the proof of Theorem 3.5. Indeed, we set RΓ f = KR+
0 Tf, f ∈ Hs+1/2, ϕ(Ω), and SΓg = KS+

0 Tg,

g ∈ Hs, ϕ(Γ). Here, the operators R+
0 and S+

0 act on the vectors

Tf ∈
r∏

j=1

Hs+1/2, ϕ(Πj) and Tg ∈
(
Hs, ϕ(Rn−1)

)r

componentwise, and, furthermore, if Γ ∩ suppχj = ∅, then we assume that the value of R+
0 on the j th compo-

nent of the vector Tf is equal to zero and the j th component of the vector Tg is also equal to zero. The bounded
operators (3.32), (3.33), (3.13), and (3.14) (the last two operators are considered for both M = Ω and M = Γ)
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now yield the boundedness of operators (3.27) and (3.28). It is clear that (3.27) extends mapping (3.26), i.e., RΓ is
a trace operator on Γ. It remains to show that RΓ SΓ = I is the identity operator. To this end, we use the equality

RΓ Kh = KR+
0 h, h ∈

r∏
j=1

Hs+1/2, ϕ(Πj).

This equality is obvious on vectors of the class C∞. Then it is extended by continuity to the indicated vectors h.

We have RΓ SΓ = RΓ KS+
0 T = KR+

0 S+
0 T = K T = I. Assertion (a) is proved.

Let us prove assertion (b). We deduce it from the theorem on traces for Volevich–Paneyakh spaces [4, pp. 36–
39] (Theorems 6.1 and 6.2). Let ϕ ∈ M satisfy (3.5). As noted in Remark 3.1, we can assume, without loss
of generality, that the function ϕ is continuous on [1; +∞). Then H1/2,ϕ(Rn) coincides with the Volevich–
Paneyakh space Hμ = Hμ(Rn), where μ(ξ) = 〈ξ〉1/2ϕ(〈ξ〉) is the weight function of ξ ∈ Rn. By virtue of the
theorems indicated, the linear mapping R0 : u(x′, xn) �→ u(x′, 0), u ∈ C∞

0 (Rn), can be extended by continuity
to a bounded operator

R0 : Hμ(Rn) → Hν(Rn−1) (3.34)

if and only if

ν−2(ξ′) =

+∞∫
−∞

μ−2(ξ′, ξn) d ξn < +∞, ξ′ ∈ Rn−1. (3.35)

Here, Hν(Rn−1) is the Volevich–Paneyakh space over Rn−1. Moreover, if the last condition is satisfied, then
operator (3.34) has the linear bounded right inverse

S0, ϕ : Hν(Rn−1) → Hμ(Rn), (3.36)

and, furthermore, S0, ϕ depends on μ, i.e., on ϕ. We now pass from Volevich–Paneyakh spaces to the corre-
sponding spaces of improved scales. We have

ν−2(ξ′ ) =

+∞∫
−∞

μ−2(ξ′, ξn) d ξn = 2

+∞∫
0

d ξn

〈ξ〉ϕ2(〈ξ〉) = 2

+∞∫
〈ξ′〉

d t

(t2 − 〈ξ′〉2)1/2 ϕ2(t)

for any ξ′ ∈ Rn−1
(
the last equality is obtained by the change of variables t = 〈ξ〉 = (〈ξ′〉2 + ξ2

n)1/2
)
. Using this

result and Lemma 1.3 for ψ1 = ϕ2 and τ = 〈ξ′〉, we obtain the inequality ϕ−2
0 (τ) ≤ (1/2) ν−2(ξ′ ) ≤ c ϕ−2

0 (τ),
ξ′ ∈ Rn−1, τ = 〈ξ′〉, where the function ϕ0 is defined by (3.30). Therefore, conditions (3.5) and (3.35) are
equivalent in Hν(Rn−1) = H0,ϕ0(Rn−1) up to equivalence of norms. Note that here ϕ0 ∈ M, which follows
from the inclusion ϕ−2

0 ∈ SV established in the proof of Lemma 1.2. Thus, operators (3.34) and (3.36) exist
and, furthermore, we have R0 : H1/2, ϕ(Rn) → H0,ϕ0(Rn−1) and S0,ϕ : H0,ϕ0(Rn−1) → H1/2, ϕ(Rn). We pass
from these operators to analogous operators for Rn

+. To this end, we need the operator R+ of restriction of a
distribution from Rn to Rn

+ and the operator Tn+1 right inverse to R+ from the proof of Theorem 3.3. These
operators are linear and bounded in the following pairs of spaces:

R+ : H1/2, ϕ(Rn) → H1/2, ϕ(Rn
+),

Tn+1 : Hσ(Rn
+) → Hσ(Rn), |σ| < n + 1.

