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Abstract
Among medium-sized carnivores, red foxes (Vulpes vulpes) and domestic cats (Felis silvestris catus) are the most abundant
species in human-dominated landscapes worldwide. Both are known to be generalist predators that exploit a wide range of prey
groups (e.g., mammals, birds, and invertebrates). Identifying red fox and domestic cat predation pressure on shared prey could
shed light on their ecological role in shaping wildlife communities in human-dominated landscapes. Here, we assess the seasonal
diet of red foxes and domestic cats in terms of composition, breadth, and overlap. Over two years, we collected their scats across
three human-dominated study sites: park (n = 220 for foxes and n = 0 for cats), agricultural land (n = 159 for foxes and n = 146 for
cats), and managed forest (n = 169 for foxes and n = 47 for cats). We detected similar diet breadth (B) for red foxes and domestic
cats (B = 0.32 and B = 0.36, respectively) as well as strong dietary overlap (O = 0.83) between them. Moreover, the diet com-
position of both predators varied according to the study sites and seasons. Our results confirm the highly flexible trophic
behaviour of these carnivores at the study sites, probably as a consequence of prey availability, and also the simultaneity of their
predation over the same prey groups. Future studies should simultaneously monitor predator diet as well as predator and prey
abundance in human-dominated landscapes to better understand the predatory impact of red foxes and domestic cats.
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Introduction

By 2050, more than half of the world’s population will live in
urbanized areas (United Nations 2019). Consequently, under-
standing the functioning of these ecosystems is necessary in
order to preserve both biodiversity and human life quality.
Human-dominated landscapes share a set of general biotic

and abiotic characteristics such as the alteration of species
richness (McKinney 2008), the variation of microclimatic
conditions (Santamouris et al. 2001), the availability of new
resources such as anthropogenic food refuse (Fleming and
Bateman 2018), and the lack or reduced number of large car-
nivores (Crooks 2002; Iossa et al. 2010; Bateman and Fleming
2012). In this context, medium-sized carnivores may be “re-
leased” in the absence of top-predators (Crooks and Soulé
1999), thus influencing prey populations through top-down
processes, as already demonstrated at continental (Ripple
et al. 2013) and local scales (Jiménez et al. 2019).

Among medium-sized carnivores, the red fox (Vulpes
vulpes) is one of the most widespread species (Schipper
et al. 2008), while the domestic cat (Felis silvestris catus) is
one of the most popular pets worldwide. Out of 18.83 million
pets in France, 11.4 million are cats. Moreover, the generalist
trophic behaviour of red foxes and domestic cats makes them
successful species in human-dominated landscapes (Bateman
and Fleming 2012). Red fox diets in urban areas are mostly
characterized by the presence of anthropogenic food refuse
(Harris 1981; Doncaster et al. 1990; Contesse et al. 2004;
Hegglin et al. 2007; Meckstroth et al. 2007), while in rural
areas, they are more diversified with mammals and birds
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(Goldyn et al. 2003), mammals, invertebrates, and fruits
(Ghoshal et al. 2016), or invertebrates and fruits (Dell’Arte
et al. 2005) as the principal food categories. Like red foxes,
domestic cats living in urban areas consume not only anthro-
pogenic refuse (Eberhard 1954; Jackson 1951) but also mam-
mals and birds (Gordon et al. 2010; Tschanz et al. 2011;
Thomas et al. 2012). In rural areas, mammals and birds are
among the principal prey categories in domestic cat diet (Kays
and Dewan 2004; Brickner-Braun et al. 2007; Flux 2007;
Morgan et al. 2009; van Heezik et al. 2010). Little is known,
however, about how these predators interact with each other or
with their shared prey in human-dominated landscapes. In
natural or semi-natural habitats, several studies have assessed
the influence of fox presence on cat trophic behaviour
(Molsher et al. 2017). Moreover, in other natural habitats there
exist some degree of trophic competition between these two
predators (Catling 1988; Risbey et al. 1999; Glen et al. 2011).

Simultaneous monitoring of red fox and domestic cat diets
is needed in order to determine their degree of trophic overlap,
better assess their concomitant potential predation pressure,
and clarify their trophic role in shaping prey communities.
To date, however, only one study (Meckstroth et al. 2007)
has carried out the simultaneous monitoring of red fox and
domestic cat diets in a human-dominated landscape, but none
has investigated their degree of diet overlap. In the present
study, we firstly aimed to describe red fox and domestic cat
diets in three human-dominated landscapes (urban park, agri-
cultural land, and managed forest) across seasons and then
estimate their diet breadth and overlap. We hypothesised that
both predators consumed a wide range of prey (e.g., large diet
breadth) and shared most of them (e.g., high degree of diet
overlap), will confirm their generalist trophic behaviour main-
ly driven by temporal and local specificities.

