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Abstract Vegetation has gained importance in respective de-
bates about climate change mitigation and adaptation in cities.
Although recently developed remote sensing techniques pro-
vide necessary city-wide information, a sufficient and consis-
tent city-wide information of relevant urban ecosystem ser-
vices, such as carbon emissions offset, does not exist. This
study uses city-wide, high-resolution, and remotely sensed
data to derive individual tree species information and to esti-
mate the above-ground carbon storage of urban forests in
Berlin, Germany. The variance of tree biomass was estimated
using allometric equations that contained different levels of
detail regarding the tree species found in this study of
700 km2, which had a tree canopy of 213 km2. The average
tree density was 65 trees/ha per unit of tree cover and a range
from 10 to 40 trees/ha for densely urban land cover. City-wide
estimates of the above-ground carbon storage ranged between
6.34 and 7.69 tC/ha per unit of land cover, depending on the
level of tree species information used. Equations that did not
use individually localized tree species information
undervalued the total amount of urban forest carbon storage
by up to 15 %. Equations using a generalized estimate of
dominant tree species information provided rather precise

city-wide carbon estimates. Concerning differences within a
densely built area per unit of land cover approaches using
individually localized tree species information prevented un-
derestimation of mid-range carbon density areas (10–20 tC/
ha), which were actually up to 8.4 % higher, and prevented
overestimation of very low carbon density areas (0–5 tC/ha),
which were actually up to 11.4 % lower. Park-like areas
showed 10 to 30 tC/ha, whereas land cover of very high carbon
density (40–80 tC/ha) mostly consisted of mixed peri-urban
forest stands. Thus, this approach, which uses widely accessi-
ble and remotely sensed data, can help to improve the consis-
tency of forest carbon estimates in cities.

Keywords Climate changemitigation . Urban ecosystem
services . Uncertainty . Urban remote sensing . Individual tree
detection . Tree species composition

Introduction

Reducing carbon emissions is important to avoid a steep in-
crease in the effects of climate change (IPCC 2013). Cities are
among the key contributors of carbon emissions, and many
have set up mitigation strategies with a focus on infrastructure
and energy (Castán Broto and Bulkeley 2013). However,
green infrastructures like urban forests have hardly been ad-
dressed as an additional source of climate change mitigation,
partly because of the lack of consistent area-wide urban forest
carbon estimates (Davies et al. 2013; Demuzere et al. 2014;
Hutyra et al. 2011; Pickett et al. 2011).

Studies of above-ground carbon storage have been applied
on forestry at the national level; however, most studies do not
address urban forests (McHale et al. 2009). Carbon estimates
from urban forests focused US cities starting from the 1990s,
and have spread across selected global cities to the present
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(Chen 2015; Liu and Li 2012; Nowak and Crane 2002;
Stoffberg et al. 2010; Strohbach and Haase 2012). Davies
et al. (2013) investigated 13 independent urban forest studies
and demonstrated multiple reasons for the high variability that
exists between urban carbon estimates—most of which either
under- or overestimate the carbon storage of urban forests. They
found that a lack of uniform methods and standardized metrics
makes it difficult to conduct comparisons within and between
cities. Therefore, the precision of carbon estimates is likely to
get affected by a patchwork of different data sources, lack of up-
to-date information, varying data quality, and inconsistency of
input parameters. Furthermore, the assessment of parameters
like the tree canopy size might vary concerning the methodolo-
gy and data used, which causes additional uncertainty for fol-
lowing applications like carbon estimates (Richardson and
Moskal 2014). For example, Raciti et al. (2014) accounted for
14 % variability in class accuracy occurring by chance
concerning the tree canopy mapping. Urban forest carbon esti-
mates of different land use classes can be beneficial to account
for a heterogeneous urban structure, as Hutyra et al. (2011) used
different degrees of urbanization in the US city of Seattle.
Strohbach and Haase (2012) applied multiple land use classes
in the German city of Leipzig, and also pointed out, an even
higher level of details would better address the variability within
certain land use classes, and therefore could provide more pre-
cise estimates of urban forest carbon storage. Most challenging
of all is the lack of up-to-date data, in particular, that regarding
vegetation on private property.

In fact, globally available city-wide studies showed differ-
ences, as selected US cities had a city-wide average of 26.9 tC/
ha per unit of land cover compared to the city of Leipzig with
11.81 ± 3.25 tC/ha. Though, the heterogeneity of tree canopies
and different land covers showed high variability of urban forest
carbon storage from below 10 tC/ha to above 100 tC/ha per unit
of tree cover, which would require improved assessments of
more refined estimates between and within cities. (Nowak et al.
2013b; Strohbach and Haase 2012) Besides, the contribution of
urban vegetation to the total carbon storage of cities should not be
underestimated, as it can add a considerable amount—as much
as 20 %—as shown by Churkina et al. (2010).

Recent research has further illustrated the importance of
urban forests by investigating the role such forests play as
carbon sinks. For example, carbon offset analyses have indi-
cated that using vegetation to reduce urban CO2 emissions has
positive correlations with sequestration, storage, and reduced
energy demand because of the shading and cooling provided
by vegetation (Akbari et al. 2001; Liu and Li 2012; Zhao et al.
2010). The positive effects of highly vegetated urban areas
acting as a carbon sink have also been shown through urban
CO2 flux models (Grimmond et al. 2002). Other selected sur-
veys of urban forests have hinted at potential future applica-
tions for carbon credits as part of the governments’ ongoing
mitigation strategies (O’Donoghue and Shackleton 2013;

Poudyal et al. 2011). Further studies have suggested integrat-
ing urban forests into regional carbon balancing, since the
contribution of urban forests has been underestimated in past
decades (Churkina et al. 2010; Zhang and Hu 2012).

