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population, with more than half of all people currently living 
in urban areas (Ritchie and Roser 2018). Such rapid urban-
isation often results in habitat modification and/or destruc-
tion, a decrease in native flora and fauna biodiversity and/
or a rise in non-native species numbers (McMichael 2000; 
McKinney 2002, 2006, 2008; Kondratyeva et al. 2020; Hou 
et al. 2023).

Freshwater ecosystems, such as lakes, ponds and riv-
ers, constitute only 1% of the available fresh water yet har-
bour very high levels of biodiversity (Strayer and Dudgeon 
2010). Urbanisation affects freshwater habitats by way of 
degradation, rising temperatures, acidification, eutrophica-
tion and overexploitation, to name a few impacts (Saulnier-
Talbot 2016; Geist and Hawkins 2016; Cantonati et al. 
2020). Research has shown that these factors contribute sig-
nificantly to the decline in the taxonomic as well as the func-
tional richness and diversity of various organisms across 
different taxa in all types of freshwater habitats (Moyle and 
Leidy 1992; Biswas and Mallik 2010 et al. 2019; Feisal et 
al. 2023). In many instances, rare species are lost following 
high levels of anthropogenic disturbance and are replaced 

Heading Zooplankton diversity and species-environment 
variations in tropical urban freshwater ponds.

Introduction

Biodiversity is influenced by anthropogenic disturbances in 
several ways, and these events are a leading cause of bio-
diversity decline throughout the world (McMichael 2000). 
Such disturbances, especially in the form of urbanisa-
tion, have been growing due to the ever-increasing human 
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Abstract
Urbanisation affects not only large ecosystems but also small ones, such as ponds, through changes in environmental 
parameters. It consequently impacts the biodiversity of all organisms, including zooplankton. However, disturbances 
due to urbanisation may have different levels of impact on ecosystems. We therefore aimed to determine how different 
degrees of disturbance and environmental parameters affect zooplankton species diversity and which zooplankton species 
could indicate the disturbance degree and water quality of tropical urban ponds. We recorded 63 species, namely, 46 spe-
cies of rotifers and 17 species of cladocerans. The overall species diversity tended to decrease from the low to the high 
disturbance areas. The level of disturbance, temperature, salinity, phycocyanin and vegetation affected the zooplankton 
species composition. More common species were found in the low disturbance areas, and among the few species in the 
highly disturbed areas, the distribution was more specific. We therefore propose that rotifer and cladoceran species be 
used as bioindicators to indicate water quality and the degree of disturbance. Our study provides significant insights into 
the relationship between zooplankton and environmental factors in oriental tropical regions and presents a framework for 
identifying crucial species associated with levels of disturbance, particularly in the habitats of Oriental Asia.
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by generalist and/or non-native species (Leita ̃o et al. 2016; 
Vincent et al. 2020).

Smaller lentic water bodies, such as ponds, are more 
numerous and widespread globally than lakes and reser-
voirs. Despite their small size, they contribute significantly 
to regional biodiversity (De Meester et al. 2005). However, 
these small water bodies tend to be more susceptible to dis-
turbances than larger ones (Lepori and Hjerdt 2006). Due to 
their numbers, the higher connectivity of such small water 
bodies with the surrounding terrestrial ecosystem makes 
them particularly vulnerable to growing land use pressures 
and environmental change (Riley et al. 2018).

Zooplankton are an important component of freshwater 
ecosystems and play significant roles as primary consumers 
and/or secondary producers (Lomartire et al. 2021). They 
react to environmental variations via changes in their com-
position, richness, abundance and distribution. (Athira et al. 
2022; Du et al. 2023). Substantial evidence has been gen-
erated to indicate the effects of urbanisation on zooplank-
ton diversity patterns, especially in large water bodies like 
lakes, reservoirs and rivers (Pecorari et al. 2006; Razak and 
Sharip 2019; Shen et al. 2021). Kuczynska-Kippen (2020) 
showed that ponds with low levels of human disturbance 
generally harbour richer zooplankton communities than 
highly disturbed ones. Studies on temperate zooplankton 
communities have shown that urbanisation-driven temper-
ature increases in ponds cause shifts in their composition, 
with larger species being filtered out. In addition, urban 
ponds tend to select for generalist species with widespread 
distributions, which suggests biotic homogenisation (Enge-
len et al. 2017).

