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Abstract
Soil microbes play important roles in many terrestrial ecological processes. Rapid urbanization causes drastic changes in land 
use and land cover, thus forming a heterogeneous environmental gradient and directly or indirectly affecting the composition 
and function of soil microbial communities. To investigate the effects of rapid urbanization on soil microbial community 
composition and function, we analyzed soil microbial communities by quantifying phospholipid fatty acids among the land 
cover categories (rural forests, urban low-impacted forest fragments, urban high-impacted forest fragments, and urban parks) 
in Guangzhou. We found that soil microbial communities differed across this urbanization gradients. Specifically, compared 
to the rural forest ecosystems, the biomass of Actinobacteria and gram-positive bacteria in urban high-impacted forest frag-
ments ecosystems were 53.8% and 31.23% greater, respectively, while the biomass of Actinobacteria and gram-positive 
bacteria in urban park ecosystems were 67.8% and 37.45% greater respectively. Microbial communities of rural forests and 
urban low-impacted forest fragments, characterized by lower urbanization intensity, were dominated by the microbial groups, 
19:0cy, i16:0, i15:0, 15:0, 18:0 (bacterial biomarkers), 18:2ω6c (fungal biomarkers), and 10Me17:0 (Actinobacterial bio-
markers), whereas the urban park and urban high-impacted forest fragments, characterized by higher urbanization intensity 
were dominated by the microbial groups, 18:1ω5c, 18:1ω7c, cy17:0, i17;0, a17:0, 16:1ω9c, a15:0, i14:0 (bacterial biomark-
ers), 16:1ω5c (fungal biomarkers), and 10Me16:0 (Actinobacterial biomarkers). Fungal biomass was positively correlated 
with soil pH and the metal comprehensive index, whereas bacteria were only positively correlated with soil organic matter. 
Soil pH, organic matter, total nitrogen content and the heavy metal comprehensive index were all positively correlated with 
total soil microbial biomass and Actinobacterial biomass. These results suggest that rapid urbanization caused land use and 
land cover changes that significantly affect soil microbial community composition, and urbanization impacts soil properties 
which then affect soil microbes.

Keywords Urbanization · Intensity · Soil microbial community · PLFAs

 * Guoliang Xu 
 xugl@gzhu.edu.cn

1 College of Horticulture and Landscape Architecture, 
Zhongkai University of Agriculture and Engineering, 
Guangzhou 510225, China

2 Key Laboratory of Aquatic Botany and Watershed Ecology, 
Wuhan Botanical Garden, Chinese Academy of Sciences, 
Wuhan 430074, China

3 School of Geography and Remote Sensing, Guangzhou 
University, Guangzhou 510006, China

4 Rural Non-Point Source Pollution Comprehensive 
Management Technology Center of Guangdong Province, 
Guangzhou 510006, China

5 Guangdong Provincial Key Laboratory of Silviculture, 
Protection and Utilization, Guangdong Academy of Forestry, 
Guangzhou 510520, China

6 Guangdong Forest Inventory and Planning Institute, 
Guangzhou 510520, China

/ Published online: 12 September 2022

Urban Ecosystems (2022) 25:1865–1874

http://crossmark.crossref.org/dialog/?doi=10.1007/s11252-022-01279-8&domain=pdf


1 3

Introduction

Urbanization changes land use and land cover patterns, 
creating environmental gradients across urban, suburban, 
agricultural and natural ecosystems. This can cause eco-
logical problems, such as, the sharp decline of arable land, 
soil compaction, soil pollution, and reduced biodiversity 
(Chen 2007; Larson 2013; Lopez et al. 2018; Lu et al. 
2015). Conserving urban green spaces has a positive effect 
on the sustainable development of cities; these spaces act 
as carbon sinks, mitigate the heat island effect, and help 
address other negative ecological impacts of urban devel-
opment, while simultaneously supporting ecological, eco-
nomic and social development of cities (Ning et al. 2016).

