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Abstract
Understanding just how the increase in the Earth's Surface Temperature (LST) is related to alterations of the urban climate 
—Surface Urban Heat Island (SUHI) or Urban Hotspots (UHS)— and with the deterioration of cities´ environmental quality 
has become a great challenge. Societies worldwide seek actions that might break these trends and improve the quality of life of 
local inhabitants in the face of climate change. In this research, and with the help of Sentinel 3 satellite images (day and night), 
the space–time variability of the LST and the SUHI over the metropolitan areas of the capitals of Andalusia (Spain) during the 
year 2021 was studied to evaluate how these variables, together with the Land Use/Land Cover (LULC), may have influenced 
the variability of the UHS and the level of thermal comfort according to the Thermal Field Variance Index (UTFVI). As results, 
an important spatial variability of the LST, SUHI, UHS, and the different classes of UTFVI is reported. The diurnal UHS are 
found mainly in rural areas without vegetation, whereas the night UHS are distributed in urban areas with impervious surfaces.

Keywords  Land surface temperature (LST) · Surface urban heat island (SUHI) · Landsat · Urban hotspots (UHS) · Urban 
thermal field variance index (UTFVI) · Land use indices

Introduction

In recent years, extreme weather events tied to climate 
change have been acknowledged as a most urgent chal- 
lenge facing society (Kovats et al. 2005; Song et al. 2020). 

Land modification through the expansion of urbanized areas 
due to population growth is one of the processes that most 
contributes to climate change (Li et al. 2011). Currently, 
according to a report by the United Nations, 50% of the 
world´s population is urban; and it is expected to increase 
to 70% by 2050 (UNO 2018). Thus, in the next 30 years, 
an increase of 2,500 million inhabitants (Mukherjee and 
Singh 2020) will mean an increase in impervious surfaces 
toward a coverage of more than 1,500,000 km2 (Schneider 
et al. 2010).

It is known that urban development is the main driver 
of economic and urban growth, implying an expansion of 
industry and transport, but it alters the urban microclimate 
through an increase in the Land Surface Temperature (LST) 
(Scolozzi and Geneletti 2012; Song et al. 2020). Recent 
studies have reported a positive correlation between urban 
areas and LST and a negative correlation between it and 
green areas: rural areas have lower temperatures than urban 
ones, but urban green areas have somewhat lower temper- 
atures than urban ones (Hua et al. 2020; Karakuş 2019; 
Tsou et al. 2017; Yang et al. 2020a). The greatest increases 
in temperature are mainly due to the phenomenon called 
Urban Heat Island (UHI), which produces a modification 
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whose intensity is heightened by society (Santamouris 
2020). Other studies have confirmed that the UHI gener- 
ates a series of climatic and economic problems in society, 
bearing an impact on the quality of life of people living in 
cities (Dwivedi and Mohan 2018; Macintyre et al. 2018; 
Rozos et al. 2013).

To determine such phenomena, remote sensing stands 
out among the different methodologies available. It allows 
for large-scale urban studies of LST, UHI, UTFVI and 
different Land Uses/Land Covers, or LULCs (Song et al. 
2018) by means of satellite images with infrared sensors 
(TIRS). To understand the effects that variations in the 
coverage of urban areas can have on the LST and the SUHI, 
it is essential to analyze land use and cover (Tepanosyan 
et al. 2021).

In short, changes in urban land cover cause changes in the 
microclimate, which in turn affect the physical and mental 
well-being of the inhabitants of urban areas (Das and Das 
2020). Spain is one of the European countries showing the 
greatest development of artificial coverage or built-up area. 
It is therefore necessary to ascertain the consequences of 
high temperatures for the everyday life for Spanish citizens, 
and report results that may be extrapolated to other geo- 
graphic realms.

The Urban Thermal Field Variance Index (UTFVI) is 
commonly used by the scientific community to assess the 
thermal quality of urban areas. It can identify high tem- 
perature spaces called Urban Hot Spots (UHS) (Amindin 
et al. 2021; Das and Das 2020; Sharma et al. 2021) and 
determine their association with LULC. Recent research 
has concluded that UHS are found within urban areas hav- 
ing higher UHI intensities and which correspond to areas 
of higher LST. These studies warn of significant increases 
in the LST of urban areas during the past decade, directly 
linked to an increase in UHS (Amindin et al. 2021; Luo 
and Wu 2021; Sharma et al. 2021). A study on the indus- 
trial development authority of New Okhla (India) between 
the years 2011 and 2019 reports respective LST and UHS 
increases of 6.4 K and 33.56% (Sharma et al. 2021); a 
study on the city of Ahvaz (Iran) between 1995 and 2018 
likewise reported increases in LST and UHS of 3 K and 
4%, respectively (Amindin et al. 2021); a study involv- 
ing five districts of the Suez Governorate area (Egypt) 
between 1988 and 2014 reported increases of 4.5 K in 
the LST and 16% in the areas classified as UHS (Ahmed 
2018).

Most of the studies to date refer to the LST obtained 
through one or several satellite images selected with the 
sole criterion of having low cloud cover. The UHS and 
UTFVI index of the investigated area are derived from the 
values of that or those days. Hence the results of these stud- 
ies correspond to the chosen day or days and to the time of 
passage of the satellite, which are extrapolated to longer 

periods with the aim of proposing global mitigation and 
resilience measures. This is an erroneous premise, as some 
studies underline the high variability of the LST and UHI 
both throughout the day and over time (Anjos et al. 2020; 
Emmanuel and Krüger 2012; Hidalgo and Arco 2021). 
Establishing effective climate change mitigation and resil- 
ience measures in urban areas therefore calls for know- 
ing the space–time variability of the UHS and the UTFVI 
index. For this reason, it is vitally important to work with 
images that orbit a point on the earth's surface several times 
a day (Sentinel 3 or Modis).

