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Abstract
Reliable models of urban tree growth over time are useful for selecting appropriate species for available planting sites, antici-
pating future tree maintenance and removal costs, and quantifying the benefits provided by trees. There is a need to develop
growth models for multiple cities within the same climate region to understand the degree of variability for the same species in
different cities. In this study, we developed tree growth models for 13 common street tree species in Cincinnati, Ohio, USA,
based on field data and planting records. These models relate tree age to diameter at breast height. Then we compared the
modeled tree growth curves for Cincinnati to analogous models from nearby Indianapolis, Indiana. To estimate how differences
in modeled tree growth translate to differences in ecosystem services, we compared annual ecosystem service estimates from
Cincinnati and Indianapolis using the i-Tree Eco model. The comparisons showed varying levels of difference between cities; for
example, modeled growth curves for Acer platanoides were nearly identical, while models for Pyrus calleryana differed by >
47% over 35 years of growth. These results advance our understanding of urban tree growth rates by comparing models from two
nearby cities, and by underscoring the inherent variability in urban tree growth that will drive attendant differences in the
ecosystem services provided by trees.
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Introduction

The urban forest, defined as all trees within an urban area, is
an important part of the urban environment. Urban forests
provide a wide array of both ecosystem services and ecosys-
tem disservices related to environmental outcomes, human
health and social wellbeing, and economics (Escobedo et al.
2011; Dobbs et al. 2014). While the benefits of urban trees are
generally thought to outweigh the disservices (McPherson
et al. 2005), strategic management of the urban forest can
promote ecosystem services and reduce disservices
(Lyytimäki and Sipilä 2009). This is especially true for street
trees – trees growing in the public right-of-way along streets –
because they are distributed broadly throughout a city and
they are often managed by one entity such as the municipal

government (Hauer and Peterson 2016). Although street trees
are less abundant than trees on private property, they are often
the most abundant group of trees subject to collective man-
agement by the municipality or another entity. Furthermore,
street trees are highly visible and more accessible to people
compared to trees on private property or in remote areas of
parks. As such, the science and management of street trees is
an important focus in urban forestry (Mullaney et al. 2015;
Galenieks 2017).

A relevant area of inquiry related to street trees is under-
standing tree growth over time. From a management perspec-
tive, it is important to select a tree that is well suited to the
space constraints of a planting site (Randrup et al. 2001), for
example, so a species that grows to a large diameter is not
planted in a narrow tree lawn (Hilbert et al. 2020). In addition,
accurately estimating the future sizes of young trees can help
urban forest managers plan for future costs associated with
tree pruning and removal (McPherson et al. 2016). Beyond
these pragmatic management considerations, there has also
been a concerted effort to account for benefits and costs asso-
ciated with urban trees using computer models such as the i-
Tree suite of tools (i-Tree 2020). I-Tree models use input tree
data such as species and diameter at breast height (DBH) data
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to quantify urban forest structure and estimate ecosystem ser-
vices provided by trees. For instance, the i-Tree Design model
(i-Tree 2020) helps users understand how an existing tree or
new planting is expected to perform over time by providing
estimates of benefits for the current year and into the future.
Communities may use these models to demonstrate the dollar
values of benefits provided by their trees as a public engage-
ment tool or as a way to justify urban forestry budgets to
decision makers.

Accurate modeling of street tree benefits is important when
model estimates are used in science, management, and/or pub-
lic engagement applications. I-Tree Eco, the flagship i-Tree
model, uses a series of modeled relationships to estimate ben-
efits (Nowak et al. 2008; i-Tree 2020). In short, the user inputs
tree species and DBH information at minimum, and the model
relies on allometric relationships for that species or a similar
species to estimate leaf area based on DBH. Leaf area is then
used in conjunction with local environmental information like
air pollution and rainfall data to estimate environmental ben-
efits provided by the trees. An extension of this is to model
benefits over time by using age-to-DBH relationships to mod-
el tree growth into the future. More reliable allometric models
translating tree age to DBH to leaf area to benefits will lead to
more accurate model output that can serve as a basis for stra-
tegic and evidence-based urban forest management decisions
(McPherson and Peper 2012).