Ground-basedmethods currently provide the most accurate
carbon storage estimates; however, such approaches rely on
the harvesting and weighing of trees and have been rarely
applied to urban and non-commercial forestry because of their
destructive nature (Jo and McPherson 2001; McHale et al.
2009). Findings from ground-based samples are frequently
used to model woody biomass using growth functions for
general or species-specific allometric equations (Weissert
et al. 2014). The most common input variables for allometric
equations include the dendrometric parameters of diameter at
breast height (dbh), height, volume, number (quantity), age,
and type of species (Nowak and Crane 2002).

McHale et al. (2009) showed, that specific urban conditions
might cause an increase in variability of forest carbon storage,
which depended on multiple factors like the allometric equa-
tions used, scale, species, population, and community
characteristics. Therefore, urban forest carbon estimates might
require a more standardized methodology or even allometric
equations adapted to urban conditions. As Zhao et al. (2012)
pointed out, carbon storage of densely vegetated areas can be
underestimated when using national equations similar to that
used by Jenkins et al. (Jenkins et al. 2003). The availability of
specific urban allometric equations is not likely to rise rapidly
any time in the near future because creating such specific equa-
tions is highly labor intensive. Thus, other studies have sug-
gested carefully selecting allometric equations before drawing
a final conclusion regarding urban forest carbon estimates
(Aguaron andMcPherson 2012). Important decisive parameters
regarding urban carbon estimates are tree size, tree density and
tree species composition (McPherson et al. 2013). Schmitt-
Harsh et al. (2013) pointed out the necessity of addressing
species-specific size distributions on private parcels, in particu-
lar, those of dominant trees, which contribute most to above-
ground carbon storage. Though, most studies apply tree species
information for forest carbon estimates (Nowak et al. 2002; Ren
et al. 2011; Zhao et al. 2010), remotely sensed individual tree
species data has rarely been analyzed in urban studies so far.
Developments in urban remote sensing techniques are very
promising as far as assessing the necessary data to estimate
the carbon stored in urban vegetation, and particularly, in urban
trees in a consistent and comparable manner (Weng et al. 2012).
Therefore, remote sensing data can be seen as a highly useful
complementary source of information beside field surveys.
Laser scanners and high-resolution multi-spectral sensors show
promising applications for area-wide estimates of the location,
height, crown shape, and species of individual trees
(Holopainen et al. 2013; Nielsen et al. 2014; Shrestha and
Wynne 2012; Tigges et al. 2013; Zhao et al. 2009). Remotely
sensed light detection and ranging (LiDAR) height metrics have
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been successfully used for individual tree detection and classi-
fication in urban areas (Dandois and Ellis 2013; Jung et al. 2011;
Koch 2010; Kwak et al. 2007; Yao et al. 2012; Zarco-Tejada
et al. 2014). Field surveys have been supplemented by terrestrial
(TLS) and mobile laser scanning (MLS), which can offer accu-
rate measures of an individual tree’s shape, quick estimates for a
larger number of trees, and support for ground-based validation
(Gibbs et al. 2007; Hyyppä et al. 2008; Nielsen et al. 2014).
Combining recently available satellite data of RapidEye’s mul-
tispectral, high-spatial, and temporal information with LiDAR-
derived height information might allow for improved assess-
ment of individual trees in cities. On the one hand, existing
ground sampling approaches already provide accurate informa-
tion for carbon estimates. On the other hand, remote sensing
provides more comprehensive coverage of tree variables across
the city, which might help to better assess variability of urban
forest carbon estimates.

In this study we estimate the above-ground carbon storage
of urban forests in Berlin, Germany. We use a remote sensing
approach to derive individual tree species information, which
are input for allometric biomass equations. The tree species
composition data used is derived fromRapidEye satellite data,
and the dendrometric parameters of individual trees are de-
rived from airborne LiDAR data. The major aim is to assess
the variability of carbon estimates concerning tree species
information of each individual tree compared to more general
tree coverage information. Our approach might improve the
retrieval of urban forest carbon estimates’ details across large
cities, and indicate spatial differences within cities.
Furthermore, this might also assist sampling approaches to
better address differences within land use classes.

Material and methods

Study area

The city of Berlin (52° 31′N, 13° 24′ E) has a moderate climate
and is characterized by a mostly flat topography. Its administra-
tive area is approximately 890 km2, 40 % of which is covered
by vegetation such as urban forests, parks, street trees, and urban
agriculture (Berlin Department of Urban Development 2010a).
More than 290 km2 of Berlin is taken up by urban forests, which
constitutes the largest urban forest in Germany; Berlin’s public
parks cover approximately 55 km2. Deciduous broadleaf tree
species are prevalent on public land: according to official statis-
tics, the most frequent street or park tree species (100 %) are the
lime tree (Tilia, 35 %), maple (Acer, 20 %), oak (Quercus, 9%),
plane tree (Platanus, 6 %), chestnut (Aesculus, 5 %), birch
(Betula, 3 %), and locust (Robinia, 3 %) (Berlin Department
of Urban Development 2010b). The remaining percentage of
public street and park trees are mostly dominated by mixed
deciduous trees. The forest of Berlin is dominated by pine

(Pinus), oak (Quercus) and beech (Fagus) (Berlin Department
of Urban Development and Ministery of Infrastructure and
Agriculture Brandenburg 2014). According to the authors’
knowledge, there is no statistical data regarding different tree
species on private property.