(3.37)
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By virtue of the interpolation theorems (Theorems 3.1 and 3.3), the boundedness of (3.37) yields the boundedness
of the operator Tn+1 : H1/2, ϕ(Rn

+) → H1/2, ϕ(Rn), which, in turn, yields the boundedness of the operators

R+
0 = R0Tn+1 : H1/2, ϕ(Rn

+) → H0, ϕ0(Rn−1), (3.38)

S+
0,ϕ = R+S0,ϕ : H0, ϕ0(Rn−1) → H1/2, ϕ(Rn

+). (3.39)

Moreover, R+
0 associates the function v(x′, xn) of the class C∞

0 (Rn
+) with its trace v(x′, 0) on the hyperplane

xn = 0. Indeed, by virtue of the Sobolev imbedding theorem, operator (3.37) involves Tn+1 v ∈ Hn(Rn) ↪→
C(Rn). Hence, R+

0 v = R0Tn+1v = v(x′, 0). Furthermore, the operator S+
0,ϕ is the right inverse of R+

0 . Indeed,
for any u ∈ C∞

0 (Rn), we have Tn+1R+u ∈ Hn(Rn) ↪→ C(Rn). Therefore, the function R0Tn+1R+u is
calculated pointwise and is equal to R0u. Passing to the limit, we obtain the equality R0Tn+1R+u = R0u,

u ∈ H1/2, ϕ(Rn). Setting u = S0,ϕ ω, where ω ∈ H0, ϕ0(Rn−1), we write R+
0 S+

0 ω = R0Tn+1R+ S0,ϕ ω =
R0 S0,ϕ ω = ω. Thus, we have the trace operator (3.38) and the operator of extension (3.39) right inverse to it. As
in the proof of assertion (a), this implies that RΓ = KR+

0 T and SΓ,ϕ = KS+
0,ϕ T are the required operators (3.29)

and (3.31). Assertion (b) and, hence, Theorem 3.8 are proved.

Remark 3.4. By virtue of Theorem 6.1 in [4, p. 36], condition (3.5) is necessary and sufficient for mapping
(3.26) to be extended to a continuous trace operator R0 : H1/2, ϕ(Ω) → D′(Γ).

In the conclusion of this section, we give the description of some spaces of the improved scale over Γ that
follows from Theorem 3.8.

Corollary 3.2. The following assertions are true:

(i) for any s > 0 and ϕ ∈ M, one has Hs,ϕ(Γ) = {RΓf : f ∈ Hs+1/2, ϕ(Ω)}, and, furthermore, the
norm of the distribution h in Hs, ϕ(Γ) is equivalent to the norm

inf
{∥∥f

∥∥
Hs+1/2, ϕ(Ω)

: RΓf = h
}

; (3.40)

(ii) if ϕ ∈ M satisfies condition (3.5), then, for the function ϕ0 ∈ M defined by relation (3.30), one has
H0, ϕ0(Γ) =

{
RΓf : f ∈ H1/2, ϕ(Ω)

}
, and, furthermore, the norm of the distribution h in H0, ϕ0(Γ) is

equivalent to norm (3.40), where s = 0.

This description of some (“positive”) spaces of the improved scale over Γ as trace spaces is especially im-
portant in the case where Ω is an open set in Rn. In this case, by virtue of Theorem 3.7, such spaces admit the
definition with the use of global coordinates in Rn according to Corollary 3.2. Moreover, in the last statement, Ω
can be replaced by Rn.

4. Elliptic Boundary-Value Problem in the Improved Scale of Spaces

As above, assume that Ω is an infinite smooth compact manifold of dimension n ≥ 2 with nonempty
boundary Γ. We set Ω = Ω \ Γ. According to this assumption, Γ is an infinite smooth closed manifold of
dimension n − 1. We fix an arbitrary pair A that consists of a finite atlas from the C∞-structure on Ω and
the C∞-partition of unity on Ω subordinate to it. Let AΓ be the pair formed by the restrictions of this atlas
and the partition of unity to Γ. On Ω and Γ, we consider the improved scales {Hs, ϕ(Ω): s ∈ R, ϕ ∈ M}
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and {Hs, ϕ(Γ) : s ∈ R, ϕ ∈ M} constructed using the pairs A and AΓ, respectively. If ϕ ≡ 1, then
Hs, ϕ(Ω) = Hs(Ω) and Hs, ϕ(Γ) = Hs(Γ) are the spaces of Bessel potentials on Ω and Γ. Note that
H0(Ω) = L2(Ω) and H0(Γ) = L2(Γ) are the Hilbert spaces of functions whose squares are summable on
Ω and Γ with respect to the C∞-densities defined by the pairs A and AΓ. Let (·, ·)Ω and (·, ·)Γ denote the
scalar products in L2(Ω) and L2(Γ), respectively.