Limited research exists on the effects of anthropogenic 
disturbances on freshwater diversity in the tropical regions 
of Asia (Bannister et al. 2019) even though these geographic 
regions are experiencing more extensive environmental 
changes than any others (Dudgeon 2000). Findings from 
the available literature suggest a decrease in the taxonomic 
and/or functional diversity of organisms such as zooplank-
ton and aquatic insects in urban reservoir, urban rivers and 
rice fields due to increasing disturbance (Liu et al. 2020; 
Kulkarni and Padhye 2021; Padhye and Dahanukar 2015; 
Plangklang and Athibai 2021; Eriksen et al. 2021).

Given this background, we studied the effects of anthro-
pogenic disturbances on zooplankton communities in 
tropical ponds. Specifically, we addressed the following 
questions: (1) How does species diversity (alpha and beta) 
change from ponds with low levels of disturbance to those 
that are highly disturbed? (2) What are the species–envi-
ronment associations in these habitats, and which environ-
mental variables are significantly correlated with species 
distribution? (3) Which species or groups of species have 
potential as local bioindicators of highly disturbed habitats? 

Our research contributes to a better understanding of the 
zooplankton ecology of ponds in the less studied oriental 
tropical regions and their feasibility as bioindicators of 
disturbance.

Materials & methods

Sampling sites and environmental parameters 
measurements

Samples were collected from eight freshwater ponds in an 
urban area of Nakhon Nayok Province, Central Thailand, 
every three months between July 2018 and July 2019. The 
environmental measurements taken in the field included 
water temperature (°C), conductivity (µs cm− 1), total dis-
solved solids (mg L− 1), salinity (ppt), dissolved oxygen 
(mg L− 1), chlorophyll a (µg L− 1), phycocyanin (mg L− 1), 
NO3-N (mg L− 1) and pH using a calibrated multiparame-
ter Sonde (YSI EXO Multiparameter Sonde and YSI EXO 
Handheld Display 599,150). Each pond was categorised 
into three disturbance levels by disturbance score includ-
ing low disturbance ponds (scored 2.40–3.00), moderate 
disturbance ponds (scored 1.70–2.30) and high disturbance 
ponds (scored 1.00–1.60). These disturbance scores were 
determined from the character of the substrates, sediment 
deposition, percent cover of vegetation, water fluctuation 
and number and intensity of human activities, according to 
the field data sheet provided by Resh and Giap (2010). The 
disturbance levels and environmental parameters of each 
sample are presented in supplementary Table 1. In addition, 
we performed a Principal Component Analysis (PCA) using 
the environmental variables to check the distribution of the 
ponds with respect to the environmental data. The analysis 
was carried out using ‘prcomp’ function in R (with scal-
ing). Visualization of the plot was done using the ‘ggfortify’ 
package. The ponds were color coded as per their designated 
disturbance categories. It was observed that the first 2 PCA 
axes explained > 70% of the total variation and the ponds 
did separate out to a large extent based on the environmental 
data (Supplementary Tables 11–12; supplementary Fig. 4).

Sampling, sorting and examination

A total of 40 samples was quantitatively sampled by fil-
tering 20 L of water through a 20 μm mesh-size plankton 
net. All the samples were immediately preserved with 95% 
ethyl alcohol. Rotifers and cladocerans were identified 
using complete and up-to-date publications relevant to each 
group (i.e. Koste and Shiel 1989, 1990; Nogrady et al. 1995; 
Segers 2007; Segers et al. 1996; Sanoamuang 2002; Shiel 
and Koste 1992; Shiel and Sanoamuang 1993 for rotifers 
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and Korovchinsky 1992; Smirnov 1992,1996; Sinev 2016; 
Van Damme et al. 2011 for cladoceran.)