Data

Tree species classification from 2009 (Tigges et al. 2013) and a
normalized digital surface model (nDSM) derived from airborne
laser scanning data from 2007 and 2008 (Berlin Partner GmbH
2007) were available for this study. The overlapping area of both
datasets covers approximately 700 km2 of the city of Berlin,
resulting in a study area that is 78 % of the total area of Berlin
(Fig. 1). Tree canopy covered 30.4 % (213 km2) of the study
area. Eight dominant tree species (Table 1) were classified with a
high degree of accuracy (kappa values of 0.83) (Tigges et al.
2013). Because of the pixel size of RapidEye imagery (6.5 m),
high accuracy of classified tree species data was limited to large
groups of trees, trees aligned in a linear manner (i.e., alley), and
large individual trees. We did not consider further corrections of
those trees due to its already high accuracy. Though, small sized
fragments of the tree canopy were likely to be a source of error.
Therefore, we assigned fragments of grouped pixels covering
less than 100 m2 to a mixed class of dominant tree species in
our case study area (Classes 1–10, Table 1), which should avoid
potential over- or underestimation of a specific tree species.

An individual tree with a stem diameter of 40 cm is listed as
an example in Table 1, which we applied its associated allo-
metric biomass equation. The carbon weight accounts for
50 % of above-ground tree biomass (dry) (Table 1). We cal-
culated the final percentage of tree species pixels assigned to
each class. Fig. 1 shows the spatial distribution of the tree
canopy and tree species classification across the study area.

A normalized height model (nDSM) with a minimum
height of 3 m is used for the tree crown height estimates
(ALS data, winter 2007–08, 4 points/m2, first pulse) (Kolbe
et al. 2008; Tigges et al. 2013). A 3 × 3 median filter was
applied to the nDSM during preprocessing to smooth gaps
in the tree crown values that were caused during leaf-off data
acquisition (Ben-Arie et al. 2009; Popescu et al. 2003).

Two field surveys of trees were conducted in the city of
Berlin in late autumn of 2011 and summer of 2014. Different
plots included a total of 318 trees. Two plots comprising 220
trees were used for calibration and four plots comprising 98
trees were used for validation of an individual tree detection
approach. In these surveys, tree locations were mapped using
global position system and the number of trees and their stem
diameters (dbh) 1.3 m above-ground were assessed. Sites con-
sidered the spatial heterogeneity of urban trees by including
public and private property; isolated, lined, and grouped trees;
different species; and various tree crown conditions. We de-
fined a tree as dominant if its tree crown covered other trees.
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Modeling above-ground carbon storage estimates

Our major aim was to derive urban forest carbon estimates and
analyze the effects concerning the availability of tree species
information details (Table 2). Therefore we used dbh estimates
of individual trees in allometric equations for biomass approx-
imations. We derived the stem diameter (dbh) of each tree by
applying an individual tree detection (ITD) approach and high-
resolution remotely sensed LiDAR data. Tree species informa-
tion were allocated from our remotely sensed RapidEye tree
species classification data.

The ITD approach refers to a local maxima filter algorithm
that is integrated into Fusion software (McGaughey 2013); this
approach proved to be applicable to both natural and urban
forests as well as to parks (Holopainen et al. 2013). The abso-
lute tree height (LH) of individual trees and their tree crown
diameters (LCD) could be estimated using this approach. The
stem diameter (dbh) of individual trees was derived using laser
scanning calculations from Zhao et al. (2009).

dbh ¼ 0:95þ 0:7*LH þ 3:14*LCDþ 0:37*LCBH ; ð1Þ
where LH: tree height; LCD: tree crown diameter; and LCBH:
crown base height with several constants for mixed forests
(Hyypäa et al. 2001).

LCBH values were simplified using half of the maximum
tree height, which reflects a growth form used in forestry
(McGaughey 2013). Other LCBH data were not available for
calibration or validation of urban deciduous trees. Wack et al.
(2003) successfully applied a similar approach combining local
maxima and a decreasing height order to define edges of indi-
vidual tree crowns (Hyyppä et al. 2008). The algorithm in the
Fusion software sets local maxima as the highest location of
surrounding pixels, and thus estimates the absolute tree height

of an individual tree (Popescu and Wynne 2004). That algo-
rithm uses a moving, circular, and variable size evaluation win-
dow that varies with the CHM’s height information. It assumes
that local minima are the edge of a rounded tree crown and a
linear regressive dependency of LH and LCD as follows:

LCD ¼ aþ b*LH⌃2; ð2Þ

Furthermore, the edge of a tree crown will be set if the
absolute height value falls below 66 % of the local maxima
height value within a 3-pixel distance (McGaughey 2013).
The local conditions of our case reflect a dominant deciduous
stand of trees. This could be adapted by using 220 trees from
the field survey to calibrate the variable evaluation window size
equation with coefficients a = 3.09632 and b = 0.00895
(Popescu and Wynne 2004).

Stem diameter estimates from this method were systematical-
ly below the values derived from field data and were corrected
by multiplying an overall weighted arithmetic mean previously
developed by Schreyer et al. (2014) for Berlin as follows:

dbhcor ¼ dbh*1:36; ð3Þ

This correction factor is based on the average stem diame-
ter of each plot used for calibration, weighted according to the
number of trees per plot. Classified results of the stem diam-
eter (dbh) were validated by 98 trees from the field survey.
High cranes on construction sites and voltage electricity lines
led to classification errors. These were avoided after
implementing a height threshold of 30 m, which did not affect
very tall trees. Using dendrometric data, we calculated the tree
density and stem diameter. Individual tree data was stored in a
geospatial database and used to calculate carbon storage esti-
mates as follows: We applied and compared four methods to

Fig. 1 a Tree canopy inside the administrative boundaries of Berlin.
BUnclassified^ refers to areas where either RapidEye or LiDAR data
were not available for classification. The red dot represents a densely
built part of the city and is shown in greater detail in Figs. 3 and 6. b

Spatial distribution of eight dominant tree species classified using
multitemporal RapidEye satellite imagery. Class Bmix^ refers to
difficult-to-classify tree species in the tree canopy
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estimate tree biomass (Table 2, methods 1–4) concerning the
availability of additional tree species information. The previ-
ously built basic dataset of remotely sensed individual
dbh estimates were input in allometric biomass equations,
if no local tree species information were available
(methods 1), and contrasted by adding higher details of local
information regarding our high resolution remotely
sensed RapidEye tree species classification data (Table 1).
Methods 2–3 were set up to reflect only general local
information, such as dominance or fraction of dominant
species, rather than the highest level of details by allocating
remotely sensed RapidEye species information to each
LiDAR derived individual tree (method 4).

