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Abstract Forests are important to nutrient cycling, hydrolo-
gy, climate and aesthetics in urban ecosystems. Effective for-
est management in urban environments requires detailed data
on the spatial distribution and structure of urban forests, but
the lidar which are best for mapping the complexity of these
forests are often unavailable or prohibitively expensive for
municipalities. However, leaf-off small footprint lidar origi-
nally collected for topographic mapping are increasingly
available, and will soon become accessible to forest managers
in the U.S. through 3DEP (3D Elevation Program). In this
paper, we demonstrated the opportunistic use of existing
leaf-off lidar to map forest structure and associated uncer-
tainties in Madison, Wisconsin and neighboring municipali-
ties. Using empirical models, we were able to map five struc-
tural variables and aboveground biomass with accuracies
comparable to or better than other studies using comparable
data and with errors generally <20 % of the data range.
Highest uncertainties in our forest structure maps occurred
in residential neighborhoods and along forest edges. From
the results, we present maps of forest structure and, to our
knowledge, first of a kind pixel-wise uncertainty maps for
an urban area. These maps provide the basis for a spatially
comprehensive assessment of forest resources and are effec-
tive for urban inventory and change assessment. For example,
the maps enabled comprehensive comparison of carbon

storage by urban trees among cities, with a range in our study
of 1.2 kg/m2 to 5.6 kg/m2, and with major variations due to
differences in city development patterns and ages.
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Introduction

Urban forests play an important role in offsetting environmen-
tal impacts of urbanization by providing a range of ecosystem
services. Urban trees sequester carbon through photosynthesis
and storage of carbon as tree biomass (Nowak and Crane
2002). Urban trees also decrease stormwater runoff by
intercepting rainwater on leaves, branches, and trunks
(Bolund and Hunhammar 1999), reduce nutrient export, par-
ticularly nitrogen and phosphorus, through root uptake (Day
et al. 2010), and increase biodiversity by providing habitat and
food resources to insects, birds and a wide variety of wildlife
(Alvey 2006; Savard et al. 2000). Quantification and mapping
of urban forest structure are needed to inventory and under-
stand their spatial patterns, and then to maximize the benefits
of urban ecosystems through management or planning
(McPherson et al. 1997).

Many municipalities have been inventorying forest
structure since at least the 1980s (Nowak et al. 2013).
However, traditional field sampling is labor-intensive,
time-consuming and expensive (Myeong et al. 2006).
Remote sensing data are capable of making horizontal and
vertical measurements over large areas in an efficient and
timely way. Multispectral and hyperspectral remote sensing
having difficulty penetrating beyond canopy layers are bet-
ter suited for mapping horizontal structure (Hyde et al.
2006; Swatantran et al. 2011). Interferometric synthetic
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aperture radar (InSAR) is best suited for structurally homo-
geneous forest types (Hyde et al. 2006; Hyde et al. 2007).
Lidar (light detection and ranging) has shown great advan-
tages to measure structural and biophysical properties more
accurately (Lefsky et al. 2002). Key variables that have
been derived from discrete-return lidar to estimate forest
biophysical parameters in natural forests include above-
ground biomass, basal area, diameter, height, crown length,
crown width, stand density, wood volume and leaf area
index (Lim et al. 2003; Næsset 2004; Popescu et al. 2004;
Bortolot 2006; Morsdorf et al. 2006; Farid et al. 2008;
Hudak et al. 2008; García et al. 2010; Hawbaker et al.
2010; Korhonen et al. 2011; Muss et al. 2011; Gleason
and Im 2012). However, the development of methods to
quantify forest structure and biophysical status in urban
forests using lidar data has lagged work in natural forests
due to complexity of urban forests, including high levels of
fragmentation, the presence of a large number of exotic
species, and active management (Hope et al. 2003). Given
the heterogeneity and complexity of trees in urban land-
scapes, very high point-density lidar data were mostly used
to estimate structural variables of individual tree in urban
forests (Moskal and Zheng 2012; Shrestha and Wynne
2012; Omasa et al. 2008). Very high point-density data
can provide accurate tree-level quantification of biophysi-
cal variables of urban forests. However, such data are lim-
ited by coverage area thus missing comprehensive mapping
ability, and add cost and computation complexity to the
mapping process. In contrast, though low point-density li-
dar data can only estimate structural variables at area level,
they provide a basis for a spatially comprehensive assess-
ment of urban forest resources, filling the gaps in our cur-
rent inventories of urban forests over large areas.

For mapping forest structure, lidar data are optimally col-
lected under leaf-on conditions, while leaf-off lidar are pre-
ferred for ground detection needed to map elevation
(Anderson et al. 2005). Although leaf-off lidar are not ideal
for forest characterization, it has been demonstrated to be use-
ful dataset for estimating forest structure (Anderson and
Bolstad 2013; Hawbaker et al. 2010; Næsset 2005), because
more laser pulses penetrate through leafless canopies, provid-
ing greater information on vertical structure in deciduous for-
ests than leaf-on lidar (Brandtberg et al. 2003). For urban
forest managers, budgets are often limited, and widespread
leaf-on lidar suitable for forest characterization are costly to
acquire and process. However, the 3DEP (3D Elevation
Program 2014) in U.S. will make national-wide high-quality
lidar data available within 8 years to support topographic map-
ping activities addressing climate resilience, and much of
those lidar data have been collected during leaf-off seasons.
The widespread availability of high-quality lidar from 3DEP
makes it a potentially invaluable tool for applications in urban
ecosystem assessment and management.