The objective of this research is to study the space–time 
evolution experienced by the UHS and the UTFVI index 
and look into their relationships with the LULC over the 
metropolitan areas of eight cities in the region of Andalu- 
sia (southern Spain) during the year 2021. To this end, and 
using Sentinel 3 images (day and night), LULC maps were 
generated, the LST was recovered, the SUHI was obtained, 
the evolution of the UHS was explored, and the UTFVI 
of the areas evaluated was investigated. Finally, statistical 
analysis served to determine correlations between the data 
obtained and the variables of study, using the Data Panel 
technique. The research questions that we intend to answer 
are the following: 1. Do the UHS and the UTFVI index of 
the areas under study present any time–space variability 
throughout the day? 2. Is there any relationship between the 
LULCs and the areas identified as UHS? 3. Could the results 
obtained in this research improve the measures and guide- 
lines for the future urban planning of the cities of Andalusia?

Materials and methods

Study area

The area under study pertains to the eight development 
plans of the subregional territory of the capitals of Anda- 
lusia, specifically the cities: Huelva, Cadiz, Sevilla, 
Malaga, Cordoba, Jaen, Granada and Almeria (Fig. 1). 
Andalusia has a population of 8,427,325 and an area of 
1,213,742 Ha, being the second largest region in Spain 
and the most populated one. The region features somewhat 
diverse background climates. According to the Koppen-
Geiger climate classification, Malaga, Sevilla, Jaen and 
Cordoba feature a Mediterranean climate (Csa), the cities 
of Huelva and Cadiz share a Mediterranean Oceanic cli- 
mate (Csb), and Almeria and Granada have a cold semi-
arid climate (Bsk).

Overall, Andalusia has hot, dry summers and mild, 
humid winters (de Castro et al. 2007). The region borders 
on the Mediterranean Sea to the south and mountains to the 
north. They act as a shield from the sea breezes. The aver- 
age altitude is 503 m above sea level. The number of hours 
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of sunshine per year ranges between 2,900 and 3,100, giv- 
ing an average of 7 to 8 h of sunshine per day. The average 
annual temperature fluctuates between 300 K in July and 
284 K in January, with a maximum in summer of 317 K and 
a winter minimum of 270 K. Table 1 displays the regional 
characteristics.

Methodology

The methodology carried out for the development of this 
research work is described in Fig. 2.

Through Sentinel 3A and 3B images, the day and night 
LST for the year 2021 was determined. This information 
was transferred to the open-source software QGIS, ver- 
sion 3.16.16. The LST and LULC images were acquired 
through ESA's Copernicus Open Access Hub for level 
2. The determination of land cover relied on a precision 
matrix to ensure accuracy; the area to be assessed under- 
went cross-tabulation between the reference category and 
the classified one (Campbell 1996). Its use in studies that 
require the classification of the land surface is well docu- 
mented (Xu et al. 2009; Yoo et al. 2019). Next, the SUHI 
was determined, and the diurnal and nocturnal UHS and 
UTFVI of the area under study were identified with the 
Raster calculator tool of the indicated software. Specialized 

software for data science, STATA version 16, was used for 
statistical analysis.

Sentinel 3 images

The Sentinel 3 s features a high-resolution scanning instru- 
ment, the Land Surface Temperature Radiometer. Sentinel 
3 Tier 2 products allow for direct and automatic download 
of Land Surface Temperature (LST) along with associated 
parameters such as Normalized Vegetation Index (NDVI), 
Land user/Land cover (LULC), Proportion vegetation (PV), 
and the normalized difference index (NDBI). In Sentinel 
LSTR level 2 processing, a LULC map is stored as an aux- 
iliary data file containing a high spatial resolution of the 
vegetation and cover type.

The images used were acquired through ESA's Coperni- 
cus Open Access Hub for level 2 and with a cloudiness level 
of less than 15% to ensure accuracy of the pixel values of the 
LST and the subsequent calculation of SUHI. The selected 
images correspond to twenty-four days in the year 2021. 
They were distributed equally between the months of Janu- 
ary and December. The general schedule for the satellites to 
pass over Andalusia is between 10:00 and 11:00 a.m. and 
21:00 and 22:00. In this way, 48 images have been used, 24 
pertaining to the morning and 24 to the evening.

Fig. 1   Study area: Andalusia, Spain
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The first stages of processing entailed reclassification 
at a resolution of 100 m, atmospheric correction using the 
Sentinel 3 Application Platform (SNAP) Toolbox, and geo-
referencing using the ETRS89/UTM Zone 30 N projection 
system. Sharpening, allowing the resolution to be changed 
from 1000 to 100 m, was performed with the TsHARP algo-
rithm, which relies on a linear regression model. Both highly 
precise and simple to apply, it is commonly used by the sci-
entific community for this type of study (Agam et al. 2007a, 
b; Huryna et al. 2019).

Land surface temperature estimation (LST)

The Sentinel algorithms that allow for obtaining the LST 
are based on the concept of absorption difference (McMillin 
1975), according to which it is possible to correct the 
atmospheric effects by means of the difference between 
the two wavelengths of the TIRS band. Previous studies 
establish the precision and validation of these algorithms 
in Sentinel-3 images (Ruescas et al. 2016). The algorithm 
of the product SLSTR Sentinel internally includes the 
emissivity of the land according to the following equation 
(Pérez et al. 2021; Remedios and Emsley 2012):

where LST is the temperature of the Earth's surface in 
degrees K; a, b and c are the ground cover coefficients; and 

(1)LST = af ,i,pw + bf ,i(T11 − T12)

1

cos( �
m ) +

(

bf ,i + cf ,i
)

T12

T11 and T12 are the brightness temperatures in the upper part 
of the atmosphere on bands 8 and 9, respectively. Subscript 
f corresponds to the vegetation fraction; i denotes vegeta 
tion type; and pw is the atmospheric column´s water vapor 
content. In turn, θ is the zenith angle of view of the satellite 
located in the metadata file, while m is a dependent variable 
of θ (Remedios and Emsley 2012; Yang et al. 2020b).