Method 1 (Eq. 4): We applied the allometric equation de-
veloped for mixed deciduous forests of the US to each

individual dbh tree estimate (Jenkins et al. 2003). This equa-
tion was frequently used for miscellaneous tree types if no
site- or species-specific information or equations are available
(Hutyra et al. 2011; McHale et al. 2009).

biomass ¼
X n

i¼1
xi; ð4Þ

where x: biomass; i: individual tree; and n: total number of trees.
Method 2 (Eq. 5): We formed a generalized above-ground

carbon estimate based on the suggestions of McHale et al.
(2009) and Aguaron and McPherson (2012). This estimate
reflected the general knowledge of local dominant tree spe-
cies, but had no further additional or spatial species informa-
tion. Therefore we used data on the 10 most dominant tree
species of Berlin (classes 1–10, Table 1), applied those

Table 1 Most dominant tree species in the study area are listed as
classes 1–10. Classes 1–8 are classified using RapidEye satellite data.
Class Bmix^ includes all other species of the total tree canopy, mostly
comprising classes 9 and 10. The area and fraction of the total tree canopy

(CHM) taken by each classified class is listed. The allometric equation
used with an example of the above-ground carbon storage of an individ-
ual tree is shown for classes 1–10

Class Dominant Species of Study Site Area CHM Allometric Equation Carbon Storage

1 Acer (Acer campestre, Acer
platanoides, Acer sp.)

2744 12.9 Equation 2, Acer saccharum
(Ter-Mikaelian and Korzukhin 1997)

588

2 Aesculus (Aesculus hypocastanum) 2852 13.4 Table 1, Aesculus indica (horse chestnut)
(Adhikari et al. 1995)

687

3 Fagus (Fagus sylvatica) 2216 10.4 Appendix A, Eq. 89, Fagus sylvatica
(Zianis et al. 2005)

585

4 Pinus (Pinus sylvestris) 2397 11.3 Table 3, Pinus sylvestris (Muukkonen 2007) 260

5 Platanus (Platanus hispanica) 402 1.9 Volume Equation, Platanus acerifolia
(London Plane), average specific gravity of
Platanus (Alden 1995; Pillsbury et al. 1998)

342

6 Populus (Populus nigra, Populus alba) 387 1.8 Populus tremula (Zianis et al. 2005) 310

7 Quercus (Quercus robur, Quercus rubra,
Quercus sp.)

1839 8.6 Table 3, Quercus sp. (Muukkonen 2007) 568

8 Tilia (Tilia cordata, Tilia × vulgaris, Tilia
platyphyllos)

2810 13.2 Appendix A, Equation 607, Tilia cordata
(Jenkins et al. 2003; Zianis et al. 2005)

299

9 (extra) Betula (Betula pendula) not classified / Appendix A, Equation 31, Betula pendula
(Zianis et al. 2005)

387

10 (extra) Robinia (Robinia pseudoacacia) not classified / Table 2, Equation 6, Robinia pseudoacacia
(Böhm et al. 2011)

400

mix grouped pixel < 100 m2 5643 26.5 Mixture of different tree species concerning
equations of class 1–10

443

Table 2 Methods used to estimate biomass using different levels of tree species information

Method Tree Species Information

# Details Level Dominant Fraction Location Allometric Equations

1 low general national scale, mixed deciduous forest (Jenkins et al. 2003)

2 medium general x averaged using general information of dominant tree species (class 1–10, Table 1)

3 high general x x averaged and weighted by each class fraction of the tree canopy (class 1–8 and
Bmix^, Table 1)

4 very high specific x x x specific using tree species information of each individual tree (class 1–8 and
Bmix^, Table 1)
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species-specific allometric equations to each individual dbh
tree estimate, and finally averaged the results to create a gen-
eralized biomass estimate.

biomass ¼
Xn

i¼1
�x c1 þ c2⋯þ c10ð Þi; ð5Þ

where x : averaged total tree biomass; i: individual tree; n:
total number of trees; and c1 − 10: tree biomass concerning each
class 1–10 (Table 1).

Method 3 (Eq. 6): We formed a generalized estimate as in
method 2 based on the suggestions of McHale et al. (2009)
and Aguaron and McPherson (2012). Furthermore, we

included additional information regarding the amount of tree
canopy (CHM) considered by each dominant species.
Therefor we applied species-specific allometric equations to
each individual dbh tree estimate regarding the availability of
data on the fraction of dominant tree species (classes 1–8 and
Bmix^, Table 1). We could not assign a specific dominant
tree species to the fraction of our mixed class, and
applied an average of most dominant tree species as in
method 2. Each result was weighted by multiplying its
percentage fraction of the total CHM (Table 1). The
final sum was a general estimate concerning the fraction of
prevalent dominant tree species.

biomass ¼
X n

i¼1
x c1*CHM 1 þ c2 * CHM 2 þ…þ c8*CHM 8 þ cMIX *CHMMIXð Þi; ð6Þ

where x: total tree biomass; i: individual tree; n: total number
of trees; c1 −MIX: tree biomass concerning classes 1–8 and
Bmix^ (Table 1); and CHM1 −MIX: fraction of the tree canopy
taken up by each class 1–8 and Bmix^ (Table 1).