In this paper, we are motivated by the desire to make use
of existing lidar originally collected for topographic map-
ping to characterize forest structure and aboveground bio-
mass in an urban area. Although not optimal, existing lidar
provides an opportunistic data source to characterize forest
structure (Hawbaker et al. 2010). By including uncertainty
analysis and mapping, we can provide locations where es-
timates are more confident and reliable to city foresters and
other users. These uncertainties in forest structure estimat-
ed from lidar result from limitations imposed by field sam-
pling and allometric scaling (Frazer et al. 2011), remote
sensing data acquisition and processing (Lu et al. 2012),
and from the regression models of biomass as a function of
lidar derived variables (Gonzalez et al. 2010). Statistical
methods have been proposed to analyze uncertainties in
estimating biomass or carbon density from lidar data, such
as Monte Carlo simulation (Frazer et al. 2011; Gonzalez
et al. 2010). Here we show an approach to calculate uncer-
tainty, which can then be mapped as absolute or percent
errors, and map uncertainty in practice. Therefore, our
objectives in this paper are to: (1) demonstrate the use of
existing discrete-return leaf-off lidar to quantify forest
structure in an urban area; (2) map forest structure vari-
ables and associated uncertainty using developed empirical
models; and (3) summarize and compare aboveground
biomass and carbon stock in seven municipalities with
different land uses and development histories in the study
area.

Methods

Study area

The study was conducted in City of Madison and neighboring
municipalities and suburban areas in southern central
Wisconsin, USA (Fig. 1). The topography in this area is flat
with elevation ranging from 258 m to 346 m. This region is
comprised of a diverse mix of deciduous and evergreen trees,
with dominants including white oak (Quercus alba), red oak
(Quercus rubra), sugar maple (Acer saccharum), silver maple
(Acer saccharinum), red pine (Pinus resinosa) and white pine
(Pinus strobus) (Gu et al. 2015). Urban forests in the study
area occur in a variety of settings with varying extent of hu-
man interaction and management, such as the University of
Wisconsin Arboretum (A on Fig. 1a), nature preserves (B on
Fig. 1a), city parks, trees in streets and residential backyards
(A and B in Fig. 1a), and natural forests surrounded by the
agriculture matrix at the suburban-to-rural interface (C on
Fig. 1a). The study area comprises sevenmajor municipalities,
all with differing land use, land cover, development and man-
agement policies (Fig. 1b).
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Field data

Forest measurements were made for 60 plots covering the
range of stand structure and species composition in the study
area. All the plots were established in urban forest patches of
continuous canopy cover with areas larger than 0.25 ha and
exhibiting the range of stand density, species composition and
structure found in the study area. Each plot consisted of 5
subplots arranged in a cruciform layout following Townsend
(2002), with a distance of 25 m between the intersection (plot
center) and four end points. At each subplot, all live and dead
trees recorded as Bin^ using a metric basal area factor (BAF) 2
prism were identified to species, and diameter at breast height
(dbh) was recorded. Aboveground biomass per unit area at
each subplot was estimated using a standard allometric ap-
proach based on a variable-sized plot design (Grosenbaugh
1952; Grosenbauch 1958): (1) Determine the maximum dis-
tance (Dmax) that a tree of a given dbh counted as Bin^ (Eq. 1).
(2) Determine the number of trees (Density) of this dbh that
would be found per unit area (ha) (Eq. 2). (3) Estimate tree
biomass (Bm) by applying Jenkin’s dbh-based species-specif-
ic allometric equations (Jenkins et al. 2004) (Eq. 3). (4)
Estimate biomass per unit area (BmpAtree) of this tree
(Eq. 4). (5) Sum biomass per unit area across for all the tallied
trees within this subplot to get a total biomass per unit area in
this subplot (BmpAsubplot, Eq. 5). Basal area per subplot
(BAsubplot) was calculated by 2 (BAF) multiplying number
of sampled trees within the subplot (n) (Eq. 6). We averaged
aboveground biomass, basal area and tree diameter from 5

subplots to obtain plot-level aboveground biomass (AGB),
basal area (BA), mean tree diameter (DBH). Additional mea-
surements included tree height, crown base height and crown
width of all the tallied trees at the plot center subplot using a
Haglöf Vertex Laser VL402 hypsometer (Haglöf Sweden AB,
Långsele, Sweden). Crown length was calculated by the dif-
ference of canopy height and crown base height. We averaged
tree height, crown length and crown width to obtain plot-level
mean canopy height (Ht), mean crown length (CL), and mean
crown width (CW).

Dmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:25 * dbh2=BAF
q

ð1Þ

Density ¼ 10000=πD2
max ð2Þ

Bm ¼ f dbhð Þ ð3Þ

BmpAtree ¼ Bm * Density ð4Þ

BmpAsubplot ¼
X

BmpAtree1 þ BmpAtree2 þ⋯þ BmpAtreen ð5Þ

BAsubplot ¼ BAF * n ð6Þ

Lidar data

The county-wide lidar collection was contracted by the Dane
County Land Information Office to develop a high resolution
county-wide digital elevation model (DEM). Ayres Associates

Fig. 1 Study area in Dane
County, Wisconsin, USA. a
Green dots show locations of field
plot centers, and yellow boxes
refer to areas shown on maps in
Fig. 4; b Grey grids are lidar tiles,
seven polygons are the major
municipalities within the study
area, with results summarized in
Table 5
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(www.ayresassociates.com) used a 1064 nm Leica ALS70
laser scanner with scan rate of 69.00 Hz and scan angle
between -17o and +18o, and flew at an altitude of 1750 m
above ground level with flight speed of 248.40 km/h during
leaf-off conditions in April, 2009, producing discrete-return
point clouds with a point density of 1 point per square meter
(ppm). Ayres processed the raw data to remove spurious
points, calibrate heights caused by scan angle effects and cal-
ibrate intensity caused by range differences, and generated
point clouds and 3 m DEM data products for the whole coun-
ty. Point cloud data included coordinates, height, intensity,
scan angle and class (e.g. ground, vegetation, building and
water). Relative height for each point record was obtained
by differencing return height and DEM in R 3.0.2 (R
Development Core Team 2013).

Since our field plots used a variable-sized plot design with
no fixed boundary, we tested six footprint radii fromwhich we
generated lidar metrics at each plot center: 10 m, 15 m, 20 m,
25 m, 30 m and 35 m. For each field-sampled plot and each
footprint radius, we derived metrics from relative height and
intensity of lidar (Table 1), including quantiles (Qxx_H,
Qxx_I, where xx refers to xx% quantile), maximum
(Max_H, Max_I), mean (Mean_H, Mean_I), standard devia-
tion (Std_H, Std_I), coefficient of variation (CV_H, CV_I),
kurtosis (Kurt_H, Kurt_I) and skewness (Skew_H, Skew_I)
of lidar relative height (H) and intensity (I). Additional vari-
ables derived from relative height only included the difference
between tallest height and 25 %, 50 % and 75 % quantiles

(D i f f _Max _H_Q25 _H , D i f f _Ma x _H_Q50 _H ,
Diff_Max_H_Q75_H) (García et al. 2010); and PCan, the
proportion of canopy returns (heights larger than 1.4 m) to
all the returns (Morsdorf et al. 2006). Point returns with rela-
tive height less than 1.4 m were excluded from the calculation
of all metrics except for PCan, because trees were measured at
breast height and because laser pulse penetration at the bottom
of canopy is known to be highly variable (Wasser et al. 2013).

Data analysis

Ordinary least squares (OLS) regression was used to develop
predictive models between forest structure measurements
(AGB, BA, DBH, Ht, CL and CW) and lidar-derived metrics
(Table 1). Potential explanatory variables were assessed using
forward model selection until the addition of new variables
provided no improvement of model performance. All the se-
lected explanatory variables were significant (p-value <0.05),
and correlation coefficients among explanatory variables were
also evaluated to ensure that included predictors in the models
had low collinearity (r < 0.5). Aside from canopy height, all
response variables were natural log normalized for statistical
analysis to ensure normal distribution.

We applied cross-validation by jack-knifing our dataset
1000 times using a random 75 % of the dataset (N = 45)
to build linear model and testing on the remaining 25 %
of samples for validation (N = 15). We reported R2, root
mean squared error (RMSE), and relative RMSE of

Table 1 Description of predictor
variables derived from lidar
height and intensity within a
footprint

Variable Description

Height metrics Qxx_H Height of the xxth quantile

(10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th)

Max_H Maximum height

Mean_H Mean height

Std_H Standard deviation of height

CV_H Coefficient of variation of the height

Kurt_H Kurtosis of the height

Skew_H Skewness of the height

Diff_Max_H_Q25_H Height difference between largest and 25th quantile

Diff_Max_H_Q50_H Height difference between largest and 50th quantile

Diff_Max_H_Q75_H Height difference between largest and 75th quantile

PCan Proportion of canopy returns to all returns

Intensity metrics Qxx_I Intensity of the xxth quantile

(10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th)

Max_I Maximum intensity

Mean_I Mean intensity

Std_I Standard deviation of intensity

CV_I Coefficient of variation of the intensity

Kurt_I Kurtosis of the intensity

Skew_I Skewness of the intensity
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prediction on both calibration and validation datasets in
back-transformed scale by exponential calculation if the
variables were log transferred. Models with lower differ-
ences between validation and calibration diagnostics are
considered more stable than those with larger differences.
All analyses were conducted in R 3.0.2 (R Development
Core Team 2013).

Forest structure and uncertainty mapping

Maps of forest structure were generated from the lidar data
by superimposing a grid (20 m spacing) with a sufficient
number of lidar returns to calculate a statistical distribution
per cell, calculating the lidar metrics in Table 1 for all the
cells, and then applying the regression equations for the
structural attributes (AGB, BA, DBH, Ht, CL and CW) to
each cell. The lidar metrics were only synthesized from
lidar returns that had been recorded as vegetation in the
LAS dataset provided by Ayres.