Sentinel 3 products with processing level 2 allow for 
direct determination of the LST, as the application of the 
algorithm (1) is performed internally by the open-source 
Sentinel Application Platform (SNAP) software. After deter- 
mining the LST of the investigated cities, data were exported 
in raster images using QGIS software.

Surface urban heat island estimation

According to the literature, the SUHI is derived from the 
temperature difference between measurements made simul- 
taneously in the urban area and the rural area (Oke 1987). 
Therefore, the SUHI can be determined according to Eq. 2:

The urban LST values correspond to the average values of 
the pixels located within the urban area. The rural areas chosen 
to derive the SUHI correspond to places where the Spanish 
State Meteorological Agency (AEMET) has a rural weather 
station, generally 15–16 km outside the cities, and having 
no paved areas within a radius of 1000 m. Using the raster 

(2)SUHI = LSTurban − LSTrural

Table 1   Characteristics of the cities of Andalusia

Geographic 
information

Sevilla Cordoba Jaen Granada Huelva Cadiz Malaga Almeria

Downtown 
location 
UTM

37.375 N, 
-6.025 W

37.891 N, 
-4.819 W

37.780 N, 
-3.831 W

37.111 N, 
-3.362 W

37.270 N, 
-6.974 W

36.516 N, 
-6.317 W

36.765 N, 
-4.564 W

36.841 N, 
-2.492 W

Climate Zone Csa Csa Csa Bsk Csb Csb Csa Bsk
Mean annual 

T. (K)
291.7 290.9 290.5 288.6 291 291 291.6 291

Average 
annual 
rainfall 
(mm)

576 612 552 450 467 597 520 228

Total area 
(Ha)

397,042 266,028 168,370 35,806 96,885 60,553 133,015 56,043

Total urban 
area (Ha)

6869 3135 943 2178 1487 734 5860 1495

Population in 
2021 (hab)

1,548,741 1,528,000 222,844 541,465 235,003 639,098 1,007,331 270,415

Urban mean 
elevation 
(masl)

11 106 570 680 24 13 8 16
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calculator command of the QGIS software and the exported 
Landsat images, the SUHI of Granada was determined by 
Eq. 2.

Urban hotspots (UHS)

Hot spots are identified based on the LST within the study 
area. They are zones of variable size found within places 
giving the highest temperatures, and they are usually con- 
sidered as uncomfortable for human activity. These spaces 
are determined using the following formula (Guha 2017; 
Sharma et al. 2021):

where µ and � are respectively the mean value and the stand- 
ard deviation of the LST of the zone in ºC. Using this equa- 
tion, the areas that present urban zones with LST values 
above the mean and with a confidence interval greater than 
95% can be determined.

(3)LST > 𝜇 + 2 ∗ 𝜎

Urban thermal field variance index (UTFVI)

This index allows the value of each pixel of the urban area 
to be appraised in relation to the entire area, so as to obtain a 
classification of environmental quality (Sobrino and Irakulis 
2020). The UTFVI values fall into six typologies, in turn 
presenting six classes of ecological evaluation (Tables 9 and 
10). Each is related to the degree of presence of the SUHI 
phenomenon and its impact on the environmental quality of 
the population (Liu and Zhang 2011). The UTFVI classes, 
based on the strength of the SUHI, range from 1 (excellent) 
to class 6 (worst), determined using the following equation 
(Guha et al. 2018):

where LST is the temperature of each pixel (K) and Tmean is 
the average LST of the entire area (K). UTFVI values below 
zero indicate a complete absence of the UHI phenomenon, 

(4)UTFVI =
LST − Tmean

Tmean

Fig. 2   Methodology
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signalling maximum thermal comfort, hence an area classi- 
fied as affording excellent environmental quality. As UTFVI 
values increase, SUHI intensity also increases, so that ther- 
mal comfort deteriorates (Sharma et al. 2021).

Strategy of analysis

Panel data refers to statistical analysis that combines a tem- 
poral dimension (time) with a cross-sectional dimension 
(data or values). This method is often cited in the literature 
and involves the use of multiple regression models (Alcock 
et al. 2015; Chen et al. 2011; Fang and Tian 2020), which 
allows for a larger amount of data to be included than under 
traditional methods. There are three calculation options: 
ordinary squares method (OSM), generalized least squares 
(GLS), and intragroup estimation method (IEM) (Labra 
2014). To ascertain which of these three should be applied, 
the following steps must be carried out (Chen et al. 2011). 
1) Using the Hausman test, determine if the effects of the 
analysis are fixed or random; this allows the method to deter- 
mine different hypotheses about the behaviour of the residu- 
als of statistical analysis. 2) Evaluation of the model using 
the Wooldridge and Wald tests. These stages will indicate 
the most appropriate method to be used (Seto and Kaufmann 
2003). Our statistical analysis was performed with STATA 
software, version 16. After carrying out the indicated tests, 
the GLS method with random effects was used according 
to Eq. 5.

where �it is the error of the model, �i represents the individ- 
ual effects, Xit are explanatory variables, β is an independent 
variable, t = time and i = individual.

Results

LULC analysis

Analysis of the coverage of the studied areas is represented 
in Fig. 3 and Table 2.