Method 4 (Eq. 7): We applied species-specific equa-
tions to each individual dbh tree estimate. Each individual
dbh estimate was assigned the class concerning our re-
motely sensed RapidEye tree species classification data

(classes 1–8 and class Bmix^, Table 1). Input class Bmix^
refers to classified trees less than 100 m2, to which we
could not assign a specific dominant tree species.
Therefore, we assigned a general estimate from method
2 to class Bmix^, which comprised all available informa-
tion of dominant tree species. Estimates of method 4 were
expected to provide the highest level of detail by provid-
ing individual tree species information.

biomass ¼
X n

i¼1
x cclassð Þi; cclass ¼ c1 or c2 orc3 or c4 or c5 orc6 or c7 or c8 or cMIX ; ð7Þ

where x: total tree biomass; i: individual tree; n: total
number of trees; and cclass: tree biomass concerning the
specific class (classes 1–8 and Bmix^, Table 1) of each
individual tree.

We examined the differences that occurred between
these methods in both the complete study area as well
as in a selected and densely built area that is typical of
such areas in Berlin. We matched equations to our case
study tree species (Table 1), and if no species-specific
equations were available, we followed the approach tak-
en by Hutyra et al. (2011): selecting equations for trees
in the same genus. We multiplied our biomass estimates
by 0.5 to convert above-ground dry biomass into units
of carbon (C) (Nowak and Crane 2002). Because we
did not include root biomass, we expected the actual
total carbon storage of the urban trees included in our
study to be higher than our estimates. However, we did
not include a correction factor for root biomass as
Nowak and Crane (2002) because of lack of data and
a high degree of uncertainty regarding species and local
growth conditions in the urban area studied (Johnson
and Gerhold 2003).

Results

Our methods show a variability of urban forest carbon storage
estimates up to 21 % (Table 3). Most of the differences can be
explained by the use of different carbon equations by either
integrating local knowledge of tree species information or not
having any local tree species information available. The max-
imum variability was 9 % concerning tree species information
of each individual tree and more general and aggregated cov-
erage information of local tree species. In other words, indi-
vidual tree species information notably but slightly affected
our urban forest carbon estimates. If tree species information
of each individual tree were used in method 4, we can claim
that method 1, which used no local tree species information,
results in an underestimation of 15 %. We can also state, that
more general and aggregated coverage information of local
tree species information either underestimated carbon storage
by 3 % (method 2, 7.08 tC/ha) or overestimated it by 6 %
(method 3, 7.69 tC/ha) compared to tree species information
of each individual tree (method 4, 7.32 tC/ha). Therefore,
method 2, which provides a generalized estimate using infor-
mation regarding the most dominant tree species, and method
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3, which uses information regarding the most dominant tree
species and their percentage of the total tree canopy, were
slightly off results of method 4, which required higher input
details concerning species information of each individual tree.

The different methods tested in this study (Table 2) clearly
affect carbon storage density numbers. Methods of increasing
details show both over- and underestimations. The area classified
as very low carbon densities (0–5 tC/ha) decreases if methods
involving greater levels of detail are used for calculation (Figs. 2
and 4). For example, method 1 overestimates areas of very low

carbon densities by 11.4 %. Areas of low carbon density (5–10
tC/ha) show the smallest differences between methods (with
maximum differences of 1 % in the study area and 3.3 % in
densely built areas). Densely built areas (Figs. 3 and 4) show a
high level of very low to low carbon densities (0–10 tC/ha). The
largest discrepancies occur between areas of very low (0–5 tC/
ha) and mid-range (10–20 tC/ha) carbon densities. Very low and
mid-range carbon density areas take up a major fraction (60 %)
of the total tree canopy. This is important because the percentage
of very low carbon density is overestimated and that of mid-

Table 3 City-wide average of
carbon estimates of trees in Berlin
obtained using different levels of
input detail (Table 2)

General Carbon Estimates Individual Tree Statistics

Method Total Land Cover (Tree cover) Δ Maximum Mean SD

# Details [MtC] Average [tC/ha] [%] [kg] [kg] [kg]

1 low 0.444 6.34 (20.83) reference 3151 322 200

2 medium 0.496 7.08 (23.29) 12 2838 360 195

3 high 0.538 7.69 (25.29) 21 2728 391 195

4 very high 0.512 7.32 (24.06) 15 4500 372 227

Fig. 2 Estimated average carbon density (tC/ha) per unit of land cover for urban trees in Berlin. Spatial distributions of carbon densities are displayed for
each method from Table 2. Areas with zero carbon density either did not contain trees or did not have data available for classification
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range carbon density is underestimated if high levels of tree
species detail are not used. In particular, areas of medium (20–
30 tC/ha) carbon density (such as in park-like areas) increase

when higher levels of tree species detail are used. Areas with
very high (40–80 tC/ha) densities comprise only a small part of
the study area, though individual tree species information shows

Fig. 3 Spatial distribution of tree carbon density (tC/ha) per unit of land
cover in a densely built part of Berlin (red dot, Fig. 2). Differences in
spatial distribution are displayed at a given density range for each method

listed in Table 2. Areas with zero carbon density did not contain trees.
Areas with low carbon density (0–5 tC/ha) had few trees and contained a
higher number of buildings and impervious surfaces
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a notable impact on carbon densities. High (30–40 tC/ha) and
very high (40–80 tC/ha) carbon densities are not found at the
selected densely built area (Fig. 4).