In addition, for each structural variable we mapped
pixel-wise uncertainty in the structural estimates. Our pixel
estimates of uncertainty are calculated as percent
uncertainty by dividing the length of 95 % confidence
interval by the pixel-wise prediction (Eq. 7).

Percent uncertainty ¼ 100 * SV97:5−SV2:5ð Þ=SVprediction ð7Þ

SV refers to a given structural variable, i.e. AGB, BA,
DBH, Ht, CL or CW. This is a conservative estimate of
uncertainty, encompassing the range of uncertainty both
minus and plus the pixel-wise prediction. Such an ap-
proach is required because of the log transformation ap-
plied to 5 of the 6 structural variables, in which lower

Table 2 Average of stand structure variables by cover type for field measured plots

Dominant species Scientific name Common name AGB (Mg/ha) BA (m2/ha) DBH (cm) Ht (m) CL (m) CW (m)

QURU Quercus rubra Red oak 221.00 28.40 53.26 24.60 17.86 14.36

QUAL Quercus alba White oak 170.52 22.58 46.61 23.74 15.63 14.02

QUMA Quercus macrocarpa Bur oak 157.94 22.40 49.41 16.64 11.54 19.16

ACSM Acer saccharum Sugar maple 232.67 25.55 48.96 25.68 18.24 15.40

ACSN Acer saccharinum Silver maple 173.55 25.20 63.12 26.54 21.96 18.62

CAOV Carya ovata Shagbark hickory 187.93 23.00 36.92 22.90 16.68 12.95

PRSE Prunus serotina Black cherry 155.39 22.80 32.30 20.88 15.18 9.52

FRAM Fraxinus americana White ash 158.25 25.60 43.25 20.36 19.36 7.69

JUNI Juglans nigra Black walnut 98.48 16.80 44.68 26.26 19.88 11.99

ROPS Robinia pseudoacacia Black locust 192.10 31.60 37.20 29.35 22.25 11.17

CEOC Celtis occidentalis Northern hackberry 118.10 20.40 32.37 17.86 12.76 8.50

TIAM Tilia americana Basswood 182.73 26.40 47.77 29.62 25.72 15.37

PODE Populus deltoides Eastern cottonwood 125.94 35.20 49.86 30.73 17.28 11.93

LITU Liriodendron tulipifera Tulip poplar 237.64 32.80 58.37 27.70 14.76 13.41

PIRE Pinus resinosa Red pine 145.04 38.76 26.84 19.26 7.62 5.63

PIST Pinus strobus White pine 138.41 37.80 37.74 24.58 13.07 7.69

PISY Pinus sylvestris Scots pine 181.08 32.80 34.34 24.60 20.42 6.63

JUVI Juniperus virginia Red cedar 180.38 34.00 24.30 15.06 11.55 8.79

THOC Thuja occidentalis White cedar 118.47 34.00 30.28 20.34 11.02 7.38

PIAB Picea abies Norway spruce 145.65 26.40 35.60 24.88 14.28 8.57

Data range 84.41- 277.59 16.80- 47.60 22.39- 83.18 15.06- 33.70 4.94- 27.23 4.13- 23.55

Fig. 2 Cross-validated adjusted R2 for estimating forest structure
variables across 6 different footprints. AGB is aboveground biomass,
BA is basal area, DBH is average diameter at breast height, Ht is tree
height, CL is crown length and CW is crown width
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95 % uncertainties in the original unit of a variable are
smaller than upper 95 % uncertainties. All calculations
were initially performed on a lidar-tile basis, and were
combined into a single dataset in R. Then, we gridded
the dataset to raster images of structural estimates and
uncertainty for each variable at the cell size of 20 m using
ArcMap 10.1 (ESRI 2012).

Carbon storage by urban trees

We estimated total aboveground biomass and standard error
by municipality from the forest structure maps by summation
of aboveground biomass and associated standard error for all
the forest pixels within each municipality boundary (Fig. 1b).
We also approximated total biomass by applying root-to-shoot
ratio of 0.26 to total aboveground biomass (Cairns et al.

1997), and total carbon storage was estimated by multiplying
total biomass by carbon content fraction of 0.5 (Nowak and
Crane 2002).

Results

The study area consisted of forests dominated by 20 dif-
ferent species, including 14 deciduous types and 6 ever-
green types (Table 2). Forests exhibited a wide range of
structural characteristics, with canopy height (Ht) ranging
from 15.06 to 33.70 m and aboveground biomass (AGB)
from 84.41 to 277.59 Mg/ha. Additional structural vari-
ables including basal area (BA), mean diameter at breast
height (DBH), crown length (CL) and crown width (CW)
are summarized in Table 2.