Materials and methods

Study sites

Red fox and domestic cat populations were non-invasively
monitored by collecting faecal samples (hereafter, scats) at
three suburban study sites (Fig. 1). Sceaux urban park (here-
after, park) (48°46′03.17”N, 2°17′47.48″E), located 20 km
south of Paris, covers an area of 1.81 km2 and comprises three
main habitat types: open areas (lawns and meadows), wooded
areas (composed of 16% Fraxinus sp., 14% Acer platanoïde,
12% Acer pseudoplatanus, and 9% Carpinus), and French
formal gardens (predominately ornamental species) (Hauts-
de-Seine Conseil Général 2015). The agricultural area of
Saclay (hereafter, agricultural land) (48°42′32.18”N, 2°10′
33.00″E) is located between the north of the Essonne depart-
ment and the southeast of the Yvelines department. This fertile
agricultural land extending over 27 km2 has a long agricultural

tradition with the primary crops of colza, wheat, and barley.
Currently, this area is facing urbanisation pressure due to the
development of a university and laboratory cluster (Spaak
2013). Rambouillet forest (hereafter, forest) (48°40′29.84”N,
1°48′27.17″E), located in the south of the Yvelines depart-
ment, is one of the largest forests in the Île-de-France region.
This wooded area of 200 km2, mainly composed of oaks and
coniferous (68% and 25%, respectively), covers a territory of
29 municipalities (Ministère de l’agriculture et de la pêche
2015).

Sampling protocol

One month prior to the start of predator scat sampling, all
study sites were cleaned by removing old scats. Scat sampling
was carried out four times per year in the middle of each
season (October/autumn; January/winter; April/spring;
July/summer) over two consecutive years (2014–2016) for
each of the three study sites. Carnivora scats are cylindrical
(i.e., sausage-shaped) with sub-division tapped at one of the
extremities (Chame 2003). These characteristics may there-
fore promote scat misidentifications among mammalian car-
nivores of similar body size (Reid 2015; Morin et al. 2016).
Red fox and domestic cat scats, however, can be differentiated
by their morphometry (Bang and Dahlström 1975) and sec-
ondarily by their place of deposition, dietary content, and
odour. Red fox scats (8–10 cm length and 2 cm width) are
larger than those of domestic cats (6–8 cm length and 1–
1.5 cm width) (Chame 2003). Moreover, red fox scats are
tubular, long, and twisted with pointed ends, whereas domes-
tic cat scats are smoothed and compacted with well-defined
segments and only one tapered extremity (Chame 2003). Red
foxes usually deposit scats in prominent positions along tracks
to signal their presence to other individuals, whereas domestic
cats tend to bury theirs (Seton 1925, Gibbons 2003).
Regarding dietary contents, domestic cat scats strictly reflect
their carnivorous diet with the additional presence of grass
leaves ingested to aid hair elimination and/or Gramineae seeds
indirectly ingested with the grass leaves (Chame 2003). Fresh
red fox scats present a strong “foxy” smell like middle skunk
(Gibbons 2003). Scats were collected by walking along the
same paths in each study site and season. They were individ-
ually geolocalised, stored in separate plastic bags, and frozen
(− 20 °C) until analysis. In this study, we aimed to detect the
heterogeneity of predator diet in the main suburban habitats
and across seasons. Thus, though informative, within-habitat
site replications were not assessed; indeed, this was not pos-
sible in the park and agricultural land due to their limited
areas. Because of the low number of domestic cat scats col-
lected in the forest and park, we asked volunteer owners to
collect the scats of their own vagrant cats during each study
period. Four owners from each study site (forest and park)
with one to three cats in their house collaborated with us.
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Due to the small number of red fox and domestic cat scats
containing prey remains in some seasons and years, we decid-
ed to pool samples by season (i.e., without considering the
year). Only seasons with at least 10 scats with prey remains
per predator species were included in the following analyses
(Table S1). Despite the collaboration of cat owners, many of
the collected scats did not contain any prey remains. As a
result, we did not have sufficient numbers of cat scats from
the park for all seasons or from the forest in spring to include
them in the analyses (Table S1).

Laboratory analyses

Scats were analysed macroscopically and microscopically.
Macroscopic analysis was performed by washing the scats
individually under a stream of water in a 2 μm sieve. We
excluded scats without prey remains (i.e., feathers, hairs,
bones, seeds). Prey remains were identified under a bin-
ocular to the finest taxonomic level possible using the
bone reference collections from the National Museum of
Natural History in Paris for mammals and birds, and iden-
tification keys for invertebrates and fruits before validat-
ing our identifications with specialists of the targeted

groups. Indigestible prey remains (e.g., hair, teeth, bones,
skin, scales, feathers, exoskeletons, seeds from fleshy
fruits) were then classified into 16 main food categories
for a more accurate diet comparison: Microtidae (includ-
ing Myodes glareolus, Microtus agrestis, and Microtus
arvalis), Muridae (including Apodemus sylvaticus, Mus
musculus, Rattus sp., rattus norvegicus, and Rattus
rattus), Soricidae (including Sorex coronatus, Crocidura
leucodon, and Crocidura russula), Leporidae (including
Oryctolagus cuniculus and Lepus europaeus), small birds
(~ size of Passeroidea), large-medium birds (~ size of
Corvoidea), Coleoptera, Hymenoptera, Dermaptera,
Orthoptera, Heteroptera, Lepidoptera, Arachnida, earth-
worms, small fruits (Prunus cerasus, P. prunus, and
Rubus ulmifolius), and large fruits (Malus sp. and Pyrus
sp.). We also reported the frequency of nonorganic (e.g.,
plastic, foil paper) anthropogenic refuse (hereafter, re-
fuse). Coprophagous, recycling, and ticks were excluded
from the invertebrate prey.