The mean stem diameter (dbh) for all detected trees is
36 cm. Fewmature trees exhibit a dbh up to 92 cm. Most trees
within a densely built area show an average dbh of 30–35 cm
(Figs. 5b and 6a). Trees with the largest stem diameter values
are found in parks and forests (Fig. 5b). Densely built areas
contain approximately 3 % of the total number of large trees
with dbh of 80 cm (Fig. 6a). The spatial distribution of indi-
vidual trees and tree species are heterogeneous in our study
area, which is densely built (Fig. 6b). Validation of the stem
diameter (dbh) shows moderate to good accuracy. This study’s
classified average mean diameter of 36 cm differs by 11 %
(4.1 cm) from the average mean of our filed survey data
(40.10 cm). From 98 trees of the field survey, 80.1 % of dom-
inant trees and 65.3 % of less dominant trees are classified.

Approximately 1.4 million trees are classified within our
highly heterogeneous urban area using an individual tree
detection approach. The maximum tree height is set at
30 m since higher values tend to be misclassified. We visu-
ally verified that the majority of tall, dominant trees are not
affected by this threshold. The mean height for all detected
trees is 15 m. The average tree density is 65 trees/ha per unit
of tree cover. This accounts for trees classified using first
pulse LiDAR height data, which is less appropriate to ac-
count for potential understory. Though, in situ observations
revealed a majority of large open grown trees in Berlin. The
spatial distribution of tree density per unit of land cover
varies greatly across the city (Fig. 5a). Most areas have an
average tree density of between 10 and 40 trees/ha. Urban
parks have large patches of high tree densities (40–80 trees/
ha). Very high tree densities (80–160 trees/ha) are found in
the forests located in the southeastern portion of our study
site (Fig. 5a).

Discussion

The tree information we derived from remote sensing could
improve our assessment of the above-ground carbon storage
of urban forests and provided a high degree of detail that
allowed carbon estimates to be analyzed across the city of
Berlin. The combination of RapidEye satellite data and air-
borne LiDAR data was beneficial in providing important de-
tails of individual trees for biomass equations. Regarding ad-
ditional tree species information we determined that city-wide
carbon estimates are sufficient when an average of dominant
tree species information is used. Further precision of carbon
estimates could be enhanced on a city-wide scale if we con-
sidered the spatial distribution of tree species. Not using indi-
vidual tree species information undervalued urban forest car-
bon estimates by up to 15 %.

Including high levels of detail for dominant tree species
has a notable effect on the precision of carbon storage
estimates, i.e., 15 %–21 % higher values in our case study
(methods 3 and 4, Table 3). Zhao et al. (2012) obtained
similar results for forests; in their study, selection of spe-
cific allometric equations and individual trees could pro-
vide notable improvements concerning the precision of
regional carbon estimates. Our reference method, Jenkins’
national scaled approach for mixed deciduous forest
(method 1, Tables 2 and 3), considers an average from
all national forests in the US and does not reflect the local
tree species composition of our study site (Jenkins et al.
2003). Such averaged conditions tend to level results. Our
results also suggest, that the fraction or exact location of
tree species (methods 3 and 4, Table 3) might be less
important for city-wide carbon estimates than for an anal-
ysis of differences within a city since results differ only
slightly from an averaged general carbon estimate of dom-
inant tree species (method 2, Table 3). Concerning

Fig. 5 a Spatial distribution of the average tree density (#/ha) per unit of land cover. b Spatial distribution of the average tree diameter at breast height
(dbh in cm) across the study area. For a and b, black areas indicate that no data was available for classification
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differences within a typical densely built area using indi-
vidual tree species information prevented underestimation
of mid-range carbon density areas (10–20 tC/ha), which
were actually up to 8.4 % higher, and prevented overesti-
mation of very low carbon density areas (0–5 tC/ha),
which were actually up to 11.4 % lower. However, further
studies are needed to prove those assumptions.

Our area-wide remote sensing approach uses individual
tree detection and tree species information instead of averaged
results from large regional areas, because these appear better
suited to consider spatial differences within a highly hetero-
geneous urban forest structure (Figs. 2 and 4). However, re-
sults of our Berlin case study appear to be a substantial under-
estimation of carbon and tree density compared to other cities
due to various reasons of local differences: The urban forest
carbon estimates we obtained using the highest level of detail
have a total of 0.512 megatons C (tree cover of 213 km2,
average of 65 trees per hectare of tree cover, and a total area
of 700 km2). The total case study area of Berlin showed an
average of around 7 tC/ha, whereas Strohbach and Haase
(2012) showed an average of about 11 tC/ha for the city of
Leipzig, which has a similar built structure like Berlin.
However, 22 % of Berlin’s administrative area (ca. 190 km2)
was unavailable for our case study, which makes it difficult to
compare differences between and within cities. That unavail-
able area is mostly covered by dense broad-leaf and mixed
woodlands (Berlin Department of Urban Development and
Ministery of Infrastructure and Agriculture Brandenburg
2014). It shows similarities to the Leipzig case study
concerning land cover of high tree coverage like broad-leaf
(68 tC/ha; 80 tC/ha per unit of tree cover) and mixed urban
forests (76 tC/ha; 77 tC/ha per unit of tree cover). A high
fraction of those forest-like areas in the city of Leipzig