Soil is a foundational element of urban ecosystems, 
providing residents with various ecological services such 
as food supply, pollutant purification, and water conserva-
tion. Urbanization changes the soil and inevitably affects 
the supply and maintenance of soil ecological services 
(O'Riordan et al. 2021; Pereira et al. 2018). Soil micro-
organisms are the most biologically active part of the soil 
ecosystem and, they play a critical role in regulation of 
the biogeochemical cycles (Ha et al. 2008). Soil microor-
ganisms mediate many ecological processes in soil, such 
as carbon sequestration, nitrogen fixation, and organic 
matter decomposition. Microorganisms also are of vital 
importance to the degradation of soil pollutants (Condron 
et al. 2010; Kuypers et al. 2018; Sofi et al. 2016; Wardle 
et al. 2004). Soil microorganisms further participate in 
processes, such as litter decomposition and nutrient turno-
ver (Klimek et al. 2016; Li 2015; Veresoglou et al. 2015). 
Soil microorganisms are highly sensitive to environmen-
tal changes, and the composition of soil microbial com-
munities varies across different ecosystems. In general, 
soil microbial biomass in natural ecosystems (forests and 
grasslands) is higher than that in urban ecosystems (Rai 
et al. 2018b; Wang et al. 2017; Zhao et al. 2012), whereas 
the diversity of soil microorganisms can sometimes be 
higher in urban ecosystems (Tan et al. 2019). Changes in 
the soil environment from urbanization and human activ-
ity have drastically affected the composition and distri-
bution of soil microorganisms, which consequently alters 
the function and ecosystem services provided by these 
microbes (Demina et al. 2018; Rai et al. 2018a, 2021; Zhu 
et al. 2017).

Important environmental factors that are affected by 
urbanization and then impact soil microbial communities 
include soil properties (such as soil texture, organic car-
bon, moisture, nutrients, pH, and temperature), vegetation 
coverage, and presence of pollutants (Frossard et al. 2017), 
though key influencing factors differ in different land-
scapes (Grimm et al. 2008; Pastor and Hernandez 2012; 

Zhang et al. 2003). In comparison, cropland soil microbial 
communities are also affected by crop strains, tillage prac-
tices and fertilizer application (Wang et al. 2016). Rapid 
urbanization and construction activities, such as soil turn-
ing, compaction and sealing, can significantly change soil 
properties, and alter the composition, structure, and diver-
sity of microbial communities. Further, anthropogenic pol-
lution eventually enters the soil, and strongly affects the 
soil microbial community (Pickett and Cadenasso 2009). 
For example, soil pollution by heavy metals and polycyclic 
aromatic hydrocarbons can negatively impact soil bacte-
rial communities (Parajuli et al. 2017; Singh et al. 2019). 
Significant changes in the microbial community can affect 
human health; thus, it is necessary to explore the relation-
ships among soil properties, pollutants, and soil microbial 
communities in urban-impacted areas where urbanization 
and human activity are abundant. In this study, we col-
lected soil samples from Guangzhou, South China, along 
a gradient of urbanization to determine whether the micro-
bial community structure in soils is influenced by urbani-
zation and to identify the key soil properties that affect 
soil microbial community composition and function. We 
hypothesized that (1) soil microbial communities differ 
significantly among the land cover categories, and (2) soil 
organic matter and soil pH are the main factors affecting 
urban soil microbial communities.

Materials and methods

Research area and soil sampling

This study was conducted in Guangzhou, Guangdong Prov-
ince, South China, which is one of the central urban areas in 
the Guangdong-Hong Kong-Macao Greater Bay Area. The 
climate of this area is consistent with that of a subtropical 
marine monsoon climate, with annual average precipitation 
of 1623.6—1899.8 mm and an average annual temperature 
of 28.6 °C. The soil is classified as latosolic red soil in natu-
ral ecosystems.