Microscopic analysis was carried out by subsampling ~
2.5 mg of each homogenised predator scat on microscope
slides to quantify earthworm consumption based on chaetae
counts (Reynolds and Aebischer 1991).

Fig. 1 Location of three study sites (park = square, agricultural land = circle and forest = triangle) where red fox and domestic cat scats were recovered
during two-years of field work over three main land cover use (agricultural, urban and natural) reclassified from Corine Land Cover 2012
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Data analyses

For each scat, we firstly determined the minimum number of
consumed prey individuals in each scat (preyMNI) for the main
food categories (i.e., excluding refuse). For birds, mammals,
and terrestrial arthropods, we counted the number of identical
prey fragments contained in each predator scat. For fleshy
fruits, preyMNI per predator scat was calculated based on the
mean number of seeds (MNS) per fruit collected at the study
sites: Rubus ulmifolius (n = 150, MNS = 52.64); Prunus
prunus (n = 39, MNS = 1); P. cerasus (n = 30, MNS = 1),
Malus sp. (n = 73, MNS = 4.49), and Pyrus sp. (n = 71,
MNS = 4.72). For earthworms, we collected the most abun-
dant species (Aporrectodea caliginosa , A. giardi ,
Allolobophora icterica, and Octolasium cyaneum) from our
study sites to measure and calculate their mean fresh weights
(g), length (cm), number of segments per individual, and num-
ber of chaetae per segment. PreyMNI for earthworms per scat
was obtained as follows:

ið Þ no:chaetae in scat

¼ no:chaetae� total scat weight dryð Þ
weigth of analysed sample 0:0025 grð Þ

iið Þ no:segments ¼ no:chaetae in scat
mean no:chaeta per segment

iiið ÞpreyMNI ¼
no:of segments

no:of segments in one earthworm

To quantify the ingested prey biomass contained in each
scat (preyIBS), we firstly calculated the total ingested biomass
(TIB) by multiplying the preyMNI of each prey by its mean
mass (MM). The biomass of small mammals (MM= 57.32 g)
and birds (MM= 302.54 g) was calculated using weight data
extracted from the Amniote trait database (Myhrvold et al.
2015). We estimated invertebrate MM by weighing field-
collected individuals from the orders most commonly con-
sumed by the studied predators: Coleoptera (n = 156, MM=
0.29 g), Hymenoptera (n = 26, MM = 0.01 g), Dermaptera
(n = 20, MM = 0.03 g), Orthoptera (n = 71, MM = 0.10 g),
Heteroptera (n = 76, MM= 0.02 g), and Lepidoptera (n = 92,
MM= 0.02 g), as well as the class Arachnida (n = 87, MM=
0.01 g). Fruit MM was obtained by collecting and weighing
the following fruits from the study sites:Rubus ulmifolius (n =
150, MM= 2.19 g), Prunus prunus (n = 39, MM= 15.09 g),
P. cerasus (n = 30, MM= 3.70 g), Malus sp. (n = 73, mean
MM = 90.01 g), and Pyrus sp. (n = 71, MM = 98.55 g).
Since red foxes and domestic cats are known to ingest large
body mass prey (e.g., Leporidae, large birds) only partially
(Artois 1989; Bonnaud et al. 2007), we estimated the ingested
proportion of lagomorphs and large-medium birds by calcu-
lating the maximum food intake per scat of each predator. To
do so, we selected red fox (n = 75) and domestic cat (n = 53)

scats containing only small mammals (i.e., prey entirely
ingested) and multiplied their preyMNI by their MM to obtain
a maximum ingested biomass (MIB in g of fresh biomass) for
each predator scat. MIBwas 244.09 g and 232.40 g for red fox
and domestic cat, respectively. We then calculated the
ingested biomass of each prey category per scat (preyIBS) by
using one of the two following formulas. If the TIB did not
exceed the MIB, we applied the formula:

ivð Þ preyIBS ¼ small preyi MM � small preyi MNI

If the TIB exceeded the MIB due to the consumption of
large preyj like lagomorph and large-medium birds, for in-
stance, we applied the following formula:

vð Þ preyIBS ¼ MIB−∑n
i small preyi MM � small preyi MNIð Þ

RIBj

Where RIBj is the relative ingested biomass of each large
prey calculated as follows:

við ÞRIBj ¼
large preyj biomass� large prey j number

� �

∑n
1 large prey j biomass� large prey j number
� �

Effects of study sites and seasons on predator diet

We chose multivariate generalised linear models (hereafter,
GLMs) to detect factors (i.e., predator, study site, and season)
that could affect diet composition, because our dietary data
had a strong mean-variance relationship that was taken into
account in these models (Wang et al. 2016). Firstly, we fitted
one global GLM using the following formula: diet ∼ predator
+ study site * season. Secondly, we fitted one GLM for each
predator species using the following formula: predator diet ∼
study site * season.We then ran univariate analysis of variance
for each prey category and adjusted the p value for multiple
testing with a step-down resampling procedure (Wang et al.
2016). We used 999 bootstrap iterations to sample multivari-
ate GLM residuals. Models were fitted with the manyglm
function from the mvabund package (Wang et al. 2016).
Although we only discuss the results from the models with
preyIBS as the response variable, as it is the best approximation
of the true diet of predators (Klare et al. 2011), we also includ-
ed the results from the global model for each of the two diet
descriptors (preyMNI and preyMNI) as response variables
(Table S2) and from the model using preyMNI as the response
variable (Table S3).