As the field of urban forestry has grown, so has the study of
tree growth relationships, including age-to-size equations and
allometric relationships among tree dimensions (e.g.,
predicting height based on DBH, predicting leaf area based
on leaf crown dimensions). This includes a broadening geo-
graphic scope, the development of growth models for more
urban tree species, and different statistical approaches for
fitting growth curves to predict tree dimensions based on a
set of field observations. For example, Peper et al. (2001a,
b) developed allometric models for street trees in California
cities, in part to address a gap in earlier studies that were
geographically focused on cities with cooler climates and
shorter growing seasons. More recently, allometric models
have been developed for urban trees in diverse geographies
such as Denmark (Larsen and Kristoffersen 2002), South
Africa (Stoffberg et al. 2009), Italy (Semenzato et al. 2011),
South Korea (Yoon et al. 2013), the northeastern US (Troxel
et al. 2013), and Great Britain (Monteiro et al. 2016). Various
statistical models have been employed including linear regres-
sion (including models with polynomial terms) (e.g.,
Semenzato et al. 2011), logarithmic regression (e.g., Troxel
et al. 2013), exponential regression (e.g., Peper et al. 2001a),
and power functions (e.g., Yoon et al. 2013). McPherson and
Peper (2012) demonstrated that differences in biophysical en-
vironment and tree management can lead to differences in tree
growth, even for the same species growing in two cities within
the same region. This, in turn, can lead to substantial

differences in the benefits provided by these trees. In their
study, 100 ash trees in Ft. Collins, Colorado, were estimated
to grow larger and provide about three times greater benefits
over 40 years compared to 100 ash trees in nearby Cheyenne,
Wyoming (McPherson and Peper 2012).

McPherson et al. (2016) published the most comprehensive
collection of allometric models in terms of both species and
geographic scope. They created models for common urban
species in 16 climate zones across the US, including 17–22
species per region. Some species were included in multiple
regions, but unique models were created for each region to
account for the possibility of different tree growth under dif-
ferent climatic conditions. McPherson et al. (2016) developed
statistical models to estimate DBH from age in years after
planting, and then used DBH to predict height, crown
height, crown diameter, and leaf area. They fit six model
forms for each model, and selected the best fitting model for
each parameter. The approach used by McPherson et al.
(2016) forms the basis for modeling age-to-DBH growth
curves in this study.

The first goal of this study is to develop age-to-DBH
models for common street tree species in Cincinnati, Ohio,
where such models have not previously been created. The
second goal is to compare the models for Cincinnati to models
developed by McPherson et al. (2016) for the same species in
nearby Indianapolis, Indiana. This is particularly relevant in
light of the substantial differences in tree growth models for
the same species across different US climate regions
(McPherson et al. 2016), and even for the same species grow-
ing in different places within the same climate region
(McPherson and Peper 2012). The third goal of this study is
to explore how differences in growth models between cities
translate to differences in estimated benefits using the i-Tree
Eco model. This research has implications for urban forest
science and management, primarily by helping to understand
the degree of within-region variability in growth rates for
common street tree species.