Table 3 Final models, mean adjusted R2, mean RMSE and relative RMSE of 75 % training and 25 % validation data for estimating forest structure
variables

Forest structure
variable*

Model Training data (75 %) Validation data (25 %)

Mean adjusted
R2

Mean
RMSE**

Relative RMSE
***

Mean adjusted
R2

Mean
RMSE

Relative
RMSE

ln(AGB) Skew_I + Q50_H 0.51 32.91 19.33 % 0.48 30.97 18.19 %

ln(BA) PCan +CV_H 0.61 4.87 16.31 % 0.59 4.67 15.64 %

ln(DBH) Q80_H+ PCan 0.73 6.32 14.93 % 0.71 5.88 13.90 %

Ht Q90_H 0.71 2.22 9.36 % 0.70 2.09 8.81 %

ln(CL) Q80_H+ PCan
+Kurt_H

0.59 3.46 22.77 % 0.55 3.39 22.31 %

ln(CW) Q70_I + Max_I 0.64 2.72 23.76 % 0.62 2.59 22.63 %

* Forest structure variables are aboveground biomass (AGB, Mg/ha), basal area (BA, m2 /ha), diameter at breast height (DBH, cm), canopy height (Ht,
m), crown length (CL, m) and crown width (CW, m)

**Mean RMSE are reported as back-transformed RMSE

***Relative RMSE are calculated by Mean RMSE/mean of forest structure variables

Table 4 Final models and model coefficients for estimating forest structure variables.

Forest structure variable* Model β0** β1 β2 β3

Mean Std Mean Std Mean Std Mean Std

ln(AGB) Skew_I + Q50_H 4.18 0.090 0.19 0.022 0.04 0.005

ln(BA) PCan +CV_H 2.79 0.087 1.07 0.095 -1.23 0.114

ln(DBH) Q80_H+ PCan 3.13 0.091 0.05 0.003 -0.63 0.079

Ht Q90_H 3.90 0.747 0.90 0.035

ln(CL) Q80_H+ PCan +Kurt_H 2.12 0.163 0.06 0.005 -0.79 0.143 -0.03 0.007

ln(CW) Q70_I + Max_I 2.62 0.055 -0.06 0.004 0.01 0.002

* Forest structure variables are aboveground biomass (AGB,Mg/ha), basal area (BA, m2 /ha), diameter at breast height (DBH, cm), canopy height (Ht,
m), crown length (CL, m) and crown width (CW, m)

** β0, β1, β2 and β3 are coefficients of the linear models, β0 is the coefficient of constant, β1, β2 and β3 are the coefficients of selected predictor
variables. For example: the model of AGB is ln(AGB) = β0 + β1* Skew_I + β2* Q50_H
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Lidar footprint radius for plots

We found a consistent pattern of increasing R2 and decreasing
RMSE in predicting structural variables up to a 20 m radius
footprint for calculating lidar metrics, and leveling off or de-
creasing to 35 m (Fig. 2). Specifically, R2 increased by 3 % to
11 % for different structural variables as lidar footprint in-
creased from 10 m to 20 m, and decreased by 1 % to 18 %
as footprint increased from 20 m to 35 m. Based on this result,
all the subsequent analyses employed the 20 m radius foot-
print to compute lidar metrics for our field plots.

Forest structure models

Model performance and selected predictor variables var-
ied considerably among the different structural parameters
(Table 3). Of six structural variables, canopy height was
predicted best using 90th percentile height (validation:
R2 = 0.70, RMSE = 2.09 m, relative RMSE = 8.81 %),
while aboveground biomass performed most poorly

(validation: R2 = 0.48, RMSE = 30.97 Mg/ha, relative
RMSE = 18.19 %). Models for six forest structural vari-
ables were employed to generate maps of forest structure
using mean beta coefficients derived from the 1000
models fitted with randomly drawn 75 % subset of the
data (Table 4, Fig. 3). For R2, RMSE and beta coefficient
distribution of 1000 developed linear models, see details
in Gu (2015).

Maps of forest structure and uncertainty

Maps of canopy height, crown width and aboveground bio-
mass (Fig. 4, first three rows) show the considerable variations
in forest structure within areas A, B and C indicated by
Fig. 1a. Maps of uncertainty in aboveground biomass
(Fig. 4, bottom row) illustrate that highest levels of mapped
uncertainty occur on the edge of forest patches and in heavily
treed neighborhood areas where forest cover is discontinuous
and lidar returns from trees are irregular. Across the whole
study area, the length of 95 % confidence interval in pixel-
wise mean aboveground biomass varied from 16.0 to
88.8 Mg/ha, averaging 30.3 ± 12.7 Mg/ha, with the majority
of pixels (73 %) in the study area having uncertainties in per
pixel aboveground biomass that are within -17 % to +20 % of
the predicted values.

Carbon stocks in municipalities

One utility of this work is the ability to provide an accounting of
total aboveground biomass plus uncertainty in its estimate, as
well as total carbon storage and carbon stock per unit of land in
the seven municipalities within the study area (Table 5). For
example, over the 207.3 km2 of land area for City of Madison,
we estimated a total aboveground biomass of 1.0 million Mg
with uncertainty range of 0.9 to 1.2 million Mg, and total carbon
storage by urban trees of 0.7 million Mg averaging 3.2 kg/m2

carbon. Estimated total aboveground biomass for the seven mu-
nicipalities is 1.6 million Mg with an uncertainty range of 1.4 to
1.9millionMg, or approximately uncertainty of -14% to +16%.