Predator diet breadths and overlaps

We used preyMNI to calculate the degree of trophic specialisa-
tion for each studied predator by estimating their diet breadth
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(B) and degree of diet overlap (O) using the nichevar and
nicheoverlap functions from the indicspecies package, respec-
tively (Caceres and Legendre 2009). Diet breadth ranges from
0 to 1, with values close to 0 for specialised populations and
values close to 1 for generalists. Diet overlap ranges from 0 to
1, with values close to 0 for low diet overlap between predator
populations and values close to 1 for high diet overlap.

We visually assessed dietary overlap between predators,
study sites, and seasons using nonmetric multidimensional
scaling (NMDS) plots. This multivariate method is based on
a triangular resemblance matrix of Bray-Curtis similarities
among all pairs of samples. We used the metaMDS function
from the vegan package (Oksanen et al. 2018) to produce
NMDS plots. All statistical analyses were carried out using
R Studio version 1.1.463. (R Core Team 2019).

Results

In total, we collected 1073 scats, but 332 did not contain any
wild prey remains (i.e., only highly digestible organic matter
like industrial food and/or refuse), with 55% of them belong-
ing to red foxes (park: n = 94, agricultural land: n = 24, man-
aged forest: n = 65) and 45% to domestic cats (park: n = 85,
agricultural land: n = 21, managed forest: n = 43) (Table S1).
From the remaining 741 scats containing prey remains, 74%
belonged to red foxes (park: n = 220, agricultural land: n =
159,managed forest: n = 169) and 26% to domestic cats (park:
n = 0, agricultural land: n = 146, managed forest: n = 47)
(Table S1). Out of these 741 scats, 41 scats contained prey
remains that were not attributable to the 16 main prey groups
defined above (e.g., scats containing unidentifiable parts of
invertebrates, seeds, feathers, or hairs). This resulted in the
inclusion of 700 scats in preyIBS and preyMNI models, corre-
sponding to 699 degrees of freedom in general models and
521 and 177 degrees of freedom in red fox (n = 522) and
domestic cat (n = 178) models, respectively.

We identified a total of 6742 prey items. Based on preyIBS,
red fox diet was mainly composed of Rodentia (37%) and
large-medium birds (28%), and domestic cat diet of
Leporidae (41%) and large-medium birds (27%) (Table 1).
Based on the preyMNI, red fox diet was mainly composed of
earthworms (53%), and domestic cat diet of earthworms
(40%) and Microtidae (21%) (Table 1).

The composition of both predators’ diets (preyIBS) was
influenced by predator species, study sites, seasons, and the
interaction between study sites and seasons (Table S2a).
Predator species affected diet preyIBS in terms of Leporidae,
Microtidae, Coleoptera, earthworms, and small fruits. Study
site affected both predators’ consumption of Leporidae,
Microtidae, Muridae, Soricidae, large-medium birds,
Coleoptera, and earthworms. Seasons influenced both preda-
tors’ diets in terms of Coleoptera, earthworms, and small

fruits. The interaction between study site and season also af-
fected both predators’ diets in terms of Leporidae, large-
medium birds, Coleoptera, and small fruits (Table S2a).

Red fox diet

The composition of red fox diet (preyIBS) was influenced by
study sites, seasons, and the interaction between study sites
and seasons (Table 2a). Study site affected red fox preyIBS in
terms of Microtidae, Muridae, large-medium birds,
Coleoptera, earthworms, and small fruits. Seasons influenced
red fox consumption of Coleoptera, earthworms, and small
fruits. The interaction between study site and season also af-
fected red fox preyIBS in terms of large-medium birds,
Coleoptera, and small fruits (Table 2a).

Based on the ingested prey biomass (preyIBS), in the park,
red fox diet was mainly composed of large-medium birds
(66%), especially in autumn (73%), spring, (99%), and sum-
mer (60%) (Table 1). In agricultural land, red fox diet princi-
pally comprised large-medium birds (35%), especially in au-
tumn (50%) and summer (37%), followed by Leporidae
(28%), mainly in autumn (37%), winter (20%), and summer
(30%) (Table 1). In the forest, red fox diet was mainly com-
posed of Leporidae (36%), especially in autumn (98%) and
spring (98%), followed byMuridae (29%), principally in win-
ter (53%) (Table 1).