In general, the coverage with the largest area is called 
sparse vegetation, with an average value of 33.3%; mosaic 
cropland occupies an average value of 18.6%, and shrubland 
an average value of 13.5%. In contrast, the coverages hav- 
ing the smallest areas would be flooded vegetation with an 
average value of 0.4%, grassland with an average value of 
0.5% and closed broad-leaved deciduous forest and mosaic 
grassland, each with an average coverage of 0.7%.

These values reflect the vegetation and crops typical of 
regions by the Mediterranean Sea basin, and fit the climate 
types of the Köppen-Geiger classification. Seen in Table 3 

(5)Yit = �Xit + �i + �it

are the results of the precision matrix carried out to verify 
the LULC maps obtained. The precision was 80%, with 
a 95% confidence interval that varies between 0.77 and 
0.89 points. The Tau value is 0.783; the Kappa coefficient 
obtained is 0.815. After determination of the matrix, how- 
ever, manual correction was applied to the points that did 
not coincide with the LULC maps obtained using Sentinel 
2 satellite images.

Spatio‑temporal evaluation of LST

Figures 4 and 5 show the space–time analysis of the day and 
night LST of the areas studied.

Table 4 presents the measures of central tendency and 
dispersion of both variables. The mean maximum daytime 
values range between 304.2 K for the city of Cordoba and 
308.3 K in the city of Almería. The average diurnal mini- 
mum values range between 291.4 K in Jaen and 298.1 K in 
Huelva. The average daytime values vary between 299.6 K 
in the cities of Jaen and 302.9 K in the city of Almeria. 
Daytime LSTs are higher in coastal cities (301.8 K) than for 
inland cities (300.6 K). The highest LST values are reported 
in rural areas, whereas the lowest values of LST occur in 
urban areas.

The mean maximum night values range between 293.2 K 
for the city of Sevilla to 291.2 K for Huelva. The mean night 
minimum values range between 284.2 K in the city of Malaga 
and 287.6 K in Sevilla. The average night values vary between 
286.8 K in Huelva and 285.9 K in Sevilla. Nocturnal LSTs are 
observed to be higher in inland cities (288.1 K) as opposed 
to coastal cities (287.9 K). Overall, the highest LST values 
are reported in urban areas, the lowest values corresponding 
to rural areas.

Spatio‑temporal evaluation of SUHI

Figures 6 and 7 show the space–time analysis of the day and 
night SUHI of the areas under study.

Table 5 presents the measures of central tendency and 
dispersion of the SUHI. The mean maximum daytime SUHI 
values range between 6.4 K in Cadiz and 1.8 K in the city 
of Granada. The average diurnal minimum values range 
between -7.7 K in the city of Jaen and -1.9 K for Huelva. In 
turn, the average daytime values range from 2.5 K for Huelva 
to 0.1 K for Sevilla. Daytime SUHI values are found to be 
higher in coastal areas (1.4 K) than inland areas (0.8 K). As 
with the LST, the highest SUHI values are seen for rural 
areas, and the lowest in urban areas.

The mean maximum night values of SUHI range between 
4.0 K in the city of Cadiz and 1.7 K in Granada. The mean 
minimum night values range from -3.8 K for Malaga to 
-0.7 K for Huelva. The average night values are between 
0.3 K in the city of Malaga and 1.7 K in Jaen. Nocturnal 
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Fig. 3   LULC coverage of the areas under study
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SUHI are higher in inland areas (1.0 K) as opposed to 
coastal areas (0.7 K). As occurs with the nocturnal LST, the 
highest SUHI values are reported in urban areas, whereas 
the lowest SUHI values occur in rural areas.

Spatio‑temporal evaluation of UHS

Figures 8 and 9 offer space–time analysis of the day and 
night UHS of the areas under study.

Table 6 presents the measures of central tendency and dis- 
persion. In general terms, the area occupied by daytime UHS 
zones is seen to oscillate between 8.1% in the city of Cordoba 
(21614 ha) and 32.9% in the city of Huelva (31906). The aver- 
age value of extension of the diurnal UHS zones in the studied 
areas is 21.2%. However, extension of UHS zones is greater in 
coastal cities (25.1%) than in inland cities (17.3%). The UHS, 
like the high LST, pertains to rural areas as opposed to urban 
areas, where UHS areas are barely identified.

Deserving mention with regard to nocturnal UHS is the 
wide range: between 3.1% for the city of Seville (12500 ha) 
to 26.1% for Jaen (43978 ha). The average value of the 
extension of the nocturnal UHS zones in the studied areas is 
14.4%. Yet again, the extension of the UHS zones is greater 
for coastal cities (15%) than inland ones (13.7%). The UHS 
also tend to be located in urban areas rather than rural areas.

Next, the day and night zones identified as UHS were 
extracted and related to the LULC coverage plan. This was done 
to determine if certain coverage types are more closely linked 
to high temperatures and located within the areas catalogued 
as UHS. The results, given in Tables 7 and 8, indicate that dur- 
ing the morning UHS zones are concentrated in areas having 

coverage without vegetation, in crop areas, scrubland, and rain- 
fed areas. In contrast, surfaces identified as forest or man-made 
surface are not within UHS zones. Table 8 shows how, at night, 
the areas identified as UHS correspond to artificial surface cov- 
erage, zones without vegetation, and scrub. Areas identified as 
forest, grassland, or cropland are not within UHS zones.

Evaluation using UTFVI

Figures 10 and 11 offer the space–time analysis of the day 
and night UTFVI evaluation of the study areas.