Data analysis

Alpha diversity

The Shannon diversity for each sample was calculated using 
the Hellinger-transformed species abundances of both roti-
fers and cladocerans in the ‘vegan’ package in R. We tested 
the effects of increasing disturbance (as the categorical 
independent fixed effects variable with three levels) on the 
alpha diversity (continuous response variable) using linear 
mixed effects models. The season was included as a random 
effect in the model, as it is known to influence zooplankton 
diversity (Harris et al. 2000). We also checked whether pond 
identity as a covariate would better explain the variations 
in the alpha diversity. The model comparison showed that 
pond identity was not significant (supplementary Table 2), 
and it was thus removed from further analyses. The mod-
els were fitted using the ‘lme4’ (Bates et al. 2015) pack-
age in R. The assumption of heterogeneity of variance 
was checked using Levene’s test (supplementary Table 3), 
while the model assumptions were assessed visually by his-
tograms (distribution) of the residuals. The residual plots 
of the models (supplementary Figs. 2–3) for both groups 
showed deviations from normality. We therefore used a 
permutation-based approach to check the significance of the 
fixed effects using the ‘permanova.lmer’ function from the 
‘predictmeans’ package (Luo et al. 2022). The models were 
run with 999 permutations, and the F value was estimated 
using Satterthwaite’s method (default). The significance of 
the random effect was checked via model comparison, and 
the best fit model was selected based on the Bayesian infor-
mation criterion (BIC) values obtained using the ‘anova’ 
function from the ‘stats’ package in R.

Beta diversity

The overall beta diversity of both the rotifers and cladoc-
erans between all the pond samples was calculated using 
the ‘abundance-based multiple-site dissimilarities’ on the 
Hellinger-transformed abundances from the βpart package 
in R (Baselga et al. 2012).

Permutation-based multivariate ANOVA (one‐way PER-
MANOVA) was carried out to determine any significant 
differences in both the rotifer and cladoceran species com-
munities found in the three levels of disturbance. We used 
Bray–Curtis dissimilarities to obtain the distance matrix for 
the analysis. The significance was tested by running 5000 
permutations with an alpha of 0.05. We used the function 
‘adonis2’ from the vegan package in R for PERMANOVA. 

We used the sampled season as a block variable in the anal-
ysis. The homogeneity of dispersion was checked prior to 
actual test using the ‘betadisper’ function in the vegan pack-
age (supplementary Table 4).

Phi index of association

We used the Phi index of association to assess the unique 
associations of both the rotifers and cladocerans with the 
disturbance levels (De Cáceres and Legendre 2009) using 
the ‘multipatt’ function from the ‘indicspecies’ package in 
R. The ‘r.g’ value for the ‘func’ argument of the ‘multipatt’ 
function was used to account for the unequal sample size at 
each level of the disturbance level. A total of 4999 permuta-
tions were run to obtain the significance of association of 
each species with any of the three disturbance groups using 
an alpha of 0.05.

Species–environment associations

The species distributions with respect to the local environ-
mental variables of all the pond samples from all three dis-
turbance levels (supplementary Tables 5, 10) were assessed 
via canonical correspondence analysis (CCA) (Braak and 
Verdonschot 1995) using the vegan package in R. We 
removed highly collinear environmental variables (cut-
off > 0.85) from the analysis using the ‘caret’ package in R 
(see supplementary Table 6 for the correlation values). The 
Hellinger-transformed species abundance data from all the 
samples along with the final environmental variables were 
used to build the model. The collinearity in the environmen-
tal variables was further assessed by observing the variance 
inflation criterion (vic) values using the ‘vic.cca’ function 
of the vegan package (cutoff > 5). The significance of (a) the 
overall model and (b) the individual CCA axes (supplemen-
tary Tables 7–8) was assessed using the ‘anova.cca’ function 
from the vegan package with 4999 permutations to obtain 
the p values. The correlation of each environmental variable 
with the first two CCA axes was also calculated using the 
scores function in vegan (supplementary Table 9).

Results

Faunistic summary

A total of 63 species were observed in the 40 samples col-
lected from the studied region, with rotifers comprising 46 
species and cladocerans 17. The overall zooplankton spe-
cies richness decreased with increasing disturbance (low 
disturbance: 51 species; moderate disturbance: 44 spe-
cies; high disturbance: 16 species). This pattern was also 
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Platyias quadricornis, Lecane luna and L. papuana were 
negatively correlated with those environmental variables. 
Most members of Lecane (except L. luna and L. papuana 
) were associated with lower values of salinity, temperature 
and phycocyanin as opposed to Filinia, for which most of 
the species (except F. opoliensis) occurred in ponds that had 
values of the same environmental variables. Meanwhile, the 
Brachionous species were seen on both the sides of this gra-
dient. Cladoceran planktonic filterers, such as Ceriodaph-
nia cornuta, Moina micrura and Pseudosida bidentata, 
were seen in the high disturbance ponds. In contrast, their 
congeners, namely, Chydorus reticulaus and Moinodaphnia 
macleayi, were associated with the low disturbance ponds.