Based on the minimum number of ingested individuals
(preyMNI), in the park, red fox diet was mainly composed of
earthworms (61%), particularly in autumn (90%), winter
(77%), and spring (87%). In agricultural land, red fox diet
principally comprised small fruits (38%), especially in sum-
mer (55%), followed by earthworms (33%), mostly in autumn
(61%), winter (36%), and spring (64%). In the forest, earth-
worms were the principal food category in red fox diets
(56%), especially in winter (79%) and spring (64%) (Table 1).

Domestic cat diet

Domestic cat diet composition was influenced by the seasons
as well as the interaction between study site and season. In
particular, seasons had an influence on domestic cat preyIBS in
terms of earthworm biomass (Table 2b).

Based on the ingested prey biomass (preyIBS), in agricul-
tural land, domestic cat diet was mainly composed of
Leporidae (57%), especially in autumn (67%), winter (52%),
and spring (77%) (Table 1). In the forest, domestic cat diet
principally comprised Muridae (43%), particularly in summer
(70%), followed by large-medium birds (18%), especially in
summer (64%) (Table 1).

Based on the minimum number of ingested individuals
(preyMNI), in agricultural land, domestic cat diet was mainly
composed of earthworms (48%), particularly in autumn
(60%), winter (64%), and spring (34%), followed by
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Table 1 Minimum number of individual prey in each scat (preyMNI)
and ingested prey biomass in each scat (preyIBS) (in brackets) divided by
total preyMNI and preyIBS respectively. Data is expressed in percentage by

predator species (red fox, domestic cat), study sites (park, agricultural
land, forest) and seasons (autumn, winter, spring, summer)

habitat park agricultural land forest

season autumn winter spring summer autumn winter spring summer autumn winter spring summer

predator red fox

Leporidae 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.29
(10.35)

1.81
(37.4-
0)

1.03
(19.6-
0)

0.51
(11.70)

1.61
(29.99)

0.96
(48.71)

0.57
(26.1-
1)

0.49
(98.4-
8)

0.27
(19.95)

Microtidae 0.17
(1.09)

0.33
(0.00)

0.43
(0.00)

0.29
(0.21)

2.54
(0.49)

18.47
(7.86)

19.41
(12.35)

9.24
(4.44)

0.48
(0.00)

4.90
(6.03)

1.23
(0.00)

5.20
(11.05)

Muridae 0.171
(0.00)

0.33
(0.00)

0.43
(0.00)

0.14
(0.28)

0.36
(1.45)

3.08
(15.2-
9)

5.11
(29.94)

2.41
(9.93)

0.48
(0.00)

5.65
(52.7-
3)

0.49
(0.00)

1.64
(15.92)

Soricidae 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.51
(0.00)

1.02
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

1.64
(0.00)

Rodentia 0.69
(25.0-
0)

2.01
(7.27)

0.85
(0.89)

0.58
(0.64)

4.35
(3.29)

3.08
(2.74)

0.51
(0.00)

2.28
(2.67)

1.44
(4.08)

1.32
(0.00)

1.23
(1.09)

4.10
(1.78)

LM birds 0.26
(72.9-
2)

0.00
(0.00)

4.26
(98.9-
7)

1.66
(60.22)

2.54
(49.9-
9)

1.03
(12.8-
3)

1.02
(23.43)

2.55
(37.23)

0.00
(0.00)

0.38
(11.4-
1)

0.00
(0.00)

0.55
(38.01)

Small birds 0.51
(0.00)

0.33
(0.00)

0.85
(0.00)

0.58
(0.00)

0.73
(0.00)

0.51
(0.00)

1.02
(0.00)

1.21
(0.44)

0.96
(0.00)

0.94
(0.00)

0.74
(0.00)

0.00
(0.00)

Birds
unidentified

0.00
(0.00)

0.67
(85.0-
6)

0.00
(0.00)

0.50
(13.20)

0.73
(7.28)

2.05
(39.3-
9)

1.53
(21.31)

0.54
(5.73)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.27
(13.03)

Coleoptera 1.03
(0.00)

0.67
(0.04)

3.40
(0.03)

12.54
(0.08)

0.00
(0.00)

1.54
(0.00)

2.55
(0.00)

5.36
(0.02)

0.00
(0.00)

5.65
(0.08)

29.32
(0.06)

41.29
(0.01)

Hymenoptera 0.51
(0.00)

0.00
(0.00)

0.85
(0.00)

2.38
(0.00)

0.00
(0.00)

0.00
(0.00)

2.55
(0.00)

3.89
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.82
(0.00)

Dermaptera 4.46
(0.00)

2.01
(0.00)

0.85
(0.00)

0.87
(0.00)

0.36
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.19
(0.00)

0.00
(0.00)

1.37
(0.00)

Orthoptera 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.07
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.13
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.82
(0.00)

Heteroptera 0.17
(0.00)

0.00
(0.00)

0.00
(0.00)

0.58
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.27
(0.00)

0.00
(0.00)

0.00
(0.00)

0.25
(0.00)

0.00
(0.00)

Lepidoptera 1.46
(0.00)

0.67
(0.00)

0.85
(0.00)

1.08
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

1.44
(0.00)

0.00
(0.00)

2.46
(0.00)

0.55
(0.00)

Arachnida 0.09
(0.00)

2.34
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.27
(0.00)

Earthworms 89.64
(1.00)