Tables  9 and 10 show the variability of each of the 
UTFVI zones. In general terms, the areas under study pre- 
sent two major UTFVI surfaces. During the morning, areas 
2 (23.5%) and 3 (35.9%) predominate. The areas with the 
best ratings (1: excellent, 2: good, and 3: normal) are located 
in urban areas; the areas with the worst ratings (4: bad, 5: 
worse, and 6: worst) are located in rural areas. Contrariwise, 
according to night readings, areas 3 (49.0%) and 4 (25.5%) 
predominate. The areas with the best ratings are rural, and 
those with the worst ratings are urban. The variability of the 
zones between the day and night measurements is as follows: 
1 (-17.3%), 2 (-4.5%), 3 (13.1%), 4 (9.4%), and 5 (-0.7%).

Statistical analysis

Relationship between LULC and LST

The statistical analysis carried out was of great importance to 
arrive at correlations between the day and night LST and the 
LULC land cover in the areas under study. First, the Pearson 

Table 2   Land cover of the areas under study

LULC (%) Granada Cordoba Jaen Sevilla Huelva Cadiz Malaga Almeria

Water 0.5 0.7 1.3 2.3 2.4 0.2
Closed needle-leaved 

forest
1.0 0.7 0.9 0.1 2.6 0.2 6.0 0.3

Irrigated cropland 2.2 0.5 1.7 1.0
Base area unknown 0.3 0.2 0.5 2.4 0.1 1.2
Rainfed cropland 14.3 13.7 10.8 27.8 11.4 22.9 3.6 1.7
Mosaic grassland 0.0 0.2 0.1 0.3 0.3 0.6 3.1
Base area calcites 3.8
Mosaic cropland 17.9 23.5 19.8 32.9 21.5 15.5 14.1 3.8
Artificial surface 19.1 4.3 4.7 3.3 4.4 11.2 8.5 4.0
Shrubland 5.6 24.1 6.9 5.1 20.6 2.5 39.1 4.3
Mosaic forest 5.5 3.5 3.3 5.7 7.6 5.7 36.5
Sparse vegetation 38.8 24.4 52.2 24.1 30.5 33.8 22.3 40.3
Closed broad-leaved 

deciduous forest
2.6 0.9 0.5 0.1 0.2 0.1

Grassland 0.5
Flooded vegetation 0.2 0.6



533Urban Ecosystems (2023) 26:525–546	

1 3

correlation coefficient was determined, then the Data Panel was 
developed. For the latter, the Generalized Least Squares (GLS) 
method was applied through Eq. 5. Results are indicated in 
Tables 11 and 12.

In general, the LULC shows strong correlations with 
the LST. In the case of the daytime LST, the correlation is 
negative (-0.685) while for the nighttime LST the correla- 
tion is positive (0.710). The results of the statistical 
analysis using the Data Panel technique signal a statistically 
significant and negative relationship of 95% between the 
LULC variable and the diurnal LST, yet they give a sta- 
tistically significant and positive relationship of 99% with 
the nocturnal LST variable. The values of R2, F statistic 
and Prob > chi2 obtained show good concordance between 
the dependent variable and the independent ones used, 
with an adjustment level greater than 99% significance.

Relationship between LST and SUHI

The results of the data analysis between the LST and the 
day and night SUHI are indicated in Tables 13, 14 and 15.

As observed, the daytime LST presents a strong posi- 
tive correlation with the daytime SUHI (0.715), while the 
nighttime LST also presents a strong positive correlation 
with the nocturnal SUHI (0.642). The rest of the possible 
relationships show low correlation.

The results of the statistical analysis using the Data 
Panel technique report a statistically significant and 

positive relationship above 99% between the daytime 
LST and SUHI variables and between the nighttime LST 
and SUHI variables. The values of R2, F statistic and 
Prob > chi2 obtained show good agreement between the 
dependent variable and the independent ones used, the 
adjustment level being higher than 99% significance as 
Prob > chi2 = 0.000.

Relationship between UHS and LST, SUHI and LULC

The results of the data analysis are indicated in Tables 16, 
17 and 18.

In general, diurnal UHS values present strong positive 
correlations with diurnal LST (0.659) and diurnal SUHI 
(0.872), but a very weak relationship with LULC (-0.011). 
On the contrary, the nocturnal UHS present strong positive 
correlations with the nocturnal LST (0.703) and the noctur- 
nal SUHI (0.823), and a weak relationship with the LULC 
(0.176).

According to our statistical analysis using the Data Panel, 
there is a statistically significant and positive relationship 
above 99% between the diurnal and nocturnal UHS and 
SUHI variables. The diurnal and nocturnal UHS and LST 
variables report a positive relationship of 95%. The values 
of R2, F statistic and Prob > chi2 obtained show good con- 
cordance between the dependent and independent variables 
used, with an adjustment level of 99% significance, since 
Prob > chi2 > 0.000.

Table 3   Precision matrix

1. Water, 2. Closed needle-leaved forest, 3. Irrigated cropland, 4. Base area unknown, 5. Rainfed cropland, 
6. Mosaic grassland, 7. Base area calcites, 8. Mosaic cropland, 9. Artificial surface, 10. Shrubland, 11. 
Mosaic Forest, 12. Sparse vegetation, 13. Closed broad-leaved deciduous forest, 14. Grassland, 15. Flooded 
vegetation. PA (15): Producer accuracy. UA (15): User accuracy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 UA (%)