Consider the following boundary-value problem on Ω :

Lu = f on Ω, Bju = gj on Γ, j = 1, . . . , k. (4.1)

Here, L is a linear differential operator on Ω with infinitely smooth coefficients, the order of the operator L is
even and equal to 2k ≥ 2, Bj , j = 1, . . . , k, are boundary linear differential operators on Γ with infinitely
smooth coefficients, and the order of the operator Bj is equal to mj < 2k. We set m = max{m1, . . . , mk}.

In what follows, we assume that problem (4.1) is elliptic. This means that (see, e.g., [12, pp. 6, 7]) the operator
L is elliptic on Ω and regularly elliptic on Γ and the system {B1, . . . , Bk} satisfies the Shapiro–Lopatinskii
condition with respect to L on Γ.

For elliptic boundary-value problems, solvability theorems and estimates for solutions in various classes of
functional spaces are known (see [2, 4, 8–11, 13–15] and the survey [12]). We need the statement on the solvability
of the elliptic boundary-value problem (4.1) in the spaces of Bessel potentials presented below (see [14, pp. 128–
130]). First, recall that a linear bounded operator T : X → Y, where X and Y are Banach spaces, is called
Noetherian if its kernel and cokernel (i.e., the kernel of the adjoint operator) are finite-dimensional and the range
of values of the operator T is closed in Y.

Proposition 4.1. Let σ > m +
1
2
. Then the linear mapping

u �→ Λ u = (L u, B1 u, . . . , Bk u), u ∈ C∞( Ω), (4.2)

can be extended by continuity to the bounded Noetherian operator

Λ: Hσ(Ω) → Hσ = Hσ−2k(Ω) ×
k∏

j=1

Hσ−mj−1/2(Γ). (4.3)

Moreover, the kernel N and the cokernel N∗ of this operator are independent of σ and consist of infinitely smooth
elements:

N ⊂ C∞( Ω ), N∗ ⊂ C∞( Ω ) × ( C∞(Γ) )k. (4.4)

Remark 4.1. Let us explain the last inclusion. It means that the functionals from N∗ [the kernels of the
operator adjoint to (4.3)] have the form (·, w0)Ω + (·, w1)Γ + . . . + (·, wk)Γ for certain functions w0 ∈ C∞( Ω ),
w1, . . . , wk ∈ C∞(Γ). Therefore, the range of values of operator (4.3) consists of all vectors (f, g1, . . . , gk) ∈ Hσ

such that (f, w0)Ω + (g1, w1)Γ + . . . + (gk, wk)Γ = 0 for any (w0, w1, . . . , wk) ∈ N∗. Here, one should take

the following into account: Since σ > m +
1
2
, we have gj ∈ L2(Γ), and the scalar product (gj , wj)Γ is defined

for j = 1, . . . , k. Further, if σ ≥ 2k, then f ∈ L2(Ω), and (f, w0)Ω is also defined. It remains to consider the

case where m +
1
2

< σ < 2k. In this case, generally speaking, one has f /∈ L2(Ω), but the form (·, w0)Ω is

extended by continuity to Hσ−2k(Ω). Therefore, in this case, (f, w0)Ω denotes the extension of the scalar product
in L2(Ω) by continuity.
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Note that the trace theorem for the spaces of Bessel potentials is extensively used in Proposition 4.1. For
example, if σ = m + 1/2, then the trace operator Bj is not defined on Hσ(Ω) for all j such that mj = m (see
Theorem 3.8 and Remark 3.4 in the case where ϕ ≡ 1 ).

In what follows, N and N∗ denote the kernel and the cokernel of the operator Λ in Proposition 4.1. Since
N and N∗ are finite-dimensional and infinitely smooth, in improved scales there exist projectors onto subspaces
orthogonal to N and N∗, respectively, with respect to the scalar products in L2(Ω) and L2(Ω) × (L2(Γ))k.