A total of four rotifers and three cladocerans each showed 
a significant association with a single level of disturbance. 
The correlations ranged from moderate to weak, with the 
highest value of 0.53 for Filinia novaezealandiae and 0.41 
for Moina micrura (Table 4; Figs. 3 and 4).

Discussion

We observed a characteristic decrease in zooplankton rich-
ness and species diversity with increasing anthropogenic 
disturbance, with a significant difference in species com-
munities between the low and high disturbance ponds. The 
effects of anthropogenic disturbance by way of the modi-
fication or destruction of habitats affects the diversity of 
organisms across different phyla (e.g. benthic communities 
– Dudgeon et al. 2006; macroinvertebrates – Nichols et al. 
2016; nanoperiphytic algae – Dunck et al. 2019; insects – 
Husseini et al. 2019; benthic macroinvertebrates – Sripa-
nya et al. 2022; Gecko –Martín et al. 2023), and our results 
are in line with the findings of studies in other regions of 
the world (e.g. Kuczynska-Kippen 2020; Qin et al. 2020; 
Shen et al. 2021). The species numbers in our study were 
also lower than those of other types of habitats in Thailand 
(streams – Sa-ardrit and Beamish 2005; swamps – Maiphae 
et al. 2008) as well as urban ponds in other (sub) tropics 
(Phan et al. 2021; Shen et al. 2021).

Species diversity differences in the cladocerans were 
not as apparent as those observed in the rotifers (Table 2). 
Occurrences of nearly 50% of the rotifers and 80% of the 
cladocerans were rare (occurrences of three samples and 
less compared to total samples). Nevertheless, the cladoc-
eran communities in all three types of ponds commonly 
consisted of species like Moina micrura and Ceriodaphnia 
cornuta alongside the rare species and had relatively similar 
(and high) densities (150–1,866 individuals/L) in the mod-
erate and high disturbance ponds, with lower densities in the 
low disturbance ponds. However, a clear difference in alpha 
diversity was seen in the rotifers due to the higher species 

consistent for the individual zooplankton groups as well 
as the average species numbers per sample (rotifers – low 
disturbance: nine species, moderate disturbance: six spe-
cies, high disturbance: four species; cladocerans – low dis-
turbance: two species, moderate disturbance: one species, 
high disturbance: one species) (Fig. 1A). Lecane was the 
most diverse genus of rotifer (12 species), while Chydorus, 
Macrothrix and Diaphanosoma were the three most diverse 
genera comprising two species each. In addition, Lecane 
bulla, Polyarthra sp., Trochosphaera aequatorialis and 
Diaphanosoma excisum were found in every studied pond 
(Table 1).

The Shannon diversity similarly decreased from the low 
(rotifers: 1.59 ± 0.71; cladocerans: 0.49 ± 0.48) to mod-
erate (rotifers: 1.40 ± 0.57; cladocerans: 0.10 ± 0.28) to 
high disturbance ponds (rotifers: 0.88 ± 0.59; cladocerans: 
0.13 ± 0.30) (Fig. 1B). The differences in Shannon diversity 
of the rotifers were significant between the three types of 
ponds, whereas they were marginally significant in the case 
of the cladocerans (Table 2). The model comparison also 
showed that seasonality had no significant effect in explain-
ing the variation in Shannon diversity (Table 2).

The overall beta diversity between the species communi-
ties was large for both the rotifers (0.98) and cladocerans 
(0.95). Species like Lecane bulla, Polyarthra sp., Tricho-
cerca similis, Anthalona harti and Chydorus eurynotus were 
found in the low disturbance ponds, while Filinia longiseta, 
Brachionus forficula, Ceriodaphnia cornuta and Moina 
micrura were characteristically found in the high distur-
bance ponds. PERMANOVA revealed that these differences 
were significant in both the rotifer and cladoceran commu-
nities (Table 3).