1 20 0 0 0 0 0 0 0 0 0 0 0 1 1 0 90
2 0 20 0 0 0 1 0 0 1 0 0 0 0 0 0 90
3 0 0 20 0 2 0 0 0 0 0 1 1 0 0 0 80
4 0 0 5 20 0 2 0 0 0 0 0 0 2 1 0 50
5 0 0 0 2 50 0 0 2 0 1 1 1 0 0 0 86
6 0 0 0 0 0 20 0 0 0 0 0 1 1 0 0 90
7 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 100
8 1 1 1 0 0 0 0 100 2 3 2 5 1 0 0 84
9 2 2 1 0 0 0 0 1 60 0 0 3 2 1 0 80
10 0 1 0 0 0 0 0 2 3 100 2 3 1 1 1 86
11 0 0 0 0 0 0 0 1 1 1 60 2 1 1 1 87
12 0 3 0 0 1 1 0 1 1 0 0 100 3 0 0 90
13 1 2 1 0 2 2 0 0 0 0 1 1 20 0 0 50
14 2 0 1 0 3 1 0 0 0 1 1 0 0 20 0 60
15 1 0 1 0 0 0 0 0 0 0 0 0 0 0 20 90
PA (%) 65 55 50 90 84 65 100 93 90 94 87 83 40 75 90 650
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Discussion

This study focuses on the space–time variability of the LST, 
SUHI, UHS and UTFVI during the year 2021 in the “urban 
agglomeration areas” of the capitals of Andalusia, further- 
more exploring the relationship between the LST and the 
LULC index. Our aim to determine the spatial variability 
of the UHS and UTFVI variables between day and night 

readings was intended to yield a global vision of climate 
change implications, perhaps pointing the way to useful 
mitigation measures for the future.

In the Mediterranean region studied here, the average 
daytime LST is clearly seen to be higher in rural than 
in urban areas. This circumstance is motivated by the 
fact that in the early hours of the morning solar radia- 
tion is lower in urban areas than in rural areas. This is 

Fig. 4   Variability of the diurnal LST of the area studied
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Fig. 5   Variability of the nocturnal LST of the studied area

Table 4   Dispersion measures of 
daytime and nighttime LST

LST Daytime (K) LST Nighttime (K)

Max Min Mean SD Max Min Mean SD

Huelva 305.6 298.1 300.7 1.1 291.2 287.3 286.8 0.7
Cadiz 305.4 294.9 301.1 1.0 293.0 287.2 288.8 1.1
Sevilla 306.6 297.3 302.1 1.0 293.2 287.6 289.5 0.8
Malaga 307.4 297.9 302.6 1.2 291.5 284.2 287.5 1.3
Cordoba 304.2 294.9 298.9 2.1 292.2 286.8 288.6 0.8
Jaen 304.6 291.4 299.6 1.2 292.7 285.9 287.9 1.3
Granada 304.1 295.9 299.6 1.3 293.0 284.6 286.6 0.7
Almeria 308.3 297.6 302.9 1.1 291.6 286.3 288.5 0.8
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due to the fact that shade is generated by buildings and 
trees, to the heterogeneous system of impermeable walls 
and great thermal absorption, and to the cooling rates 
undergone by areas with vegetation, as well as the heat- 
ing rates of areas with scarce vegetation and bare soil. 
In this way, the buildings and trees in the city create 
shade that prevents solar radiation from heating up the 
impermeable walls of urban areas, and hence from later 

giving off high doses of heat and altering the LST of the 
area (Lemus et al. 2020; Li and Meng 2018; Yang et al. 
2020a). In turn, numerous studies carried out with satel- 
lite images have shown that the vegetation of urban areas 
has a cooling effect (Du et al. 2020; Lin et al. 2015; Qiu 
et al. 2017), which ranges between 1 and 3 K, whereas 
in areas with little vegetation and/or bare soil, heating 
occurs. These effects occur not only due to the rates of 

Fig. 6   Variability of the diurnal SUHI of the studied areas
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Fig. 7   Variability of the nocturnal SUHI of the studied areas

Table 5   Diurnal and nocturnal 
SUHI dispersion measurements

SUHI Daytime (K) SUHI Nighttime (K)

Max Min Mean SD Max Min Mean SD

Huelva 5.4 -1.9 2.5 1.1 3.2 -0.7 1.0 0.7
Cadiz 6.4 -4.1 2.2 2.2 4.0 -1.8 0.4 1.2
Sevilla 3.5 -5.7 0.1 1.8 3.2 -2.4 0.5 0.8
Malaga 4.5 -8.1 0.8 1.8 2.5 -3.8 0.3 1.1
Cordoba 6.2 -4.4 0.9 2.1 3.2 -2.2 1.2 0.8
Jaen 5.6 -7.7 0.4 2.5 3.7 -2.1 1.7 1.3
Granada 1.8 -3.4 0.3 0.3 1.7 -1.7 1.2 0.6
Almeria 4.3 -6.4 0.3 1.4 3.6 -1.7 1.1 1.0
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cooling and heating by convection and transpiration, but 
can also be attributed to the processes of shading and 
evapotranspiration that would alter the LST of the zones. 
Contrariwise, the reason why the average night LST is 
lower in rural areas than in urban areas is that once the 
sun goes down, the former tends to cool quickly, but 
the building materials of the latter retain heat. The use 
of waterproof materials with high thermal absorption 
inside cities turns them into reservoirs of heat —in the 

afternoons they give off the heat absorbed during the 
day. This situation, previously studied by other authors, 
is now known as an urban heat island (Saaroni et al. 
2018; Wu et al. 2019; Yang et al. 2020a).