Discussion

Increasing the value of existing lidar datasets

We employed existing leaf-off discrete return lidar data to map
urban forest structure. Although leaf-on data are most often
acquired for forestry management, it is unlikely that most
municipalities can justify the expense of collecting lidar data
specifically for mapping forest structure. However, leaf-off
lidar data are regularly acquired to detect bare ground for
topographic mapping, floodplain delineation (Hodgson et al.
2005) and urban infrastructure mapping. A considerable

Fig. 3 Linear regression results for six forest structure variables using
final models, with point symbols varied by dominant species. Species
codes are listed in Table 2
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amount of value can be added to such Bopportunistic^ datasets
if they can be used to estimate properties beyond their
intended uses, such as merchantable volume (Hawbaker
et al. 2010) and bird species richness (Lesak et al. 2011).
Although leaf-off data pose some challenges in areas with
mixed deciduous and evergreen forests, we addressed this
by including variable Skew_I that capture differences between
conifers and leaf-off deciduous forests (Fig. 5a).

Maps of forest structure from leaf-off lidar in urban areas
provide the basis for a spatially comprehensive assessment of

forest resources. Aboveground biomass maps offer opportu-
nities to evaluate and update existing national biomass and
carbon datasets (NBCD, Kellndorfer et al. 2013), and reduce
the uncertainties in areas where forest inventory and analysis
(FIA) sampling has not been deployed. Moreover, urban tree
inventories conducted by municipalities are usually incom-
plete, usually covering a small portion of the forested area of
a city (Nowak et al. 2013), yet the benefits of complete spatial
coverage provided by lidar maps could substantially improve
urban ecosystem management. For example, in Wisconsin

Fig. 4 Forest structure maps for
areas a, b, c in Fig. 1a (by
column). Top row is canopy
height (Ht, m); second row is
crown width (CW, m); third row
is aboveground biomass (AGB,
Mg/ha); and the fourth row is the
uncertainty (% in the length of
95 % confidence interval to the
estimate) in aboveground
biomass

Table 5 Summary of total
aboveground biomass (AGB),
uncertainty range of total
aboveground biomass, total
carbon stock, aboveground
biomass per unit of land and
carbon stock per unit of land in
the seven municipalities shown in
Fig. 1b

City Area
(ha)

Total AGB
(103 Mg)

Uncertainty
Range*
(103 Mg)

Total carbon
stock (103 Mg)

AGB per
area (Mg/
ha)

Carbon stock
per area (kg/m2)

Madison 20,730 1047 904 – 1217 660 50.5 3.2

Shorewood 208 18 16– 21 12 88.4 5.6

Middleton 2098 65 57– 74 42 30.8 1.9

Monona 852 52 46– 60 33 61.2 3.9

Verona 1453 27 23– 30 17 18.3 1.2

Fitchburg 9106 310 270 – 357 195 34.0 2.1

Sun Prairie 3224 96 81 – 115 61 29.9 1.9

Total 37,672 1615 1397– 1873 1018 42.9 2.7

*Uncertainty range is defined by the 95 % confidence interval of the prediction from AGB model
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and other areas of the Upper Midwest U.S., the ability to
quantify forest aboveground biomass has significant manage-
ment implications in light of ongoing threats from invasive
species such as the emerald ash borer (EAB, Poland and
McCullough 2006). It is estimated that 20 % of the tree bio-
mass in the Madison area is in ash trees (Marla Eddy, city
forester, personal communication), which could equate more
than 209,000 metric tons of ash wood that will have to be
disposed of locally if proactive management efforts to remove
ash trees are implemented. In addition, maps of other forest
structural variables, especially canopy height, crown width
and crown length, provide information to characterize impor-
tant determinants of tree species composition (Gu et al. 2015),
bird diversity (Lesak et al. 2011) and wildlife habitat (Hyde
et al. 2006) in the urban environment. Spatial maps of urban
forests could enable social scientists to investigate public
health and understand epidemic distribution patterns in urban
community (Lovasi et al. 2013). Finally, these structural maps
may be also relevant to understanding energy usage and urban
heat island effects (Akbari et al. 2001).

Empirical models to predict forest structure

We employed empirical models to map forest structure from
lidar. This was necessary due to the opportunistic nature of the
lidar data available to us. The variables we selected were com-
parable to other studies, for example, Q50_H was used to
estimate aboveground biomass in pine dominated forests in
central Spain (García et al. 2010), upper canopy quantiles
(Q90_H and Q80_H) were significant to predict diameter,
canopy height and crown length in deciduous and evergreen
forests inWisconsin (Hawbaker et al. 2010; Muss et al. 2011).
However, we identified skewness of leaf-off intensity
(Skew_I) as an important metric to estimate aboveground bio-
mass from leaf-off lidar. Skew_I is a new useful metric for
leaf-off lidar, which was not reported in previous studies of
forest structure characterization. As well, we found that

Skew_I from leaf-off lidar was strongly correlated with forest
physiognomic composition (broadleaf deciduous vs. conifer-
ous evergreen), which alone explained 48% of the variance in
the proportion of the basal area on a plot consisting of decid-
uous trees (Fig. 5a). Together with two other significant vari-
ables, CV_I and Kurt_I (Table 1), we found that intensity data
facilitated prediction of the proportion of deciduous trees with
a fit of R2

val = 0.65, RMSEval = 0.20 (Fig. 5b). This points to
another utility and value of the 3DEP leaf-off lidar that will be
soon widely available across the United States. Although
3DEP is an activity to bring together locally collected lidar
datasets into a national database for high-resolution elevation
mapping, the data could also be purposed for canopy structure
mapping in urban areas.