certainly contributed to a high city-wide average of 68 tC/ha
per unit of tree cover compared to our Berlin case study of
around 24 tC/ha per unit of tree cover (Strohbach and Haase
2012). Therefore including such less urbanized land of high
tree coverage in our calculations could have substantially
affected and increased the average urban forest carbon
density of the city of Berlin. Schreyer et al. (2014) calculated
the carbon densities of urban trees for selected urban Berlin
structure types. Those calculations were extrapolated across
the total city including those dense woodlands resulting in an
average density of 11.53 tC/ha for the city of Berlin. Similar
differences were shown for the city of Karlsruhe, Germany,
which stated urban forest carbon estimates of 9.5 tC/ha carbon
for highly urbanized areas, and an exponential increase to a
total average of 32.3 tC/ha, if state and city forests were in-
cluded as they are part of the administrative boundaries of
Karlsruhe (Kändler et al. 2011). Tree density is influenced
by various factors in different case studies such as land use,
differences between countries and city development. For ex-
ample, our results of Berlin had an average range of 10–40
trees/ha across densely built areas (excluding parks and forest-
like areas), which is close to the average of 30.7 trees/ha in the
city of Karlsruhe, Germany (Kändler et al. 2011). Residential
areas of Cambridge, UK, showed a range from 33.7 to 55.7
trees/ha (Wilson et al. 2015). Almost 80 % of 167 cities in the
state of Gujarat, India, showed values below 30 trees/ha com-
pared to its capital Gandhinagar with an average of 152 trees/
ha (Singh 2013). For selected US cities, the average tree den-
sity had a large range from below 25 (Casper, Wyoming) up to
280 trees/ha (Atlanta, Georgia) (Nowak et al. 2008). Hence,
tree density differences certainly have a large impact on car-
bon density values, which needs to be considered for compar-
isons between and within cities. Additionally, carbon density

Fig. 6 a Spatial distribution of the average tree diameter at breast height
(dbh in cm) of a densely built area. Individual trees are grouped at
different ranges of dbh. The absolute number of individual trees

classified is shown in brackets. Very large trees are marked with a
triangle or star symbol. b Spatial distribution of tree species classified
for the same area
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would slightly increase, if we included root biomass. Though,
our case study excluded it since little research has been con-
ducted on the carbon storage of urban tree root systems and
high uncertainty surrounds the research that has been conduct-
ed (Johnson and Gerhold 2003; Nowak and Crane 2002).

Our city-wide average of carbon density in Berlin,
Germany, most likely falls in the lower range of urban forest
studies obtained from globally selected cities of temperate
climate zones (11–38 tC/ha) (Strohbach and Haase 2012).
Hutyra et al. (2011) related the average carbon estimates of
urban forests in Seattle, WA, US to the degree urbanization,
which means that Berlin’s results (approximately 7 tC/ha) are
comparable with values between their class of heavy (2 ± 2 tC/
ha) and medium urbanized areas (15 ± 8 tC/ha). Most of
Berlin’s residential areas are less dispersed than for example
US suburbs of detached houses, which are most likely to have
a high tree coverage. As well as European cities show a ten-
dency towards higher densification, which is likely to de-
crease carbon estimates. (Davies et al. 2011) In this context,
a high range of carbon density values are mainly due to the
different structures of the urban forests, higher tree density and
tree coverage in particular (Liu and Li 2012). For example,
carbon density values between US cities showed values from
31.4 tC/ha to 141 tC/ha concerning differences per unit of tree
cover (Nowak et al. 2013b), 14.6 tC/ha to 54.1 tC/ha between
different forest types within the city of Changchun, China
(Zhang et al. 2015), or from 6.8 tC/ha to 98.5 tC/ha per unit
of tree cover concerning differences between afforestation
areas and riparian forests in the city of Leipzig, Germany
(Strohbach and Haase 2012).

Our individual tree detection approach has a good level of
accuracy (>80 %) compared with other studies, such as that
previously published by Schreyer et al. (2014). As Schreyer
et al. pointed out, less dominant trees were likely to be
overlooked in their study, which would have led to them cal-
culating a lower level of total carbon storage than what actu-
ally exists. Temporal changes, such as leaf-dropping, pruning,
and cutting, add further challenges for obtaining accurate car-
bon estimates of urban trees (McPherson 1998). However, the
application of different methodological approaches and levels
of detail for urban forest carbon estimates makes it difficult to
compare results (Hutyra et al. 2011; Kändler et al. 2011;
Nowak and Crane 2002). Thus, previous studies on forest
carbon estimates have demanded more detailed data and
methods (Nowak and Crane 2002; Nowak et al. 2013b).
Differences in sampling sizes, data types, and prediction
methods are also important factors not to be forgotten when
comparing carbon estimates between cities (Fassnacht et al.
2014). Future applications should follow a more generic ap-
proach concerning methodology and the general availability
of data to improve comparisons between urban forest carbon
estimates, similar to what Pasher et al. (2014) established for
Canadian cities. To improve the evaluation of results and track

changes over time, we suggest that researchers at least provide
additional information regarding the spatial distribution of in-
dividual trees concerning the total city area, tree canopy, and
tree density.

The selection of appropriate allometric biomass equations
will remain a major source of uncertainty since few equations
are adapted to the local urban environment. High expertise
will be necessary to complete the selection process of allome-
tric biomass equations (Zhao et al. 2012). Different climate
conditions influence urban growth functions, and species-
specific equations lack established accuracy or general avail-
ability, which might affect large-scale estimates (McHale et al.
2009). Averaged equations, such as method 2 (Table 1), may
be a way to reduce the variability for city-wide estimates
(McHale et al. 2009). Sileshi (2014) pointed out, that various
reports on allometric models are often uninformative, in par-
ticular, as regards the selection of criteria, adaptation, and
validation. Sileshi also calls attention to so-called Blocally
tailored^ models, which tend to be less transferable to other
study sites. Creating new equations will be both labor- and
time-intensive and will require further improvements.
Therefore, Zapata-Cuartas et al. (2012) suggest an approach
that requires less destructive sampling of trees. Even though
less bias by a higher number of equations is likely to cause a
higher variance of carbon estimates (Weissert et al. 2014),
other studies recommend the use of generalized results from
a group of equations to reduce biased estimates (Aguaron and
McPherson 2012; McHale et al. 2009). Such bias could affect
the results we obtain using the highest level of detail regarding
individual tree species (method 4, Table 3). A higher variance
is expected for our input class Bmix^ (Table 1), and further
uncertainty might be caused by differences in the classifica-
tion accuracy of input data.