To accurately determine the long-term effects of urbani-
zation intensity, it is necessary to sample areas with rela-
tively stable soil environments. We carried out a preliminary 
selection of urban ecosystems based on satellite imagery 
along arterial roads across the study area (Yu et al. 2021). 
We ultimately selected 42 urban and rural forests as the 
sampling plots (Fig. 1). Each site was classified into one of 
four ecosystem types according to their location, vegetation 
cover, amount of anthropogenic solid waste, dominant plant 
type, and management intensity. The four ecosystem types 
with increasing urbanization intensity were rural forests (8 
sites), urban low-impacted forest fragments (15 sites), urban 
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high-impacted forest fragments (11 sites), and urban parks 
(8 sites). Rural forests were characterized by woodlands at 
least 5 km away from urban roads and buildings, whereas 
urban forests referred to fragmented woodlands surrounded 
by urban structures. Urban low-impacted forest fragments 
were mostly located in hilly areas and were less disturbed 
by humans than urban high-impacted forest fragments or 
parks. Urban high-impacted forest fragments were usually 
small in area and close to urban buildings; consequently, 
soil in urban high-impacted forest fragments was commonly 
polluted by waste generated from human activities (such as 
plastics, wires, paper, bricks, and clothing). Urban parks 
were managed ecosystems in which trees or grasses were 
often trimmed, watered, and fertilized; decomposing leaves 
were removed from the ground; and soil might have been 
turned over and contaminated with solid waste. Specific 
classifications are listed in Table S1. The latitudinal and lon-
gitudinal coordinates of all sample sites were recorded using 
a GPS. At each sampling site, topsoil samples (0–10 cm) 
were collected using a steel auger (5 cm diameter) from five 
randomly selected sites and then collated into a composite 
sample. Soil sampling sites avoided buildings, roads and 
trees, and the distance between each sampling point was 
more than 5 m. One subsample of fresh soil was brought 
to the laboratory and passed through a 2 mm sieve within 
7 days. Roots, rocks, and visible residues were manually 
removed, then the samples were air-dried at room tempera-
ture, ground, and sieved into 100-mesh (0.149 mm) parti-
cles for future analysis. Another subsample of fresh soil was 

immediately brought to the laboratory and freeze-dried to 
determine soil phospholipid fatty acids (PLFAs).

Laboratory analysis

Soil pH was measured using a 1: 2.5 soil: water suspension 
using the potentiometric method (Pansu and Gautheyrou 
2006). The soil organic carbon (SOC) was measured using 
the  H2SO4-K2Cr2O7 oxidation method (Yeomans and Bremner 
1988). Soil total nitrogen (TN) was quantified using the Kjel-
dahl acid digestion method (Williams and Fehsenfeld 1991). 
Heavy metal concentrations (Zn, Cu, Cd, and Pb) were ana-
lyzed after digestion in a mixture of nitric acid, perchloric acid, 
and hydrogen peroxide (US-EPA 1996). The soil heavy metal 
comprehensive index (CPI) was calculated using the following 
equation (Li et al. 2008):

where Pi is the pollution index of heavy metal “i”, Ci (mg 
 kg−1) is the quantity of heavy metal i, Si (mg  kg−1) is the 
environmental background value of Guangzhou City (Zhuo 
et al. 2009), and CPI is the comprehensive pollution index. 
Soil properties are shown in Table S2.
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Fig. 1  Locations of study areas in Guangdong Province and location of the 42 sampling sites in downtown and adjacent regions in Guangzhou 
City
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PLFA extraction and analysis

Soil samples were analyzed using extraction and characteri-
zation of microbial PLFAs to quantify microbial abundance 
and assess microbial community structure (Luo et al. 2016). 
Four grams of freeze-dried soil was extracted using a solu-
tion of 1: 2: 0.8 ratio of chloroform: methanol: citric acid 
buffer, and the phospholipids in the extraction were sepa-
rated after elution using methanol on a silica column. The 
separated phospholipids were methylated with a 0.2 mol/l 
KOH methanolysis solution and the fatty acid methyl esters 
(FAMEs) were subsequently formed and collected. Consid-
ering methyl nonadeconoate 19:0 as internal standards, the 
FAMEs were analyzed using a capillary gas chromatogra-
phy (Agilent 6850 Series, Agilent Technologies Inc., USA) 
equipped with an FID detector and using an Agilent 19091B-
102 column (25 m × 200 μm × 0.33 μm). The FAMEs were 
identified and quantified using the MIDI system (MIDI Inc., 
USA), and the total or individual amounts of PLFA were 
calculated based on of the quantity of FAMEs (nmol g/1). 
Each group in the microbial community was described as 
the sum of the corresponding PLFAs. Gram-negative bac-
terial (GNB) biomass was represented by 17:0cy, 19:0cy, 
16:1ω9c, 18:1ω7c, 18:1ω9c; gram-positive bacterial (GPB) 
biomass was represented by i14:0, i15;0, i16:0, a15:0, i17;0, 
a17:0; bacterial (B)biomass was represented by 17:0 cy, 19:0 
cy, 16:1ω9c, 18:1ω7c, 18:1ω9c, i14:0, i15;0, i16:0, a15:0, 
i17;0, a17:0, 14:0,15:0,16:0, 17:0,18:0; fungal (F) biomass 
was represented by 16:1ω5c and 18:2ω6c; and Actinobacte-
ria (A) biomass was represented by 10Me16:0, 10Me17:0, 
10Me18:0 (Bååth 2003; Bossio and Scow 1998; Frostegård 
et al. 2011).