Methods

Study area

Cincinnati, Ohio (39.10° N, 84.51° W), is a city of approxi-
mately 302,000 residents located in the Lower Midwest re-
gion of the US, as defined by McPherson et al. (2016). As
described below, our age-to-DBH models from Cincinnati
were compared to models from Indianapolis, Indiana, the
Lower Midwest reference city studied by McPherson et al.
(2016). Cincinnati is approximately 160 km southeast of
Indianapolis (39.77° N, 86.16° W). Both Cincinnati and
Indianapolis are located in USDA Plant Hardiness Zone 6.
Cincinnati’s average annual temperature is 12.4 °C (NOAA
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NCEI 2020). The average maximum temperature is 30.3 °C in
July, and the average minimum temperature is -5.3 °C in
January. On average, Cincinnati receives 1,065 mm of annual
precipitation (NOAA NCEI 2020). By comparison,
Indianapolis has an average annual temperature of 11.8 °C,
ranging from a minimum of -6.4 °C in January to a maximum
of 29.4 °C in July; Indianapolis receives 1,078 mm of annual
precipitation (NOAA NCEI 2020). Street trees in Cincinnati
are managed by the Urban Forestry program housed within
the City of Cincinnati Parks Department.

Field data collection

Field data were collected in Cincinnati during the summer of
2014. To construct age-related growth models, we recorded
DBH and age for 13 common street tree species (Table 1).
Candidate trees were identified using records provided by
Cincinnati Parks Urban Forestry staff, as described below.
We measured DBH to the nearest 0.1 cm using a diameter
tape at a height of 1.37 m (4.5 ft), following the standards of
Caris et al. (nd). For multi-stemmed trees, all stems > 2.5 cm
(1 inch) at DBH were measured and summed for a total DBH.

Multi-stemmed trees that forked at breast height were mea-
sured just below the fork and above the butt flare. For trees
with shape irregularities, we measured DBH directly above
the irregularity where the trunk shape returned to normal.

Tree age was defined as years since planting. Ages were
determined using two separate resources from the Cincinnati
Parks Urban Forestry program. First, most tree ages were de-
termined using planting records extending back to 1982. These
planting records listed several relevant details including street
address, date planted, tree species, and caliper (diameter at
30.5 cm or 1 ft above the ground). Second, we extended our
age-to-DBH growth models beyond 1982 using lists of trees
slated for removal that were provided each week by Cincinnati
Parks Urban Forestry staff. For some of these trees, we visited
them before they were removed to measure DBH, and then
returned after removal to obtain annual ring counts from the
stumps using a hand lens. To reduce aging error introduced by
obtaining ages from stumps near the ground as opposed to
DBH, we measured diameter on these trees below DBH near
30.5 cm height but above any pronounced flaring at the base.
Stump ring counts were only feasible when the stumps were
free of rot and a clear ring count could be made in the field.

Table 1 Summary of species data used to construct age-to-DBH growth models

Cincinnati (this study) Indianapolisa

Species Species
code

n age range
(years) b

DBH range
(cm)

selected model adj R2 n age range
(years) b

DBH range
(cm)