Namely, the following two lemmas are true:

Lemma 4.1. Suppose that s > 0 and ϕ ∈ M. Then, for any u ∈ Hs, ϕ(Ω), there exists a unique element
u0 ∈ N such that (u − u0, v)Ω = 0 for any v ∈ N. Moreover, the mapping P : u �→ u1 = u − u0 is the linear
bounded projection operator of the space Hs, ϕ(Ω) onto its closed subspace

{u1 ∈ Hs, ϕ(Ω): (u1, v)Ω = 0 for any v ∈ N} , (4.5)

and, furthermore, Pu is independent of s and ϕ.

Proof. First, note that, since Hs, ϕ(Ω) ↪→ L2(Ω) (the condition s > 0) and N ⊂ C∞( Ω ) (Proposition
4.1), the scalar product (u, v)Ω is defined for any u ∈ Hs, ϕ(Ω) and v ∈ N. Therefore, we can identify an
element v ∈ N with a linear functional (·, v)Ω on Hs, ϕ(Ω). This functional is bounded:

∣∣ (u, v)Ω
∣∣ ≤ ∥∥u

∥∥
L2(Ω)

∥∥ v
∥∥

L2(Ω)
≤ const

∥∥u
∥∥

Hs, ϕ(Ω)

∥∥ v
∥∥

L2(Ω)
, u ∈ Hs, ϕ(Ω).

This implies that subspace (4.5) is closed in Hs, ϕ(Ω). Further, according to Proposition 4.1, N is a finite-
dimensional subspace in Hs, ϕ(Ω). It is clear that dimN coincides with the codimension of subspace (4.5),
and, furthermore, N and (4.5) have the trivial intersection. Therefore, Hs, ϕ(Ω) decomposes into the direct sum
of the closed subspaces N and (4.5) with the bounded projector P onto (4.5), which is obviously independent of
s and ϕ.

Lemma 4.2. Suppose that s > m +
1
2

and ϕ ∈ M. We set

Hs, ϕ = Hs−2k, ϕ(Ω) ×
k∏

j=1

Hs−mj−1/2, ϕ(Γ). (4.6)

Let (·, ·)Ω, Γ denote the scalar product in L2(Ω) × (L2(Γ) )k and its extension by continuity. Then, for any
F ∈ Hs, ϕ, there exists a unique vector F0 ∈ N∗ such that (F − F0, W )Ω, Γ = 0 for any W ∈ N∗. Moreover,
the mapping Q : F �→ F1 = F − F0 is the linear bounded projection operator of space (4.6) onto its closed
subspace

{
F1 = (f, g1, . . . , gk) ∈ Hs, ϕ : (F1, W )Ω, Γ ≡ (f, w0)Ω + (g1, w1)Γ + . . . + (gk, wk)Γ = 0

for any W = (w0, w1, . . . , wk) ∈ N∗
}
, (4.7)

and, furthermore, QF is independent of s and ϕ.
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Proof. Let W ∈ N∗. By virtue of Proposition 4.1 (see also Remark 4.1), the form (·, W )Ω, Γ defines a

linear bounded functional on the space Hσ for any σ > m +
1
2
. By virtue of Theorem 3.5 for ε = δ > 0 and

Proposition 2.1, we have Hs, ϕ = [Hs−ε,Hs+ε]ψ with equivalence of norms. This implies that (·, W )Ω, Γ is a
linear bounded functional on Hs, ϕ. Therefore, subspace (4.7) is closed in Hs, ϕ. Further, we proceed by analogy
with the proof of the last lemma. Namely, according to Proposition 4.1, N∗ is a finite-dimensional subspace in
Hs, ϕ. Moreover, dimN∗ is equal to the codimension of subspace (4.7), and, furthermore, N∗ and (4.7) have the
trivial intersection. Therefore, Hs, ϕ decomposes into the direct sum of the closed subspaces N∗ and (4.7) with
the bounded projector Q onto (4.7), which is independent of s and ϕ, which was to be proved.

We now establish the main result of this section, namely, a theorem on properties of the operator of the elliptic
boundary-value problem (4.1) in the improved scale of spaces.