Automatic processing of tree species classification can be a
future goal since information regarding dominant tree species
is important for biomass estimates. Our multitemporal remote
sensing approach on tree species classification should there-
fore be extended at different study sites since different species
show correlation to tree phenology (Tigges et al. 2013). For
example, high-resolution and carrier systems like unmanned
aerial vehicles (UAV) might easily offer accessible informa-
tion on temporal differences and tree phenology. Further in-
formation could be used to address either temporal changes or
the prevalence of other native and alien species, which still
contains an information gap (Kowarik et al. 2013; Nowak
et al. 2013a). The combination of different remotely sensed
data can further improve the classification of forest details and
be beneficial for carbon modeling approaches (Popescu and
Wynne 2004; Yu et al. 2011). Very high resolution data have
becomemore available for cities and can be used for improved
delineation of individual trees, e.g., airborne UltraCamX data
with a pixel size of 10 cm for downtown Berlin (Berlin
Department of Urban Development 2014). The application
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of very-high-resolution data should still consider the potential
over-segmentation of individual trees, which would reduce
overall accuracy (Holopainen et al. 2013). Even manual de-
lineation of trees does not always provide superior results as
input for biomass estimates stated by Gleason and Im (2012).
Ground-truth data for training and validation should be ex-
tended by terrestrial laser scanning since studies show that
dendrometric measures of individual trees are highly accurate
(Holopainen et al. 2013).

Common approaches to estimating the above-ground
carbon storage of urban forests often use random sampling
and generalized estimates of land use classes, which can
consider high levels of detail. Though, they can lack ex-
pansive spatial data in extent of area, which might cause
higher variability of carbon estimates within a certain land
use class (Davies et al. 2011; Hutyra et al. 2011; Strohbach
and Haase 2012). Therefore, high resolution remote sens-
ing could be recommended as a cost-efficient methodology
to supply more sufficient data on local differences and
temporal changes (Raciti et al. 2014), and as a necessary
standard inventory procedure (Davies et al. 2013;
McPherson et al. 2013). This would help to better reflect
local differences of land use patterns and processes, or
differences in tree canopy structure. Future applications
can use remotely sensed carbon storage estimates as a con-
sistent baseline reference that is annually updated by se-
questration estimates. Additionally, more site-specific in-
formation has helped to refine that high range of estimates.
For example, the availability and improvements of remote-
ly sensed imagery and interpretation contributed to correct
the average forest carbon density of US cities (2002: 92.5
tC/ha per unit of tree cover; corrected 2013: 76.9 tC/ha per
unit of tree cover). (Nowak et al. 2013b) Following recent
approaches like the first global map on tree density by
Crowther et al. (2015), future availability of global (very)
high resolution remote sensing imagery might help to give
more precise answers to the questions of how much urban
forests contribute to carbon offset. The CO2 emissions off-
set might be another marketable regulating option to allow
for an improved consideration of urban forests (Poudyal
et al. 2010). This implies, that urban forests can act as a
carbon sink, which has been indicated by some studies, but
they lack future usage and climate mitigation strategies for
urban vegetation (Weissert et al. 2014). This will also re-
quire appropriate information regarding tree species that
maximize sequestration capacity, water use efficiency,
and stress resistance (Muñoz-Vallés et al. 2013).
Furthermore, the capacity of trees to act as a system should
be continued to be considered in more detail, as a recent
study by Klein et al. (2016) showed, that trees do not use
carbon for themselves in particular, but also trade large
quantities of carbon even between different tree species
using fungi in the soil. Moreover, the benefits of high-

resolution, remotely sensed, tree species information
should be evaluated with regard to other ecosystem ser-
vices, such as cooling and shading (Demuzere et al.
2014), which are still less prevalent in recent urban forest
management plans (Ordóñez and Duinker 2013).

Conclusion

Our remote sensing approach allows us to retrieve area-
wide and consistent information regarding urban hetero-
geneous forest structures, and our results show a measur-
able impact of tree species composition on urban carbon
estimates. To the authors’ knowledge, this is the first
study that applies city-wide, high-resolution, and remotely
sensed data to individual tree detection and tree species
information. Providing additional sensitive information when
assessing the uncertainty of carbon estimates can be beneficial,
and furthermore, the methods discussed in this study may pro-
vide new techniques to increase the comparability of different
cities with specific heterogeneous urban forest structures. Our
findings may provide a baseline of urban forest carbon storage
for future climate action planning, for identifying conservation
areas where urban forest carbon densities are highest, and for
identifying areas in which carbon density may be expanded in
the long-term. Further studies will have to demonstrate wheth-
er a higher spatial resolution or LiDAR point density might
address very heterogeneous areas more adequately on a con-
sistently comparable basis. This applies for dendrometric esti-
mates, species richness, and information on private property, in
particular.

ALS, airborne laser scanning; C, carbon; CHM, canopy
height model; dbh, diameter at breast height; Δ, delta; GPS,
global position system; kg, kilogram; ITD, individual tree
detection; LCBH, LiDAR crown base height; LCD, LiDAR
crown diameter; LH, LiDAR height; LiDAR, Light Detection
And Ranging; Mt., megatons; MLS, mobile laser scanning;
nDSM, normalized digital surface model; SD, standard devi-
ation; t, tons; TLS, terrestrial laser scanning; UAV, unmanned
aerial vehicle.
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