Comparison to other research

Our results compare favorably to other studies that used
discrete-return small-footprint lidar to estimate plot-level for-
est structure in natural forests (Table 6), with our R2

val falling
within the range of model performance in the literature and
slightly better for crown length. Moreover, our analyses
employed a rigorous calibration/validation procedure that
may have decreased our diagnostic statistics relative to other
studies reported in the literature.

Our results are especially encouraging given that the
study was conducted in urban forests, which are consid-
erably more heterogeneous than natural forests, especially
the plantations and other working forests where the ma-
jority of lidar studies have been conducted. Specifically,
tree composition is much more diverse in urban forests
(Alvey 2006) because urban trees are often planted and
frequently managed. Tree species for planting or retention
are selected for a variety of functions, e.g. growth rate,
climate, tolerance and aesthetics, resulting in a larger pro-
portion of exotic species. We tallied 44 tree species in our

Fig. 5 Logistic regression results
for estimating proportion of
broadleaf (PB) using 20 m
footprint lidar. a Plots observed
PB vs. Skew_I (skewness of
intensity), and a fitted logistic
regression curve; b The
regression result of estimating PB
using Skew_I and Kurt_I
(kurtosis of intensity)
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study, and of these, 20 different tree species dominated
composition in at least one of our 50 × 50 m plots, com-
pared to a maximum of 9 dominant species reported in
other studies using discrete-return lidar. In addition, hu-
man activity and management practices such as regular

clearing, trimming and planting activities affect structural
patterns of urban forest (Tyrväinen et al. 2003), which
may weaken correlations between field measurements
and lidar heights, especially if management activities were
conducted between lidar acquisition and field sampling.

Table 6 Results of estimating plot-level forest structure variables using small footprint discrete lidar from other studies

Forest structure variable* Forest type N of species N of plots R2 Estimated error Unit Reference

AGB Conifer, hardwood 20 60 0.40-0.48 30.97-33.52a Mg/ha The authors

Conifer, hardwood N/A 18 0.22-0.93 17.65-44.25a Mg/ha Gleason and Im (2012)

Conifer, hardwood 9 148 0.72-0.75 70.42-74.03a Mg/ha Muss et al. (2011)

Conifer 3 45 0.58-0.67 28.89-34.09a Mg/ha García et al. (2010)

Conifer 1 25 0.04-0.62 12.40-214.8a Mg/ha Bortolot (2006)

Hardwood 3 33 0.09-0.33 45.46-51.08a Mg/ha Popescu et al. (2004)

Conifer 3 31 0.78-0.82 33.25-41.55a Mg/ha Popescu et al. (2004)

Hardwood 2 49 0.78-0.85 0.46-0.55b Mg/ha Lim et al. (2003)

BA Conifer, hardwood 20 60 0.43-0.59 4.67-5.46a m2/ha The authors

Conifer, hardwood 9 31 0.46-0.48 8.12-8.31a m2/ha Muss et al. (2011)

Conifer, hardwood 6 114 0.43-0.46 -20.56-18.12c m2/ha Hawbaker et al. (2010)

Hardwood 3 33 0.25 6.47a m2/ha Popescu et al. (2004)

Conifer 3 31 0.74-0.76 5.66-6.94a m2/ha Popescu et al. (2004)

Conifer, hardwood 3 116 0.74-0.94 0.13-0.22d m2/ha Næsset (2004)

Hardwood 2 49 0.82-0.88 0.39-0.47b m2/ha Lim et al. (2003)

DBH Conifer, hardwood 20 60 0.66-0.71 5.88-6.26a cm The authors

Conifer, hardwood 9 31 0.61-0.64 5.97-6.16a cm Muss et al. (2011)

Conifer, hardwood 6 114 0.45-0.48 -10.40-6.90c cm Hawbaker et al. (2010)

Hardwood 3 33 0.41-0.51 5.80-6.49a cm Popescu et al. (2004)

Conifer 3 31 0.70-0.90 4.42-7.03a cm Popescu et al. (2004)

Conifer, hardwood 3 116 0.55-0.69 0.12-0.17d cm Næsset (2004)

Hardwood 2 49 0.37-0.63 0.14-0.19b cm Lim et al. (2003)

Ht Conifer, hardwood 20 60 0.68-0.70 2.09-2.17a m The authors

Conifer, hardwood 9 67 0.70-0.80 1.88-2.29a m Muss et al. (2011)

Conifer, hardwood 6 114 0.52-0.55 -5.5-5.0c m Hawbaker et al. (2010)

Hardwood 3 33 0.73-0.79 1.82-2.06a m Popescu et al. (2004)

Conifer 3 31 0.90-0.97 1.29-2.14a m Popescu et al. (2004)

Conifer, hardwood 3 116 0.77-0.92 0.06-0.07d m Næsset (2004)

Hardwood 2 49 0.61-0.87 0.09b m Lim et al. (2003)