Considerable spatial variability of the areas classified 
as UHS is evidenced between the day and night data of 
the areas studied. This is clearly motivated by the spatial 
range in terms of LST and SUHI values already outlined, 
corroborated through statistical analysis. Strong positive  

Fig. 8   Variability of the diurnal UHS of the studied areas



539Urban Ecosystems (2023) 26:525–546	

1 3

Fig. 9   Variability of the nocturnal UHS of the studied areas

Table 6   LST for the 
determination of UHS together 
with the occupation of these 
zones

UHS Daytime UHS Nighttime

Non UHS (K) UHS (K) UHS (ha) UHS (%) Non UHS (K) UHS (K) UHS (ha) UHS (%)

Huelva  < 303.0  ≥ 303.0 31906 32.9  < 290.0  ≥ 290.0 6542 6.8
Cadiz  < 303.0  ≥ 303.0 15949 26.3  < 291.0  ≥ 291.0 4734 7.8
Sevilla  < 304.0  ≥ 304.0 126747 31.9  < 291.0  ≥ 291.0 12500 3.1
Malaga  < 305.0  ≥ 305.0 28893 21.7  < 290.0  ≥ 290.0 32736 24.6
Cordoba  < 303.1  ≥ 303.1 21614 8.1  < 290.3  ≥ 290.3 43987 16.5
Jaen  < 302.0  ≥ 302.0 26767 15.9  < 288.5  ≥ 288.5 43978 26.1
Granada  < 302.1  ≥ 302.1 4707 13.1  < 287.0  ≥ 287.0 3208 9.0
Almeria  < 305.0  ≥ 305.0 8318 22.0  < 290.0  ≥ 290.0 11729 7.8
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correlations were found for both day- and nighttime 
between the LST and SUHI variables, as well as between 
these and the UHS. Yet low correlations were found 
between UHS and LULC, because the diurnal and noctur- 
nal variability of the UHS does not occur for all the LULC 
coverages. Thus, in the morning, the UHS are distributed 
mainly over covers lacking vegetation, or crops, scrub and 
rainfed areas; at night they correspond to artificial surface 
covers and without vegetation. Numerous studies using 
satellite images (Guha et al. 2018; Shahfahad et al. 2021; 
Sharma et al. 2021) show similar distributions of UHS on 
the LULCs reviewed, validating the results we obtained. 
However, other studies locate the UHS by means of an 
image at the moment of passage of the satellite over the 
investigated area, not reporting the spatial variability that 
is evidenced in this work.

Given that the region studied here lies by the Medi- 
terranean Sea basin, the large surface of areas without 
vegetation extracted from the LULC plans stands out, 
significantly influencing the development of UHS areas. 
This could be due to an abandonment of farmland and 
a progressive decrease in rainfall as a result of climate 
change (Li et al. 2002; Nicholson and Farrar 1994). The 
first aspect is documented since the nineteenth century 
in the Mediterranean basin (Benayas et al. 2007). The 
agricultural crisis that Spain suffered at the beginning 
of the twentieth century, the country´s economic devel- 
opment, high production costs, droughts, progressive 

industrialization and processes of speculation involving 
these soil types —to transform them into urban terrain 
and obtain a high profit— are all factors contributing 
to the increase in this type of coverage (Romero and 
Martínez 2014). Meanwhile, there has been a decrease 
in rainfall; according to data from the State Meteorologi- 
cal Agency (AEMET), 17 of the last 32 years have been 
classified as very dry in Spain. It is therefore evident 
that climatic conditions alter local land covers, and these 
in turn alter the patterns of LST and SUHI.

Finally, an important spatial variability and deteriora- 
tion of the general thermal comfort (UTFVI) is identified 
between the day and night data of the areas under study. Dur- 
ing the mornings, the predominant classes in each territory 
studied are 3 and 2, while at night the predominant classes 
are 3 and 4. The distribution of classes in the morning is 1, 
2 and 3 in urban areas and 4, 5 and 6 in rural areas, whereas 
at night classes 1, 2 and 3 are distributed in rural areas and 
classes 4, 5 and 6 in urban areas. Again evident is the effect 
of spatial variability reflected in the LST values outlined 
above. In the morning the LST is higher in rural areas; at 
night the LST is higher in urban areas owing to waterproof 
construction materials and high thermal absorption. A num- 
ber of studies (Guha 2017; Luo and Wu 2021; Majumder 
et al. 2021; Shahfahad et al. 2021) corroborate significant 
increases in classes 4, 5 and 6 of the UTFVI index motivated 
by a growth of urban areas that leads to an increase in the 
LST. Our results come to support such findings.

Table 7   UHS occupancy and its 
relationship with day LULCs

LULC Huelva Cadiz Sevilla Malaga Cordoba Jaen Granada Almeria

Rainfed cropland 10.5 44.1 30.8 3.4 35.7 25.0
Mosaic cropland 44.1 46.2 25.9 35.7 34.9 29.7
Mosaic forest 13.2 11.8 7.7 12.5
Grassland 46.1 18.6
Shrubland 19.7 15.4 51.7
Sparce vegetation 10.5 13.8 28.6 46.5 57.4 51.7
Artificial surface 5.2 12.5 10.8

Table 8   UHS occupancy and its 
relationship with night LULCs

LULC Huelva Cadiz Sevilla Malaga Cordoba Jaen Granada Almeria

Rainfed cropland 9.2 5.6
Mosaic cropland 3.0
Mosaic forest 5.9 1.5 23.5 3.0 3.3
Grassland 5.3
Shrubland 23.1 25.0 20.0 43.1 18.4 6.1
Sparce vegetation 15.0 5.2 13.2 16.5 18.5 13.3
Artificial surface 67.7 60.0 74.1 51.7 61.6 54.4 59.4 82.3
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Fig. 10   Variability of the diurnal UTFVI of the studied areas
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Fig. 11   Variability of the nocturnal UTFVI of the studied areas

Table 9   Daytime UTFVI occupancy

Class UTFVI SUHI presence Ecological index Huelva Cadiz Sevilla Malaga Cordoba Jaen Granada Almería