76.95
(4.97)

87.14
(0.11)

29.77
(0.42)

61.36
(0.02)

36.15
(1.77)

64.03
(0.48)

14.49
(0.04)

26.12
(0.00)

79.42
(1.01)

63.78
(0.37)

29.18
(0.00)

Invert.
unidentified

0.51
(0.00)

0.00
(0.00)

0.00
(0.00)

0.14
(0.00)

0.00
(0.00)

2.05
(0.02)

0.51
(0.00)

0.40
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.82
(0.00)

Small fruits 0.09
(0.00)

13.38
(0.00)

0.00
(0.00)

48.45
(14.40)

24.68
(0.08)

30.28
(0.37)

0.00
(0.00)

55.46
(9.41)

63.42
(22.11)

0.19
(0.02)

0.00
(0.00)

11.20
(0.25)

Large fruits 0.23
(0.00)

0.30
(2.66)

0.09
(0.00)

0.08
(0.00)

0.54
(0.00)

0.22
(0.13)

0.22
(0.80)

0.17
(0.09)

4.70
(25.00)

0.80
(2.61)

0.00
(0.00)

0.00
(0.00)

Refuse* 0.00 6.45 7.69 8.04 0.00 0.00 0.00 2.74 0.00 2.50 0.00 1.33

predator domestic cat

Leporidae – – – – 8.95
(66.5-
8)

5.33
(52.0-
6)

16.15
(77.08)

7.71
(36.64)

2.49
(33.33)

2.16
(33.3-
3)

– 0.00
(0.00)

Microtidae – – – – 14.64
(0.31)

15.58
(0.56)

21.54
(0.55)

33.72
(2.41)

2.49
(0.00)

30.19
(0.00)

– 51.76
(16.01)

Muridae – – – – 3.25
(0.31)

2.46
(1.62)

4.04
(0.27)

12.52
(6.08)

2.49
(0.00)

2.16
(0.00)

– 27.06
(69.53)
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Microtidae (20%), especially in summer (34%) (Table 1). In
the forest, domestic cat diet mainly comprised earthworms
(22%), particularly in autumn (65%) and winter (47%),
followed by Microtidae (22%), especially in summer (52%)
(Table 1).

Diet breadth and overlap

According to the results of the diet breadth index, both pred-
ators exhibited a narrow diet breadth at all study sites and
across seasons (B < 0.40), with the diet breadth of each pred-
ator being similar (red fox: B = 0.32, 95% CI [0.29, 0.34];
domestic cat: B = 0.36, 95% CI [0.31, 0.39]) across study sites
and seasons (Fig. 2).

Interestingly, in agricultural land, we found a high degree
of diet overlap between red fox and domestic cat populations
across all seasons (O > 0.75) except summer (O = 0.33, 95%
CI [0.20, 0.56]) (Table S4). During this season, dissimilarity
between red fox and domestic cat diet (i.e., points located far
from each other with little or no overlap) was higher compared
to the other seasons (Fig. 3a). By contrast, we detected higher
variations in the diet overlap between red fox and domestic cat
populations in the forest compared to agricultural land, with
the highest value found in winter (O = 0.92 95% CI [0.05,
0.99]) and the lowest in summer (O = 0.25 95% CI [0.04,
0.60]) (Table S4). In winter, red fox and domestic cat diet
showed the highest similarity (i.e., most points are spatially
close to each other or overlapping), while the lowest diet sim-
ilarity was observed in summer (Fig. 3b). Due to the limited

Table 1 (continued)

habitat park agricultural land forest

season autumn winter spring summer autumn winter spring summer autumn winter spring summer

Soricidae – – – – 0.00
(0.00)

0.00
(0.00)

1.35
(0.00)

3.85
(0.09)

0.00
(0.00)

4.31
(0.00)

– 0.00
(0.00)

Rodentia – – – – 3.25
(6.25)

3.28
(0.58)

4.04
(0.00)

2.89
(0.34)

0.00
(0.00)

6.47
(2.98)

– 0.00
(0.00)

LM birds – – – – 4.07
(26.1-
0)

4.92
(44.6-
3)

6.73
(19.73)

10.60
(47.16)

0.00
(0.00)

4.31
(63.6-
8)

– 1.18
(9.13)

Small birds – – – – 0.00
(0.00)

2.46
(0.00)

5.38
(0.11)

1.93
(0.30)

2.49
(0.00)

0.00
(0.00)

– 2.35
(0.00)

Birds unidentified - – – – 0.00
(0.00)

0.41
(0.48)

1.35
(2.21)

1.93
(6.89)

4.97
(66.67)

0.00
(0.00)

– 1.18
(5.27)

Coleoptera – – – – 2.44
(0.00)

0.82
(0.00)

5.38
(0.00)

6.74
(0.01)

14.91
(0.00)

0.00
(0.00)

– 10.59
(0.04)

Hymenoptera - – – – 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

5.78
(0.00)

0.00
(0.00)

0.00
(0.00)

– 0.00
(0.00)

Dermaptera – – – – 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

– 0.00
(0.00)

Orthoptera – – – – 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.96
(0.00)

0.00
(0.00)