Statistical analysis

Principal Component Analysis (PCA) and Non-metric mul-
tidimensional scaling (NMDS) were conducted using the 
vegan package in R (Oksanen et al. 2017). Permutational 
multivariate analysis of variance (PERMANOVA) was 
employed in the Past (PAleontological STatistics) 3 software 

(Oslo, Norway) to explore the influence of urbanization on 
the microbial community (Hammer et al. 2001). Other sta-
tistical analyses were performed using IBM SPSS Statis-
tics v.21 (© 1989–2012 International Business Machines 
Corp., USA). Figures were plotted using OriginPro 2016 (© 
1991–2015 OriginLab Corporation, USA).

Results

Soil microbial biomass and community structure

Total soil microbial, fungal, bacterial and GNB biomass 
were not significantly different among the land cover cat-
egories; however, the biomass of Actinobacteria and GPB 
in urban high-impacted forest fragments and urban parks 
were significantly higher than those in rural forests (Fig. 2a, 
Table S3). Compared to the rural forest ecosystems, the bio-
mass of Actinobacteria and GPB in urban high-impacted 
forest fragments was greater by 53.8% and 31.23%, respec-
tively, and the biomass of Actinobacteria and GPB in urban 
park ecosystems was greater than that of rural forests by 
67.8% and 37.45%, respectively. There was no significant 
difference in the ratio of fungi to bacteria among the land 
cover categories; however, the ratio of GPB to GNB in urban 
low-impacted forest fragments was significantly higher than 
that in rural forests (Fig. 2b, Table S3).

Soil microbial distribution characteristics 
and influencing factors

Principal component analysis (PCA) of the relative abun-
dance of different microbial groups (normalized, accounting 
for 73.1% of the variation; Fig. 3a) and the relative abun-
dance of individual phospholipid fatty acids (normalized, 
accounting for 70.95% of the variation; Fig. 3b) roughly 
separated microbial abundance by land cover. Permuta-
tional multivariate analysis of variance (PERMANOVA) 
confirmed that the relative abundances of different microbial 
groups (F = 2.946, P = 0.020) and individual phospholipid 

Fig. 2  Soil microbial biomass 
of different groups (a) and 
microbial community struc-
ture (b) among the land cover 
categories Values are presented 
as mean ± standard devia-
tion. Different lowercase or 
uppercase letters indicate the 
significant difference among 
different urbanization intensities 
(P < 0.05)
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fatty acids (F = 4.402, P = 0.001) were significantly different 
between the four gradients of urbanization. The microbial 
communities of rural and urban low-impacted forest frag-
ments, characterized by lower urbanization intensity were 
dominated by the microbial groups 19:0 cy, 10Me 17:0, 
i16:0, i15:0, 15:0, and 18:0 (which were mainly classified 
as the Actinobacterial and bacterial biomarkers), whereas 
the urban parks and urban high-impacted forest fragments, 
which are characterized by higher urbanization intensity, 
were dominated by microbial groups 18:1ω5c, 18:1ω7c, 
16:1ω9c, 10Me 16:0, i14:0, cy17:0, 16:1ω5c, i17;0, a17:0, 

and a15:0 (which were mainly classified as gram-negative 
bacterial and fungal biomarkers). Nonmetric multidimen-
sional scaling (NMDS) analysis of the relative abundance of 
different microbial groups and soil properties showed that 
fungal biomass was mainly affected by soil organic matter 
(SOM) content and pH, whereas the proportions of Actino-
bacteria and bacteria were correlated with CPI (Fig. 4a). 
Non-metric multidimensional scaling (NMDS) analysis was 
also used to explore the relationships between the relative 
abundance of microbial communities, individual phospho-
lipid fatty acids, and soil properties. The results indicated 

Fig. 3  Principal component analysis (PCA) of microbial community composition (%) among the land cover categories. a: the relative abundance 
of different microbial groups, b: the relative abundance of individual phospholipid fatty acids

Fig. 4  Non-metric multidimensional scaling (NMDS) biplot of microbial community composition (%) and soil properties; a: the relative abun-
dance of different microbial groups, b: the relative abundance of individual phospholipid fatty acids
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that 16:1ω9c, 18:1ω5c, and i14:0 (described as bacterial bio-
markers) had a significant relationship with soil pH, which 
might indicate that bacteria are more susceptible to soil pH 
than fungi and Actinobacteria (Fig. 4b).