The CCA described the significant variations in the spe-
cies communities based on the local environmental variables 
(χ2 = 1.72, F = 1.39, p = .002). The first two axes explained 
69% of the total variance (Fig. 2), with the first axes being 
significant (see supplementary Table 7 for the significance 
of the individual CCA axes). The low and high disturbance 
ponds could be clearly separated based on the environmen-
tal data, with moderately disturbed ponds lying roughly 
between the other two groups. Temperature, salinity and 
phycocyanin were important environmental variables asso-
ciated with the first axis and had higher positive correlations 
with many of the high disturbance ponds, while aquatic 
vegetation was clearly associated with the ponds with low 
disturbance (supplementary Table 8). Many rotifer species 
and all the chydorids and macrothricids (scrapers) seemed 
to be associated with the low/moderate disturbance ponds 
that had aquatic vegetation (Figs. 3 and 4). Species like 
Filinia longiseta, F. novaezealandiae and Trochosphaera 
aequatorialis were positively associated with higher values 
of salinity, temperature and phycocyanin, while species like 
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Fig. 1 A) Species richness (average with standard deviation) for cladocerans and rotifers across all the three disturbance levels (B) Shannon diver-
sity (average with standard deviation) for cladocerans and rotifers across all the three disturbance levels
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Low
disturbance ponds

Moderate disturbance ponds High
disturbance ponds

Rotifers
Asplanchna sp. + + +
Anuraeopsis coelata de Beauchamp, 1932 +
Anuraeopsis fissa Gosse, 1851 + + +
Keratella cochlearis (Gosse, 1851) +
Keratella tropica (Apstein, 1907) + +
Brachionus angularis Gosse, 1851 + + +
Brachionus budapestensis Daday, 1885 +
Brachionus caudatus Barrois & Daday, 1894 + +
Brachionus donneri Brehm, 1951 + +
Brachionus falcatus Zacharias, 1898 + +
Brachionus forficula Wierzejski, 1891 +
Brachionus lyratus Shephard, 1911 + +
Brachionus quadridentatus Hermann, 1783 + +
Brachionus calyciflorus Pallas, 1766 + + +
Platyias quadricornis (Ehrenberg, 1832) +
Plationus patulus (Müller, 1786) + +
Colurella sp. + +
Lepadella sp. +
Euchlanis sp. + +
Manfredium sp. +
Filinia longiseta (Ehrenberg, 1834) +
Filinia opoliensis (Zacharias, 1898) + + +
Filinia novaezealandiae Shiel & Sanomuang, 1993 + +
Filinia camasecla Myers, 1938 +
Hexarthra sp. + +
Lecane bulla (Gosse, 1851) + + +
Lecane cornuta (Müller, 1786) + +
Lecane curvicornis (Murray, 1913) + +
Lecane hamata (Stokes, 1896) + +
Lecane leontina (Turner, 1892) + +
Lecane ludwigii (Eckstein, 1883) +
Lecane luna (Müller, 1776) + + +
Lecane lunaris (Ehrenberg, 1832) + +
Lecane papuana (Murray, 1913) + +
Lecane signifera (Jennings, 1896) +
Lecane quadridentata (Ehrenberg, 1830) + +
Lecane ungulata (Gosse, 1887) +
Mytilina ventralis (Ehrenberg, 1830) + +
Polyarthra sp. + + +
Testudinella patina (Hermann, 1783) + +
Testudinella tridentata Smirnov, 1931 +
Trichocerca sp. + +
Trichocerca similis (Wierzejski, 1893) + +
Trichotria sp. +
Trichotria tetractis (Ehrenberg, 1830) + +
Trochosphaera aequatorialis Semper, 1872 + + +
Cladocerans
Bosminopsis deitersi Richard, 1895 +
Anthalona harti Van Damme et al. 2011 + +
Chydorus eurynotus Sars, 1901 + +
Chydorus reticulatus Daday, 1898 +

Table 1 Rotifers and cladocerans found in each disturbance level ponds ( + = presence)
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environmental fluctuations (Hughes 2010). The disappear-
ance of rare species due to increasing disturbance affected 
the zooplankton species communities and was reflected 
in the high beta diversity values between the three pond 
types. Rare species are also sensitive to sudden changes in 
the local environment (Leita ̃o et al. 2016), and their loss 
with increasing disturbances is well documented in many 
organisms (Floren et al. 2001; Dudgeon 2006; Alroy 2017; 
Dunck et al. 2019; Sripanya et al. 2022). Anthropogenic dis-
turbances modify freshwater ecosystems by way of physical 
(desiltation, the removal of vegetation), chemical (the addi-
tion of nutrients) and biological (invasive species) factors 
(Candolin and Rahman 2023). Biological assemblages are 

numbers, larger differences in abundance between the spe-
cies and the characteristic presence of some rare species 
(e.g. Lecane signifera, L. ludwigii and Manfredium sp.) only 
in the low disturbance ponds. Additionally, strongly com-
petitive interactions among rotifers in their natural environ-
ments can control the coexistence or exclusion of species 
(DeMott and Kerfoot 1982; Negreiros et al. 2010). The food 
niches of rotifers are also more specialised than those of 
cladocerans (Bogdan and Gilbert 1982). These characteris-
tics could further explain the apparent patterns of Shannon 
diversity in the rotifers in this study.