Acer campestre L.
Hedge maple

ACCA 57 0–21 5.0–29.2 exponential 0.77 - - -

Acer platanoides L.
Norway maple

ACPL 32 4–31 4.4–33.5 log-log 0.76 13 4–102 4.8–98.6

Acer rubrum L.
Red maple

ACRU 67 0–69 4.3–67.4 linear 0.91 24 4–90 5.1–100.1

Acer saccharumMarshall
Sugar maple

ACSA2 42 0–61 3.9–49.8 quadratic 0.89 14 4–105 2.5–118.1

Cercis canadensis L.
Eastern redbud

CECA 56 0–27 4.7–33.3 quadratic 0.53 16 4–55 2.8–75.4

Crataegus viridis L.
Green hawthorn

CRVI 61 0–31 4.3–22.6 exponential 0.72 - - -

Fraxinus americana L.
White ash

FRAM 70 7–128 13.8–87.6 log-log 0.63 23 4–102 5.1–118.1

Gleditsia triacanthos L.
Honeylocust

GLTR 96 0–31 4.8–57.6 cubic 0.69 19 5–56 4.1–113.0

Liquidambar styraciflua L.
Sweetgum

LIST 40 2–48 6.1–63.6 exponential 0.81 - - -

Malus spp. Mill.
Crabapple

MA2 131 0–31 2.5–38.2 exponential 0.69 31 0–62 4.1–53.8

Pyrus calleryana Decne.
Callery pear

PYCA 126 1–36 5.2–52.8 log-log 0.80 15 1–18 2.5–62.0

Quercus rubra L.
Northern red oak

QURU 46 0–29 4.1–40.2 cubic 0.95 22 4–84 3.6–129.0

Syringa reticulata (Blume) H.Hara
Japanese tree lilac

SYRE 69 0–31 2.4–26.6 exponential 0.72 - - -

a McPherson et al. (2016), data available in Supplemental Table 6 at http://dx.doi.org/10.2737/RDS-2016-0005
b Age was defined as years since planting
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Ring counts were made along two radii to ensure agreement.
We were also granted permission to take increment cores from
trees slated for removal. For these trees, we measured DBH and
then extracted one or more increment cores at breast height to
obtain a rot-free core near the pith. These cores were dried,
mounted, and sanded following standard dendrochronological
methods (Stokes and Smiley 1996). Annual rings were counted
under a microscope to assign an age, and a pith locator was
used when the increment core did not include the pith.

For both stumps and increment cores, raw tree ages derived
from annual ring counts represented the age of the stem at the
pith rather than the number of years since planting, so the raw
ages for these observations were reduced by three years to
offer a more realistic estimate of the year the tree was planted.
This age correction was an approximation, but any error relat-
ed to the age correction was expected to be small compared to
the natural variability in age-related DBH growth. This expec-
tation is supported by Online Resource 1.

Tree growth modeling

We largely followed the procedures of McPherson et al.
(2016) to develop statistical models for predicting DBH based
on tree age. For each species, we fit curves to test the follow-
ing six models: linear, quadratic, cubic, quartic, log-log, and
exponential. The model with the lowest bias-corrected Akaike
information criterion (AICc) for each species was selected as
the best-fit model; this represents the model that has high
explanatory power without being overly complex. AICc was
chosen over AIC to accommodate modest sample sizes
(Johnson and Omland 2004). The age-to-DBH growthmodels
were fit using R version 3.6.1 (R Core Team 2019) with the
packages ‘MuMln’ (Bartoń 2019), ‘DescTools’ (Signorell
et al. 2019) and ‘dvmisc’ (Van Domelen 2019). The R code
is available as Online Resource 2.

A motivating question in this study was to understand how
age-to-DBH models compare for the same species in two dif-
ferent cities within the same climate region. To do this, we
plotted best-fit growth curves from Cincinnati (this study) and
Indianapolis (McPherson et al. 2016) on the same graph for
the nine species in Table 1 that were common to both studies.
We then compared the percent difference in DBH over time
between the two cities, where percent difference was calculat-
ed relative to Cincinnati DBH as:

ðCincinnatiDBH � IndianapolisDBHÞ=CincinnatiDBH � 100

We limited this comparison to either the maximum age of
trees observed in Cincinnati, or the maximum application age
range for the species suggested by McPherson et al. (2016),
whichever was lower. If models predicted negative DBH
values for young trees, these ages were excluded from
analysis.

We also plotted a best-fit growth curve for the full US data
set from McPherson et al. (2016) using every individual tree
from each species that had a valid age and DBH value, regard-
less of US region. We fit growth curves using the same pro-
cedure we used for Cincinnati. Relative to tree growth models
for Cincinnati and Indianapolis, we expected that larger sam-
ple sizes from the broader US could lead to reduced uncertain-
ty in growth models, but US models may also deviate from
Lower Midwest models due to influences of trees in other US
regions growing under different climatic conditions.