Linear relationships between soil microbial biomass 
and soil properties

The total soil microbial biomass was positively correlated 
with soil pH (R2 = 0.257, P < 0.001), SOM (R2 = 0.173, 
P = 0.004), TN (R2 = 0.081, P = 0.041), and heavy metal 
comprehensive pollution index (CPI) (R2 = 0.136, P = 0.009) 
(Figs. 5 and S1). Only SOM (R2 = 0.173, P = 0.004) had 
a significant relationship with soil bacterial biomass 
(Figs. 5 and S1); however, soil pH (R2 = 0.322, P < 0.001), 
SOM (R2 = 0.241, P < 0.001), TN (R2 = 0.099, P = 0.025), 
and heavy metal CPI (R2 = 0.174, P = 0.003) were also 
positively correlated with soil Actinobacterial biomass 

(Figs. 5 and S1), while Soil pH (R2 = 0.213, P = 0.001) and 
heavy metal CPI (R2 = 0.127, P = 0.012) were positively cor-
related with soil fungal biomass (Figs. 5 and S1).

Discussion

Urbanization significantly affected soil microbial 
community

Urban soils are often manipulated by construction practices 
or human management, which may alter soil microbial com-
munities. Previous studies have shown that GPB and Actino-
bacterial biomarker proportions were nearly 2.5 times higher 
in urban soils with longer management time since initial 
urbanization than in urban soils with shorter management 
times (Sapkota et al. 2021). Here, we found that the bio-
mass of bacteria in urban greenspaces was higher than that 

Fig. 5  Relationships between total soil microbial, Actinobacterial, bacterial, fungal biomass, physical–chemical properties, and CPI,  R2 and P 
represent the fitness and significance of the linear regression models. CPI is the comprehensive pollution index of soil heavy metal
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in adjacent natural ecosystems (Delgado-Baquerizo et al. 
2021), further indicating that bacterial biomass increased 
with urbanization. Conversely, the biomass of fungi did not 
change significantly with respect to degree of urbanization, 
which could be due to special transporter proteins and stress 
enzymes in fungi creating more resilience and stress toler-
ance than that of bacteria (Hildebrandt et al. 2007).

The soil microbial community composition reflected 
by PLFAs was significantly different between rural and 
urban low-impacted forest fragments of lower urbanization 
intensity and urban parks and urban high-impacted forest 
fragments of higher urbanization intensity in our results 
(Fig. 3). With increasing urbanization, the abundance of 
Actinobacteria and bacteria and the ratio of GPB to GNB 
increased, likely owing to the higher soil pH seen in urban 
parks (Table S2), which was more suitable for the growth of 
bacteria, like Actinobacteria (Rai et al. 2018b). This find-
ing agrees with previous research showing that soil dis-
turbance or manipulation from anthropogenic activities in 
urban soils is expected to affect FAs (Mummey et al. 2002). 
Similar shifts in microbial community structure have been 
documented in urban greenspace soil microbiomes, which 
are distinct from adjacent natural ecosystems (Delgado-
Baquerizo et al. 2021; Tan et al. 2019). These results fur-
ther demonstrate that degree of urbanization significantly 
altered the composition of the soil microbial community. 
Changes in the microbial community structure indicated 
that, at the level of the PLFA profiles, the abundance of 
Actinobacteria and GPB was positively affected by human 
activities (Tischer et al. 2015).

Soil microbial biomass and composition are two impor-
tant biological indicators of soil health (Sapkota et al. 2021). 
For example, increased fungal biomass, reflected by a higher 
ratio of fungi to bacteria is often interpreted as an indicator 
of healthier soil (Ananyeva et al. 2015). We found that the 
biomass of bacteria increased with urbanization, possibly 
due to overall lower soil health in urban areas from pol-
lution (Sapkota et al. 2021); thus urbanization might have 
persistent negative effects on soil microbial communities.