1 < 0 None Excellent 3.6 28.2 13.1 13.3 53.6 44.8 22.9 21.4
2 0–0.005 Weak Good 29.8 17.3 8.3 18.9 20.1 19.4 23.5 41.1
3 0.005–0.010 Middle Normal 44.1 27.2 47.1 46.3 16.6 25.2 35.9 32.8
4 0.010–0.015 Strong Bad 22.1 22.1 28.6 20.1 8.8 10.0 16.1 4.3
5 0.015–0.020 Stronger Worse 0.4 5.1 2.9 1.4 1.0 0.5 1.5 0.4
6 > 0.020 Strongest Worst 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table 10   Nighttime UTFVI occupancy

Class UTFVI SUHI presence Ecological index Huelva Cadiz Sevilla Malaga Cordoba Jaen Granada Almería

1 < 0 None Excellent 0.0 27.9 0.2 6.0 0.0 9.4 0.0 21.4
2 0–0.005 Weak Good 10.7 42.3 49.8 11.5 4.5 11.0 0.7 41.1
3 0.005–0.010 Middle Normal 62.1 20.2 46.0 52.8 52.9 39.7 65.6 32.8
4 0.010–0.015 Strong Bad 26.8 8.6 3.7 29.2 39.4 39.9 33.7 4.3
5 0.015–0.020 Stronger Worse 0.4 1.0 0.2 0.6 3.2 0.0 0.0 0.4
6 > 0.020 Strongest Worst 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 11   Pearson correlation coefficient LST and LULC

LULC LST Daytime LST Nighttime

LULC 1.000
LST Daytime –0.687 1.000
LST Nighttime 0.710 0.173 1.000

Table 12   LULC and LST results

β Coefficient, sd Standard deviation, R2 Linear regression coefficient, 
F F statistic
Robust standard errors: *p < 0.05, **p < 0.01 and ***p < 0.001

β ρ Sd

LST daytime –0.3963 0.012* 0.2308
LST nighttime 1.018 0.004** 0.5750

R2 = 0.33 F = 10.33 Prob > chi2 = 0.006

Table 13   Pearson correlation coefficient for LST and SUHI

LST daytime LST nighttime SUHI daytime SUHI nighttime

LST daytime 1.000
LST nighttime 0.173 1.000
SUHI daytime 0.715 0.125 1.000
SUHI nighttime -0.015 0.642 0.123 1.000

Table 14   LST and SUHI daytime results

β Coefficient, sd Standard deviation, R2 Linear regression coefficient, 
F F statistic
Robust standard errors: *p < 0.05, **p < 0.01 and ***p < 0.001

β ρ sd

SUHI daytime 0.7624 0.000*** 0.0345
R2 = 0.37 F = 476 Prob > chi2 = 0.000

Table 15   LST and SUHI nighttime results

β Coefficient, sd Standard deviation, R2 Linear regression coefficient, 
F F statistic
Robust standard errors: *p < 0.05, **p < 0.01 and ***p < 0.001

β ρ sd

SUHI nighttime 0.6631 0.000*** 0.0367
R2 = 0.39 F = 325 Prob > chi2 = 0.000

Table 16   Pearson's correlation coefficient for UHS, LST, SUHI and 
LULC indices

UHS 
daytime

LST 
daytime

SUHI 
daytime

UHS 
nighttime

LST 
nighttime

SUHI 
nighttime

LULC

UHS daytime 1.000
LST daytime 0.659 1.000
SUHI daytime 0.872 0.715 1.000
UHS nighttime 0.003 –0.049 –0.081 1.000
LST nighttime 0.073 0.273 0.125 0.703 1.000
SUHI nighttime –0.055 –0.015 0.123 0.823 0.642 1.000
LULC –0.011 –0.678 0.238 0.176 0.710 0.249 1.000

Table 17   Results for daytime UHS with daytime LST, daytime SUHI, 
and LULC

β Coefficient, sd Standard deviation, R2 Linear regression coefficient, 
F F statistic
Robust standard errors: *p<0.05, **p<0.01 and ***p<0.001

β ρ sd

LST daytime 0.0386 0.035* 0.1832
SUHI daytime 0.0903 0.000*** 0.1393
LULC –0.020 0.449 0.0026

R2 = 0.53 F = 61.85 Prob > chi2 = 0.000
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Conclusions

The area and time period studied (Andalusia, southern 
Spain, 2021) yield daytime mean LSTs that are greater than 
nighttime mean LSTs. The daytime LST was higher in rural 
areas than in urban ones. In contrast, the nocturnal LST was 
higher in urban areas. This means a high spatial variability is 
present between day and night readings in the determination 
of the UHS and the UTFVI index. The diurnal UHS are dis- 
tributed mainly over LULC covers without vegetation, crops, 
scrub and rainfed areas, while at night they correspond to 
artificial surface covers and those without vegetation. It is 
evident that the transformation of natural and agricultural 
land into urbanized areas —without vegetation— for spec- 
ulative purposes would be a main reason behind the high 
LST and SUHI values, eventually leading to larger areas 
identified as UHS and a deterioration of thermal comfort. 
The results of the study come to confirm previous findings.

These results underline the need for significant efforts 
by the governing public administrations to modify the 
upward trend of LST, SUHI, UHS and UTFVI values in 
both urban and rural areas, by formulating new general 
plans for urban agglomeration. Strategies must promote an 
increase in green spaces within urban areas, together with 
the rehabilitation of buildings in historic downtown areas, 
rather than the development of rural areas in disuse. At 
the same time, a proliferation of plantations and vegetated 
areas could reinforce the positive effects of rural areas. 
This would mean a greater proportion of vegetation cover 
that receives solar radiation but does not revert it to the 
atmosphere —as is now the case with impermeable mate- 
rials and surfaces— to minimize UHS zones and improve 
the thermal environment.
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