Theorem 4.1. Suppose that s > m +
1
2

and ϕ ∈ M. Then mapping (4.2) can be extended by continuity to

the bounded Noetherian operator

Λ: Hs, ϕ(Ω) → Hs, ϕ = Hs−2k, ϕ(Ω) ×
k∏

j=1

Hs−mj−1/2, ϕ(Γ) (4.8)

with kernel N and cokernel N∗, which, by virtue of Proposition 4.1, are independent of s and ϕ and satisfy
(4.4). The restriction of operator (4.8) to subspace (4.5) is performed by the topological isomorphism

Λ: P (Hs, ϕ(Ω) ) ↔ Q(Hs, ϕ ) (4.9)

between spaces (4.5) and (4.7). Furthermore, the following estimate is true:

∥∥u
∥∥

Hs, ϕ(Ω)
≤ c

( ∥∥Λ u
∥∥
Hs, ϕ

+
∥∥u

∥∥
L2(Ω)

)
, u ∈ Hs, ϕ(Ω), (4.10)

where the constant c is independent of u.

We see that the index ϕ, which improves the main s-smoothness of the space, remains invariant under the
action of the operator (4.8) of the elliptic boundary-value problem. Moreover, the properties of the operator are
analogous to the special case ϕ ≡ 1 of the spaces of Bessel potentials.

We deduce Theorem 4.1 from Proposition 4.1 using interpolation with functional parameter. We use Gey-
monat’s result [16, pp. 280, 281] (Proposition 5.2) on the interpolation of operators with finite index. Below, we
formulate this result as applied to the case considered.

Proposition 4.2. Let two admissible pairs [X0, X1] and [Y0, Y1] of Hilbert spaces be given. Suppose that,
on X0, a linear mapping T is given for which bounded Noetherian operators T : Xj → Yj , j = 0, 1, with
common kernel N and common cokernel N∗ are valid. Then, for an arbitrary interpolation parameter ψ, the
bounded operator T : [X0, X1]ψ → [Y0, Y1]ψ is a Noetherian operator with kernel N and cokernel N∗.

Proof of Theorem 4.1. We take a number ε > 0 such that s − ε > m +
1
2
. According to Proposition 4.1,

the Noetherian operators (4.3) for σ = s ∓ ε with common kernel N and common cokernel N∗ are valid. We
apply the interpolation with parameter ψ from Theorem 3.5, in which we take ε = δ and M = Ω and then
M = Γ, to these operators. By virtue of Proposition 4.2, we obtain a bounded Noetherian operator with kernel
N and cokernel N∗, which coincides with (4.8) by virtue of Theorem 3.5 and Proposition 2.1. [Since C∞( Ω )
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is dense in Hs, ϕ(Ω), this operator is the extension of mapping (4.2) by continuity.] By virtue of Lemmas 4.1
and 4.2, we directly obtain the algebraic isomorphism (4.9). Since operator (4.9) is bounded, this isomorphism is
topological by virtue of the Banach theorem on the inverse operator. It remains to prove estimate (4.10). Using
Lemma 4.1, we represent a distribution u ∈ Hs, ϕ(Ω) in the form u = u0 + u1, where u0 = (1−P )u ∈ N and
u1 = P u ∈ P (Hs, ϕ(Ω)). By virtue of (4.9), we get

∥∥u1

∥∥
Hs, ϕ(Ω)

≤ c1

∥∥Λ u1

∥∥
Hs, ϕ

= c1

∥∥Λ u
∥∥
Hs, ϕ

.

Furthermore, since N is finite-dimensional and 1 − P is the orthoprojector onto N in L2(Ω), we have

∥∥u0

∥∥
Hs, ϕ(Ω)

≤ c0

∥∥u0

∥∥
L2(Ω)

≤ c0

∥∥u
∥∥

L2(Ω)
,

where the constants c0 and c1 are independent of u. Summing up these inequalities, we get (4.10).
Theorem 4.1 is proved.

Remark 4.2. In connection with the last theorem, we again note Shlenzak’s work [7], where, with the use of
interpolation with functional parameter, a theorem on isomorphism was proved for an operator of a regular elliptic
boundary-value problem that acts in certain Hörmander–Volevich–Paneyakh spaces defined in an infinitely smooth
domain. These spaces differ from the spaces considered in the present paper (see Remark 3.2).

Remark 4.3. As Theorem 4.1 is compared with assertion (b) of Theorem 3.8, the following question arises:

Is it possible to generalize Theorem 4.1 to the limit case s = m +
1
2

for ϕ ∈ M satisfying condition (3.5)? In

this case, in (4.8), for all j such that mj = m, we use the space Hs−mj−1/2, ϕ0(Γ) instead of Hs−mj−1/2, ϕ(Γ),
where ϕ0 is defined by (3.30). The answer to this question is negative.
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