0.00
(0.00)

– 4.71
(0.00)

Heteroptera – – – – 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

– 0.00
(0.00)

Lepidoptera – – – – 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

– 0.00
(0.00)

Arachnida – – – – 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

– 0.00
(0.00)

Earthworms – – – – 60.32
(0.07)

64.47
(0.08)

34.04
(0.04)

4.19
(0.02)

65.21
(0.00)

47.44
(0.00)

– 1.18
(0.02)

Invert. unidentified - – – – 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

2.89
(0.00)

0.00
(0.00)

0.00
(0.00)

– 0.00
(0.00)

Small fruits – – – – 1.63
(0.00)

0.00
(0.00)

0.00
(0.00)

3.85
(0.05)

4.97
(0.00)

0.08
(0.00)

– 0.00
(0.00)

Large fruits – – – – 1.44
(0.37)

0.27
(0.00)

0.00
(0.00)

0.43
(0.00)

0.00
(0.00)

2.88
(0.00)

– 0.00
(0.00)

Refuse* 0.00 0.00 0.00 0.00 10.00 0.00 0.00 0.00 13.33 0.00 0.00 0.00

*percentage of scats with presence of non-organic refuse (i.e., plastic, foil paper)
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Fig. 2 Red fox and domestic cat
mean diet breadth (95% CI)
across habitats (park, agricultural
land and forest) and seasons
(autumn, winter, spring and
summer). Only sample size larger
than 10 scats collected per
predator, site and season were
analyzed

Fig. 3 Nonmetric MultiDimensional Scaling (NMDS) plots, constructed
from Bray-Curtis similarity matrices based on preyMNI data, showing diet
composition of red foxes and domestic cats across seasons in studied

suburban habitats: a) agricultural land and b) forest. Only sample size
larger than 10 scats collected per predator, site and season were analyz
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number of collected cat scats in some habitats and seasons, we
did not calculate the diet overlap between red fox and domes-
tic cat populations in the forest in spring or in the park for all
seasons.

Discussion

Results obtained in this study were only based on the analysis
of scats containing wild prey remains (i.e., 75% and 56% of
red fox and domestic cat scats, respectively). The high propor-
tion of domestic cat scats without any wild prey remains (i.e.,
containing only highly digestible organic matter like industrial
food and/or refuse) is partly due to the high percentage (70%)
of scats that were provided by cat owners, meaning that do-
mestic cats were primarily sustained by human-mediated food
while having the opportunity to wander and feed on wild prey.
Even if the percentage of red fox scats containing only refuse
and/or industrial food is lower than that of domestic cat scats,
this indicates that red foxes, particularly in suburban areas, are
able to feed on human-mediated food. This feeding habit may
provide them with some adaptive and/or survival advantages.

Red fox and domestic cat diets

The trophic index based on ingested prey biomass (preyIBS)
revealed that large-medium birds and mammals were the prey
categories most contributing to red fox and domestic cat food
bolus. Invariably, red fox and domestic cat diets were domi-
nated by large prey (i.e., large-medium birds and Leporidae)
and/or medium-sized prey (Muridae) across all study sites and
seasons. This result suggests that the survival of both preda-
tors mainly depends on prey with a large biomass (e.g.,
medium-large birds, Leporidae), probably because one killed
individual represents a large source of metabolizable energy.

The trophic index based on the minimum number of
ingested individuals (preyMNI) revealed that earthworms were
the most abundantly consumed prey in red fox diet. This result
is in good agreement with other studies once refuse is re-
moved from red fox diet (MacDonald 1980; Harris 1981;
Doncaster et al. 1990; Reynolds and Aebischer 1991;
Saunders et al. 1993; Soulsbury et al. 2008). In domestic cat
diet, earthworms along with Microtidae were the most abun-
dantly consumed prey. While the presence of chaetae in pred-
ator scats may be increased by phenomena such as soil con-
tamination and secondary predation (i.e., chaetae would have
persisted after two digestions), potentially leading to a slight
overestimation of earthworm consumption, the high number
of consumed earthworms stresses the importance of this prey
type for both red foxes and domestic cats, as it may supply
these predators with their protein requirements within human-
dominated landscapes. Even if striking, the consumption of
earthworms (protein-rich prey) by domestic cats is probably

opportunistic and focussed on anecic and/or epigeic earth-
worms (Lee 1985), which are readily available and easy to
catch in agricultural and forest soils. This interesting result
should be confirmed (i.e., earthworm species identification)
in future studies using metabarcoding approaches, for exam-
ple (Bienert et al. 2012; Boyer et al. 2013; Pansu et al. 2015).
In general, the macro- and microscopic diet analyses of pred-
ator diets would benefit from metabarcoding approaches to
verify prey identification, detect and identify digested soft-
bodied prey (e.g., insect larvae, egg content), and confirm
predator scat identification (Pompanon et al. 2012; Galan
et al. 2018).

Specific spatiotemporal diet patterns for red foxes
and domestic cats

Red fox populations showed study site specificities in terms of
the proportion of ingested biomass for certain prey categories
(Microtidae, Muridae, large-medium birds, Coleoptera, earth-
worms, and small fruits) as well as seasonal dietary shifts for
some of these resources (Coleoptera, earthworms, and small
fruits) (Tables 1 and 2a).