Comparing environmental benefits across locations

To explore how differences in estimated DBH between
Cincinnati, Indianapolis, and US growth models translate into
differences in estimated environmental benefits, we simulated
tree growth scenarios using the i-Tree Eco model (i-Tree
2019). I-Tree Eco is a USDA Forest Service tool that uses tree
data inputs, a database of tree growth equations, and location-
specific data about weather and air pollution to estimate ben-
efits provided by urban trees. These benefits include annual
estimates of carbon sequestration, avoided storm water runoff,
and air pollution removal. Each of these estimated benefits is
expressed in both raw units and monetary values (USD) per
year. I-Tree Eco also estimates structural value, which is a
compensatory value representing the cost of replacing the tree
with a similar tree. The model can estimate benefits for indi-
vidual trees based on species and DBH.

To understand howmodeled benefits change according to a
tree’s age, we used the age-to-DBH models developed for
each species to estimate DBH for each year over the modeled
time period for that species (i.e., the lower value of either the
maximum age observed in our Cincinnati data set or the max-
imum application age suggested by McPherson et al. (2016)).
This was done separately for the three locational data sets of
Cincinnati, Indianapolis, and the US as a whole. We entered
each species-year-location combination into i-Tree Eco as a
separate tree with the appropriate modeled DBH for that year.
This allowed us to model the annual benefits of a tree of each
species according to its predicted DBH at that age. We plotted
these i-Tree Eco estimates of benefits at several snapshots in
time to visualize how differences in age-to-DBH models
translate to differences in annual environmental benefits pro-
vided by the trees. Note that all trees were entered into the
same i-Tree Eco project using Cincinnati weather and pollu-
tion data, so observed differences are attributable to differ-
ences in the three age-to-DBH models for that species
(Cincinnati, Indianapolis, and US) and not different weather
and pollution conditions. We also plotted structural value by
species for each of the three locations at the end of the species’
modeled time period to visualize the effects of variations in
age-to-DBH models.
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Results

We determined age and DBH for a total of 893 trees from 13
common street tree species in Cincinnati (Table 1). Of these
observations, 92% were based on planting records, 5% were
based on stump ring counts, and 3% were based on increment
cores. The data set is available as Online Resource 3. The form
of the best-fit model for predicting DBH from tree age varied
by species (Table 1; Figs. 1 and 2). Of the 13 species models
selected, five were exponential, three were log-log, two were
quadratic, two were cubic, and one was linear (Table 1). In
general, the Cincinnati field data from this study have larger
sample sizes but smaller age ranges and DBH ranges
compared to Indianapolis data from McPherson et al. (2016)
for the same species (Table 1).

The similarity of age-related growth models from differ-
ent locations varied by species (Figs. 1, 2 and 3). For

example, age-to-DBH curves for Acer rubrum were very
similar for Cincinnati and Indianapolis, but the US curve
was markedly different (59, 57, and 121 cm at 60 years
since planting, respectively; Fig. 3). On the other hand,
age-to-DBH curves for Gleditsia triacanthos were similar
for Cincinnati and the US, while modeled DBH for
Indianapolis remained much lower over time (37, 37, and
16 cm at 25 years since planting, respectively; Fig. 3). The
percentage differences between modeled DBH for
Cincinnati and Indianapolis are given in Table 2. For all
nine species, projected diameters for Cincinnati models are
larger than Indianapolis at 5 and 10 years since planting
when trees are relatively small. Some of these large dis-
crepancies persist over time (e.g., Pyrus calleryana,
Gleditsia triacanthos), while others reverse such that
modeled DBH for Indianapolis outpaces Cincinnati (Acer
saccharum, Fraxinus americana). The DBH estimates

Fig. 1 Age-to-DBH growth
models for small- and medium-
statured trees. Solid lines repre-
sent models for Cincinnati, and
dots represent individual trees
used to construct the models. For
comparison, dashed lines repre-
sent models developed for
Indianapolis by McPherson et al.
(2016)
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over time for Acer platanoides are almost identical for
Cincinnati and Indianapolis (Fig. 1; Table 2).