Changes in diversity determine community stabil-
ity by influencing the response to disturbances and/or 

Table 2 Linear mixed-effect model results for Shannon diversity for the (a) fixed effects (disturbance level) and the (b) random effects (Season). 
The significance of fixed effects (p value) was calculated using 999 permutations. Bayesian Inference Criterion (BIC) values are given for model 
with and without the random effect (*=significant p-values (p < .05))
a. Fixed effects
Group SS MS Df F p
Rotifers 2.61 1.305 2 3.63 0.04*
Cladocerans 1.25 0.624 2 2.67 0.08
b. Random effect (Season)
Group BIC

(with random effect)
BIC
(without random effect)

Rotifers 89.24 82.89
Cladocerans 67.02 63.41

Table 3 PERMANOVA results showing the differences between the species communities (abundances) found in three types of ponds (based on 
their disturbance levels) (*=significant p-values (p < .05))

Df S.S R2 F Pr(> F)
Rotifers Disturbance levels 2 1.057 0.0678 1.237 0.0357*

Residual 34 14.525 0.932
Total 36 15.58 1.00000

Cladocerans Disturbance levels 2 1.3779 0.16017 1.7165 0.0186 *
Residual 18 7.2248 0.83983
Total 20 8.6027 1.00000

Low
disturbance ponds

Moderate disturbance ponds High
disturbance ponds

Coronatella monacantha (Sars, 1901) +
Dadaya macrops (Daday, 1898) +
Dunhevedia crassa King, 1853 +
Ephemeroporus barroisi (Richard, 1894) +
Ceriodaphnia cornuta Sars, 1885 + +
Ilyocryptus thailandensis Kotov & Sanoamuang, 2004 +
Macrothrix spinosa King, 1853 +
Macrothrix triserialis Brady, 1886 + +
Moina micrura Kurz, 1875 + +
Moinodaphnia macleayi (King, 1853) +
Diaphanosoma excisum Sars, 1885 + + +
Diaphanosoma sarsi Richard, 1894 +
Pseudosida bidentata Herrick, 1884 +
Total 51 44 16

Table 1 (continued) 
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a clear change in some of these factors between the three 
pond types, especially in the case of the highly disturbed 
ponds that had been affected by eutrophication and agri-
cultural activities. Eco-evolutionary changes occurring at 
the morphological and physiological levels in response to 
anthropogenic changes may drive species/population selec-
tion even further (Alberti et al. 2017; Catullo et al. 2019). 
Studies have shown that certain cladocerans and rotifers 
adapt very rapidly to increases in water temperature by 
changing some life history and physiological traits (Brans 
et al. 2017; Wenjie et al. 2019). A significant correlation of 
Filinia novaezealandiae, Trochosphaera aequatorialis and 
Moina micrura to highly disturbed ponds suggests such 
changes occur as a response to additional disturbances in 
these species; however, we did not specifically study this 
phenomenon.

Most moderate and high disturbance ponds showed 
higher temperatures and phycocyanin and salinity values 
with no/less aquatic vegetation. Higher water temperatures 
directly affect the biotic and abiotic aspects of freshwater 

shaped by such habitat stressors (e.g. eutrophication) act-
ing as templates (Townsend and Hildrew 1994), which can 
prevent the colonisation of species lacking some biological 
traits (e.g. morphological and physiological). We noticed 

Table 4 Indicator species of each disturbance level. The number in 
brackets are number of rotifer and cladoceran, respectively found in 
that disturbance level (*=significant p-values (p < .05); **= significant 
p-values (p < .01))
Level of 
disturbance

Zooplankton
group

Indicator species stat P value

Low 
(38,13)