These results are in good agreement with and support the
generalist and opportunistic trophic behaviour of red foxes
(Sillero et al. 2004). Thanks to this trophic behaviour, red
foxes could adapt their diet in contrasting human-dominated
landscapes according to the abundance and availability of as-
sociated prey communities and fruit resources (e.g., emer-
gence of Coleoptera, fructification of fleshy fruits) (Díaz-
Ruiz et al. 2013).

In contrast to red fox diet, domestic cat diet (in terms of
ingested prey biomass) was relatively homogeneous across
study sites and mainly focussed on mammals (Leporidae
and Muridae; Gillies and Fitzgerald 2005 (New Zealand);
Kays and Dewan 2004 (US); Krauze-Gryz et al. 2012
(Europe)) and secondarily on large-medium birds, with only
the proportion of ingested earthworm biomass changing sea-
sonally (Tables 1 and 2b). This suggests that cats are highly
adaptable and efficient hunters, which allows them to survive
and reproduce without regard to the type of habitat, thus
confirming the opportunistic but strictly carnivore trophic be-
haviour of domestic cats (Bradshaw et al. 1996; Medina et al.
2011). By consequence, the increased number of vagrant do-
mestic cats due to the higher human population density can
lead to negative effects on bird, mammal, and reptile popula-
tion dynamics in many different types of habitats (Woods et al.
2003; Dauphiné and Cooper 2009; Blancher 2013; Loss et al.
2013; Doherty et al. 2015). As the opportunistic behaviour of
these predators likely depends on resource abundance and
availability, which are rarely monitored and quantified, this
should be investigated in future studies to detect potential
patterns of prey preferences.
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At all the study sites, both red foxes and domestic cats
abundantly consumed earthworms (in preyMNI) in autumn,
winter, and spring, probably due to the scarcity of other prey
categories during these seasons of relatively low productivity.
The use of this alternative high-protein prey may allow red
foxes and domestic cats to maintain stable populations all year
round within degraded human-dominated landscapes.
Interestingly, in agricultural land, domestic cats turned to the
consumption of Microtus agrestis individuals as observed in
other rural areas in Europe (Krauze-Gryz et al. 2012), while
red foxes shifted their diet to temporarily abundant small fruits
that are rich in carbohydrates, minerals, and vitamins (e.g.,
Prunus cerasus, P. prunus, Rubus ulmifolius) (Table 1). Red
fox consumption of fruits has already been described in other
studies in Europe (Contesse et al. 2004) and Asia (Dell’Arte
et al. 2005; Ghoshal et al. 2016). In addition to being an
alternative source of nutrient for foxes, these fruits contained
seeds that can be efficiently dispersed (Herrera 1989; Matías
et al. 2010), leading to the conservation of the vegetation
structure of these habitats. Last but not least, the consumption
of voles by domestic cats in summer likely corresponds to a
peak abundance of this prey, which supports the opportunistic
trophic behaviour of cats. As domestic cats are one of the
major predators of voles (Lin and Batzli 1995), they could
modify the cyclicity of the prey population dynamics
(Hansson 1988) and indirectly affect the trophic behaviour
of other predators sharing this prey such as red foxes.

Diet breadth and overlap

Although we showed that red foxes and domestic cats are able
to exploit a wide spectrum of trophic resources (i.e., mam-
mals, birds, invertebrates, and fruits) within human-
dominated landscapes, these predators exhibit quite a narrow
diet breadth similarly to those described by other authors in
natural habitats (Drygala et al. 2014; Vlasseva et al. 2017;
Széles et al. 2018). This result confirms that these predators
hunt targeted prey groups with a focus on large birds and
mammals.

Because foxes and cats had similarly varied diets across
habitat types and seasons, we have confidence in the main
result of a high dietary overlap despite the lack of within-
habitat site replication.

These are the first results regarding the degree of diet over-
lap between red foxes and domestic cats within human-
dominated landscapes, which are in good agreement with
those found in natural habitats (Paltridge 2002; Woinarski
et al. 2017). In our study, in summer, red fox and domestic
cat diets only marginally overlapped, suggesting that they can
hunt a wider prey spectrum to reduce their degree of trophic
overlap through niche partitioning. On the contrary, diet over-
laps between red foxes and domestic cats were particularly
high during the less productive seasons (i.e., autumn, winter,

and spring) when they have to share scarcer main and alterna-
tive prey (i.e., mammals, birds, and earthworms). This indi-
cates that competition between red foxes and domestic cats
may occur, particularly if these predators are in high abun-
dance in city centres (Šálek et al. 2015; Flockhart et al.
2016) and probably more broadly in human-dominated areas.
However, competition for food between species is eased by
their generalist behaviour. In addition, these high seasonal diet
overlaps between red foxes and domestic cats may exacerbate
their predation pressure over shared prey populations and can
lead to potential negative effects on shared prey population
dynamics. To quantify predation impacts on prey population
dynamics, future studies should simultaneously monitor pred-
ator diets as well as prey and predator availabilities through
space and time.
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