The i-Tree Eco estimates of environmental benefits show
differences according to location that are similar, but not di-
rectly proportional, to differences in DBH (Fig. 3). For exam-
ple, DBH of Acer rubrum at 60 years since planting is 106%
larger for the US data set compared to Cincinnati, but estimat-
ed annual benefits are only 73% greater. Conversely, discrep-
ancies in structural value are proportionally larger than differ-
ences in DBH (Fig. 3).

Discussion

Tree growth equations are important for the science and man-
agement of street trees. For example, understanding how large
a tree could grow over time can help managers avoid conflicts
between paved surfaces and trees that are too big for their
planting sites. One contribution of this study is generating
age-to-DBH models for Cincinnati, where such models had
not been previously developed. The models are likely to be
more reliable for some species than others, because the quality
of model fit varies by species, as indicated by adjusted R2

values ranging from 0.53 for Cercis canadensis to 0.95 for
Quercus rubra (Table 1). Moreover, taxa including Gleditsia

triacanthos, Malus spp., and Pyrus calleryana exhibited pro-
nounced heteroskedasticity, or increasing variability in ob-
served DBH with increasing age (Figs. 1 and 2). While this
heteroskedasticity was not surprising given the findings of
earlier studies (e.g., Semenzato et al. 2011; McPherson et al.
2016), it does indicate that age-to-DBH models are less reli-
able for projecting the DBH of individual trees at more ad-
vanced ages. We suggest that species growth models could
potentially be refined by accounting for characteristics of the
individual trees used to develop those models, such as their
variety or cultivar, site conditions, and pruning history.

Another primary contribution of this study is comparing
models for the same species in two nearby cities within the
same region. This allows us to begin evaluating how well an
age-related growth model performs outside of the city for
which it was developed. Monteiro et al. (2016) made similar
comparisons across cities in Great Britain; the main difference
is that our models included age and DBH while that study
analyzed allometric relationships among tree dimensions
(DBH vs. height, DBH vs. crown width, etc.) but not age.
Here, we saw that models for all nine species included in both
cities predicted larger DBH for Cincinnati compared to
Indianapolis for the first ten years (Table 2). Given the similar
climatic conditions in the two cities, it is unlikely that these
differences were driven by climate, but the cause of this

Fig. 2 Age-to-DBH growth
models for large-statured trees.
Solid lines represent models for
Cincinnati, and dots represent in-
dividual trees used to construct
the models. For comparison,
dashed lines represent models
developed for Indianapolis by
McPherson et al. (2016)
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systematic difference in modeled DBH is unclear. This differ-
ence could be an artifact of the size distributions of trees that
were sampled in each city. Or, because these are municipally
managed trees, it could be attributable to differences in

arboricultural practices between the two cities. For example,
if Cincinnati routinely plants larger caliper trees than
Indianapolis, it would make sense that young trees are larger
and the percent differences diminish with age. Alternatively,

Fig. 3 Comparisons for select
species using data from this study
for Cincinnati (Cin), and data
from McPherson et al. (2016) for
Indianapolis (Ind) and all data
compiled nationwide (US). (Left)
Best-fit growth curves. (Center) i-
Tree Eco estimates of annual
benefits provided by a tree of a
given age, based on the projected
diameter at breast height (DBH)
from the growth curves at left.
(Right) I-Tree Eco estimates of
structural value of a tree at the end
of the modeled time period based
on projected DBH

Table 2 Percent difference in
modeled DBH between
Cincinnati and Indianapolis at 5-
year intervals. Percent difference
was calculated relative to
Cincinnati DBH, so positive
(negative) values indicate that
modeled DBH was larger
(smaller) for Cincinnati than for
Indianapolis. Blank cells are be-
yond the modeled time period for
that species