Soil properties and heavy metal content regulated 
soil microbial community

Altered soil properties caused by compaction, construc-
tion, mixing, and landfilling can reduce soil moisture and 
pore space. The reduction of soil moisture and porosity 
will reduce the ability of soil to fic nutrients, leading to 
the reduction of SOM in urban soils (Rai et al. 2018b). 
The measure of SOM is a vital factor that affects the 
microbial biomass content and structure of the micro-
bial community in the soils (Degens et al. 2000). Our 
results also confirmed that the total biomass of MBC, 

Actinobacteria, and bacteria were significantly cor-
related with SOM. Fungal biomass, however, was not 
corelated with SOM contents because fungi generally 
degrade recalcitrant compounds present in SOM using a 
wide range of enzymes (Boberg et al. 2011). Our results 
showed that the soil pH in urban high-impacted for-
est fragments and urban parks were higher than that in 
rural forests and urban low-impacted forest fragments 
(Table S2). Previous studies have confirmed that higher 
soil pH could have affected the nitrogen mineralization 
and nitrification process, resulting in the depletion of 
nitrogen content in urban soil, thus, affecting soil micro-
bial biomass and community (Baxter et al. 2002). This is 
consistent with our finding that soil pH was significantly 
correlated with soil MBC, Actinobacterial and fungal bio-
mass, which indicates that the increase in pH caused by 
urbanization may positively affect soil microbial biomass. 
Previous studies have also demonstrated that SOC, pH, 
soil available nitrogen, soil exchangeable calcium, and 
magnesium were the primary soil factors influencing soil 
bacterial and fungal composition (Tischer et al. 2014; Yan 
et al. 2016).Therefore, the above results suggest that soil 
pH and nutrients have the greatest effects on soil micro-
bial biomass. The biomarker method used to measure the 
microbial community in our study might show different 
results. Therefore, rigorous molecular methods (such as 
DNA sequencing) should be considered in future studies.

To understand how heavy metal contamination affects 
the microbial community, we studied the relationship 
between the microbial biomass and CPI. We observed a 
significant positive relationship between CPI and the total 
amount of MBC, Actinobacterial and fungal biomass, but 
there was no significant correlation between CPI and soil 
bacterial biomass. These findings were inconsistent with 
many assumptions regarding the effects of pollution on 
organisms. Although the heavy metal content in urban 
parks was higher than that in rural forests (Table S2), 
urban parks are highly managed ecosystems in which veg-
etation is often trimmed, watered, and fertilized, which 
can provide nutrients for the soil microbial community. 
Ultimately, the soil microbial biomass did not decrease 
with the increase in heavy metal. Previous studies have 
also demonstrated that Cu, Pb and Zn shape the soil micro-
bial communities through metabolic regulation of soil 
carbon and nitrogen cycling (Dai et al. 2004; Kou et al. 
2018; Li et al. 2015). However, a recent study showed 
that bacterial communities are sensitive to heavy metals, 
and their composition is significantly affected by Cu, Zn, 
and Pb, while, fungal communities did not vary signifi-
cantly by heavy metals contamination (Singh et al. 2019). 
This indicates that fungi are more tolerant to heavy metals 
(Gadd 2007).
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Conclusion

Urbanization has a significant effect on soil microbial 
communities. Compared to the rural forest ecosystems, 
the biomass of Actinobacteria and GPB in urban high-
impacted forest fragments were 53.8% and 31.23% greater, 
respectively, and the biomass of Actinobacteria and GPB 
in urban park ecosystems were 67.8% and 37.45% greater, 
respectively. The microbial communities of rural forests 
and urban low-impacted forest fragments with lower 
urbanization intensity were dominated by Actinobacteria 
and bacteria, whereas those of urban parks and urban high-
impacted forest fragments with higher urbanization inten-
sity were dominated by GNB and fungi. Soil pH, SOM, 
and CPI were the main factors affecting the soil microbial 
biomass and community. Our results showed that urbaniza-
tion affects urban soil microbial biomass and composition 
by altering soil properties, which can in turn affect the 
ecological functions of urban soil. Therefore, it is essential 
to better understand the effects of the urbanization on soil 
microbial community composition and function. Specifi-
cally, we need to learn more about how urbanization may 
affect the ecosystem services provided by soil microbes, 
and how these services and mechanisms impact human 
and environmental health. A deeper understanding of 
urban ecosystems, beginning with foundational elements 
like soil, is required for successful sustainability of urban 
development.
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