Rotifers Trichocerca similis 0.48 0.02*

Lecane curvicornis 0.37 0.04*
Cladocerans Chydorus 

eurynotus
0.4 0.04*

Anthalona harti 0.352 0.072
High (12,4) Rotifers Filinia 

novaezealandiae
0.531 0.002**

Trochosphaera 
aequatorialis

0.35 0.083

Cladocerans Moina micrura 0.41 0.02*

Fig. 2 Canonical Correspondence Analysis between environmental factors and disturbance levels
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et al. 2002; Frumin and Gildeeva 2014; Lind et al. 2018). 
Although we did not measure the water transparency, the 
very high eutrophic water bodies were turbid with the pres-
ence of cyanobacteria and the absence of aquatic vegetation. 
Human-mediated disturbances can cause the salinisation of 
freshwater habitats (Velthuis et al. 2023). Salinity tolerance 
varies in aquatic organisms, but higher values can certainly 
affect freshwater biodiversity. Studies have even linked 
higher concentrations with algal blooms (which we also 
observed in the high disturbance ponds) (e.g. Conley et al. 
2009; Paerl and Paul 2012; Lind et al. 2018). An increase 
in salinity can alter the food web interactions in freshwater 
systems at every level and negatively affect organisms like 
zooplankton (Lind et al. 2018). Higher salinity may signifi-
cantly reduce fecundity and result in developmental delays 
as well as a decrease in the growth rate in cladocerans, 
especially in non-adapted daphniid populations (Goncalves 

ecosystems, and an anthropogenic-mediated temperature 
rise can lead to decreases in freshwater biodiversity and 
influence the species distribution and survival probabilities 
of many freshwater organisms (Clarke 2009; Hieno et al. 
2009; Ahmed et al. 2022). Thermal stress can also affect 
the physiological and biochemical processes of freshwater 
organisms and boost the bioaccumulation of chemicals in 
their body tissues, ultimately leading to higher chemical 
toxicity (Pajk et al. 2017). Increasing eutrophication can 
be proportional to rising temperatures, which can lead to 
rapid algal growth (Dunck et al. 2015; Gatti 2016; Schob-
ben et al. 2016). The chances of cyanobacteria outcompet-
ing other algae also increase with increasing temperatures 
(Ahmed et al. 2022). Moreover, nutrient enrichment causes 
harmful cyanobacterial blooms, which can lead to the 
release of toxins along with a decrease in primary produc-
ers due to decreased light penetration (Romanowska-Duda 

Fig. 3 Canonical Correspondence Analysis between rotifers and environmental factors
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Species like Ceriodaphnia cornuta, Moina micrura, and 
Filinia novaezealandiae were highly abundant, even in the 
ponds with high levels of disturbance. Species from the cla-
doceran genus Moina, rotifer genus Filinia and species like 
Trochosphaera aequatorialis and Ceriodaphnia cornuta 
are notably tolerant to water pollution (Edmondson 1959; 
Kumar and Kiran 2016; Sharaf et al. 2023). Moina micrura, 
in particular, is known to occur in habitats that (a) are eutro-
phic/disturbed and (b) have high conductivity (~ 8,899.53 
µS/cm) and total dissolved solids values (~ 5,197 mg/L), 
while Ceriodaphnia cornuta is a dominant species in some 
water bodies with heavy cyanobacteria blooms (Kumar and 
Kiran 2016; Gu et al. 2020; Padhye 2020). M. micrura was 
found in the highly disturbed ponds with a conductivity 
of up to 3,895 µS/cm and total dissolved solids of up to 
1,994.67 mg/L in our study. Some of these species showed 

et al. 2007). More than 70% of the cladoceran species in 
our study were non-daphniid (Table 1). In addition, salin-
ity can impact aquatic vegetation, which is associated with 
increased species richness among zooplankton (Nielsen et 
al. 2003).

In this study, rotifer species like Lecane curvicornis 
and Trichocerca similis, all the scraper-cladocerans (cla-
doceran capable of ‘scraping’ the substrate for food), such 
as Coronatella monancantha, Chydorus eurynotus and C. 
reticulatus, and the benthic/meio-benthic Ilyocryptus thai-
landensis were associated with the low disturbance ponds 
with aquatic vegetation (and lower temperatures and phyco-
cyanin values). Aquatic vegetation provides a more diverse 
environment and offers a rich food source for many zoo-
plankton species, as well as an efficient refuge area from 
predators (Stansfield et al. 1997; Choedchim et al. 2017). 

Fig. 4 Canonical Correspondence Analysis between cladocerans and environmental factors
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