Years since planting

Species 5 10 15 20 25 30 35 40 45 50

Acer platanoides 20.7 4.6 0.3 -0.7 -0.4 0.2

Acer rubrum 38.7 37.9 35.5 32.5 29.2 25.7 22.1 18.5 14.8 11.0

Acer saccharum 25.9 15.3 8.7 3.0 -2.4 -7.9 -13.7 -19.9 -26.6 -34.1

Cercis canadensis 52.6 57.0 51.7 39.2 16.7

Fraxinus americana 76.3 81.6 76.0 65.8 53.3 39.7 25.7 11.9 -1.3 -13.5

Gleditsia triacanthos 59.5 67.3 67.7 64.4 56.8 40.6

Malus spp. 45.0 10.2 -3.4 -4.3 1.9 11.7

Pyrus calleryana 84.7 73.2 65.8 60.1 55.4 51.3 47.7

Quercus rubra 42.4 57.1 59.4 57.1 51.8
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the cities could prefer different varieties or cultivars of the
same species that may grow at different rates and to different
mature sizes. While the data at hand do not point to the reason
for differences among cities, the salient point is that we did
observe differences between Cincinnati and Indianapolis
models, and some of these differences were substantial
(Figs. 1 and 2; Table 2).

The differences in age-to-DBH growth models drove nota-
ble differences in structural value and estimated benefits (Fig.
3). The differences are not surprising, given that we observed
differences in modeled DBH in the three locations, and i-Tree
Eco uses species and DBH inputs to estimate these benefit
values. However, the magnitude of the observed differences
was unexpected, particularly for Gleditsia triacanthos (Fig.
3). This analysis stresses that ecosystem services modeling
for urban trees is highly dependent on model equations that
translate observed species and DBH inputs into estimates of
derived tree metrics (especially leaf area), and ultimately to
estimates of benefits (Nowak et al. 2008). Model outputs from
i-Tree Eco should be interpreted with care if these modeled
relationships among DBH, leaf area, and benefits are not reli-
ably portable across cities in the same region. Note that the i-
Tree model developers are candid about these limitations
(Nowak et al. 2008; i-Tree 2019), but model users may not
always understand the model’s assumptions and limitations.

There are limitations to this study that should be considered
when interpreting our findings. We generally followed the
statistical modeling techniques outlined by McPherson et al.
(2016) to facilitate more straightforward comparisons of tree
growth models between Cincinnati and Indianapolis, and it is
possible that we overlooked better fitting statistical models.
While our sample sizes were larger than those used by
McPherson et al. (2016) (Table 1), we did not locate trees
across the full age range for each species. For example, see
the gap in observations between 27 and 48 years for
Liquidambar styraciflua, and the maximum observed age of
29 years for Quercus rubra, a species that can potentially live
much longer in the urban environment (Fig. 2). Our technique
for adjusting tree ages from samples obtained using stump
ring counts introduced a small degree of variation from
models based on measurements from standing trees alone
(Online Resource 1), but the impact of this error was minor
because only 5% of samples were obtained using stump ring
counts. Finally, our field observations did not include addi-
tional tree measurements such as tree height or crown width
that would have been useful for more fully capturing tree size
dimensions and for improving the accuracy of i-Tree Eco
benefits estimates (i-Tree 2019).

Our results point to the need for continued refinement of
species growth models to better understand the sources of
inconsistencies between cities. For example, it is unclear if
the substantial differences in curves for Pyrus calleryana in
Cincinnati vs. Indianapolis (Fig. 1) were driven by differences

in field sampling (sample sizes, size class distribution, unin-
tentional inclusion of outliers), growing conditions (e.g., soil
volumes, soil quality, light availability), climate, pollution,
municipal arboricultural practices, or other factors.
Development of these models is becoming increasingly feasi-
ble with the growing availability of past tree planting data
from local governments and other organizations, especially
as more cities have moved from paper records to digital re-
cords that can be easily shared. Producing additional tree
growth models and reconciling the models among neighbor-
ing cities will help make projections of future tree growth and
attendant benefits more reliable. This will ultimately help ur-
ban foresters make informed decisions about street tree plant-
ing and management with an eye toward promoting ecosys-
tem services.
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