CL Conifer, hardwood 20 60 0.53-0.55 3.36-3.49a m The authors

Conifer, hardwood 9 67 0.39-0.48 1.63-1.77a m Muss et al. (2011)

CW Conifer, hardwood 20 60 0.51-0.63 2.58-3.06a m The authors

Hardwood 3 33 0.33-0.62 1.63-1.69a m Popescu et al. (2004)

Conifer 3 31 0.55-0.63 1.27-1.69a m Popescu et al. (2004)

*Forest structure variables are aboveground biomass (AGB), basal area (BA), diameter at breast height (DBH), tree height (Ht), crown length (CL) and
crown width (CW)
a Root mean square error (RMSE), values reported in original units
b Standard error of residuals, values reported in log transformed units
c Range of difference between predictions and observations, values reported in original units
d Root mean square error (RMSE), values reported in log transformed units
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Uncertainty mapping

To our best knowledge, ours is the first study to explicitly map
uncertainty in lidar-derived maps of forest structure in an ur-
ban area on a pixel-by-pixel basis (Fig. 4, bottom row). The
uncertainties we estimated in this study were only from the
statistical models, however, uncertainties in field measure-
ments, remote sensing accuracy and spatial autocorrelation
could also contribute to the uncertainties in forest structural
variables (Gonzalez et al. 2010). The uncertainty maps iden-
tify locations where the maps of structure are less reliable,
either because the lidar metrics are beyond the range of those
metrics used in the regression analysis, or because the struc-
tural variables are estimated to be outside the range of our
measurements in plot data. For example, the total uncertainty
as a percentage of predicted aboveground biomass was low
(10 % - 18 %, i.e. worst-case uncertainties of -8 % to +10 %)
in the large patches of forest, compared to high total uncer-
tainty in the edge of forest patches and residential areas (40 %
- 50 %, equating to worst-case uncertainties of -22 % to
+28 %). The uncertainties in urban forest patches (10 % -
18 %) were higher than that of 1.2 % - 6 % estimated from
small-footprint lidar for natural forests in northern California,
USA (Gonzalez et al. 2010) because of our weaker above-
ground biomass model (R2 = 0.48 vs. R2 = 0.80–0.86).
Despite higher uncertainties compared to natural forests, our
uncertainty maps constitute the first spatially explicit demon-
stration of uncertainty in forest structure estimates.

On the whole, the highest uncertainties occurred in residen-
tial neighborhoods and along forest edges, with uncertainty
being negatively correlated with proportion of canopy (PCan
in Table 1, r = - 0.4). As such, mixed signals in lidar data yield
more variable estimates of the metrics in Table 1. However,
large areas of the maps have high confidence, and the areas
with lower confidence are known. Uncertainty maps help de-
cision makers to better understand the limitations of the map
for management or planning. In addition, they allow urban
foresters to target locations for evaluation, monitoring and
further measurement to fill gaps in our knowledge.

Carbon stocks in municipalities and implication
for management

Carbon storage by urban trees varies significantly among cit-
ies, ranging from a high of 5.6 kg/m2 in the Village of
Shorewood Hills, an affluent older neighborhood near the
University of Wisconsin campus and hospital, to 1.2 kg/m2

in City of Verona, a suburban community that has recently
experienced considerable new residential housing develop-
ment. Percent forest cover is one of the main factors affecting
carbon storage. In this study, the correlation between carbon
storage density and percent forest cover for seven municipal-
ities is 0.96. Aside from percent forest cover, stem diameter

distribution is another important factor influencing total car-
bon stock, with larger diameter trees storing more carbon
(Nowak and Crane 2002). It is estimated that the study area
stores 27 t C/ha (Table 5), which is comparable to 25.1 t C/ha
estimated from field data collected across 10 U.S. cities
(Nowak and Crane 2002).

Though total carbon storage per hectare is the lowest in city
of Verona, development and landmanagement practices could
potentially maximize carbon storage in urban forests. For ex-
ample, 31 % of Verona is covered by pasture and cultivated
crops, converting abandoned grassland and agriculture to for-
ests is a feasible way to increase the carbon sink (Fahey et al.
2010). Other active carbon management includes reducing
deforestation for urban development, increasing forest pro-
ductivity through fertilization at time of planting, insects and
competition control, and selecting tree species favorable for
storing carbon when planting new trees.

Conclusion

Our goal was to demonstrate that forest structure and associ-
ated uncertainties can be mapped using the types of lidar data
that are available to most management agencies. At present,
due to costs, most urban areas cannot afford dedicated leaf-on
lidar for forest characterization. However, most urban areas
have access to leaf-off data from past or forthcoming topo-
graphic mapping efforts. We present an approach to map for-
est structure and its uncertainty of estimation in an urban area
using leaf-off lidar data that were originally acquired for topo-
graphic mapping. Because the available lidar data were oppor-
tunistic, and not tuned to our particular application, we used
an empirical approach to model and map forest structure.
Based on a review of the literature, ours is the first application
of using leaf-off discrete lidar to map forest structure as well
as uncertainty of prediction across an entire urban area, pro-
viding initial tabular estimates of total woody biomass and
carbon stock by municipality (Table 5). This represents a po-
tentially useful strategy for urban forests management where
resources are insufficient for new optimal lidar collection.
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