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Abstract. Tree health is a critical parameter for evaluating urban ecosystem health and sustainability. Tradi-
tionally, this parameter has been derived from field surveys. We used multispectral remote sensing data and GIS
techniques to determine tree health at the University of California, Davis. The study area (363 ha) contained 8,962
trees of 215 species. Tree health conditions were mapped for each physiognomic type at two scales: pixel and
whole tree. At the pixel scale, each tree pixel within the tree crown was classified as either healthy or unhealthy
based on vegetation index values. At the whole tree scale, raster based statistical analysis was used to calculate
tree health index which is the ratio of healthy pixels to entire tree pixels within the tree crown. The tree was
classified as healthy if the index was greater than 70%. Accuracy was checked against a random sample of 1,186
trees. At the whole tree level, 86% of campus trees were classified as healthy with 88% mapping accuracy. At the
pixel level, 86% of the campus tree cover was classified as healthy. This tree health evaluation approach allows
managers to identify the location of unhealthy trees for further diagnosis and treatment. It can be used to track the
spread of disease and monitor seasonal or annual changes in tree health. Also, it provides tree health information
that is fundamental to modeling and analysis of the environmental, social, and economic services produced by
urban forests.
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Introduction

Urban forests are a significant natural resource that affects the majority of the population,
most of whom live in cities. Trees in urban forests not only provide aesthetic and recreational
benefits, they also reduce air pollution and storm runoff, conserve energy, store carbon,
provide protection from ultraviolet radiation, create habitat for wildlife, and moderate air
temperatures. All of these benefits are influenced by tree health. Tree health directly affects
the urban ecosystem’s function and performance (Xiao and McPherson, 2002). Monitoring
urban forest tree health has traditionally relied on ground surveys and monitoring programs
(Cumming et al., 2001; Alexander and Palmer, 1999). These methods are costly and require
considerable human resources.
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Remote sensing data has been widely used in land use, land cover, and vegetation map-
ping for urban and rural forests (Erikson, 2004; Xiao et al., 2004; Pouliot et al., 2002; Ustin
and Xiao, 2001). In rural forests, application of remotely sensed data has been expanded to
forest health monitoring (Diem, 2002; Olthof and King, 2000). Xiao et al. (2004) demon-
strated the potential of urban forest tree species mapping by using high resolution spectral
remote sensing data and multiple masking techniques. The use of multiple-masking tech-
niques shifts the focus to the target land cover types only, thus reducing confounding noise
during spectral analysis. Vegetation indices, such as Normalized difference vegetation index
(NDVI), have been widely used for greenness or health condition detection (Maselli, 2004;
Birky, 2001; Richardson and Everitt, 1992). High spatial resolution remotely sensed color
infrared data have been widely used by local government planning and natural resources
agencies. These data are typically acquired from three spectrum windows: near infrared
(NIR), red, and green.

Mapping tree health in an urban setting is difficult because most trees are on private
property and difficult to access in the field. Although remote sensing can rectify this problem,
it is more difficult to distinguish individual tree species from imagery than from the ground.
Cities contain of the wide variety of tree species and their distribution is often fragmented.
Although the spectral information is limited with color infrared data, it contains the red
and NIR bands that are critical for urban vegetation mapping. By using this type of remote
sensing data with a 20 cm resolution, it is possible to acquire a rich set of information on
the canopy at and below the individual tree scale.

Objectives

The objectives of this investigation are twofold: Development of an urban forest tree-health
mapping method based on remotely sensed multispectral data and GIS data layers, and use
of this method to map urban forest tree health.

Methods

Study site

The study site is the campus core area of the University of California, Davis (121
◦
46

′
32

′′

W, 38
◦
32

′
09

′′
N). The campus core area covers 3.6 km2 (897.0 acre) and is located in the

heart of the Central Valley, between the Coast Range to the west and the Sierra Nevada to
the east. The topography is relatively flat. The campus is surrounded by agricultural land
and residential neighborhoods. Campus development started in the early 1900’s as a State
Agriculture School. At that time, the land cover types were farm land, dirt roads, and trees.
After a century of development, the primary land cover types are buildings, parking lots,
streets, roads and paths, and trees and grass (figure 1). Larger trees are in the older sections
of the campus. The climate is Mediterranean, summers are sunny, hot, and dry while winters
are wet but not cold, it rarely snows. On average, 90% of the average annual precipitation
(446 mm) occurs between November and April. Irrigation is the only water resource for
plants during the summer.
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Figure 1. Study site.

Data set

High resolution multispectral remote sensing data, GIS base layers, and field tree sam-
ples were acquired for this investigation during the summers of 2003 and 2004. Color
infrared imagery for the entire campus was collected on August 8, 2003 by WAC Cor-
poration, Inc. Eugene, Oregon (Camera type: Wild RC10. Lens type: Wild Normal Avio-
tar/4. Nominal focal length: 305 mm). This dataset included three spectral bands (near
infrared (NIR), red, and green at 1 to 4,800 spatial resolution. These frame images were
scanned at 600DPI and mosaicked using ERDAS IMAGINE OrthoBASE (ERDAS, Inc.
2002). The mosaicked image was geo-referenced to the GIS base layers. The analyses
were performed using ArcGIS software (Environmental Systems Research Institute, Inc.
2004). The GIS layers included buildings, parking lots, roads, and paths. Also, a tree
inventory layer was created based on the campus tree survey that was updated in the sum-
mer 2003 by Great Scott Tree Service, Inc. Stanton, California. The tree survey included
tree location, species, and dimensions (e.g., tree trunk diameter at breast height (dbh),
height, and crown diameter). Trees in the Arboretum and Environmental Horticulture re-
search field were excluded from this inventory because they were managed differently
than the rest of the campus trees. The inventory contained 8,962 trees comprising 215
species. Forty species accounted for 80% of the population. Trees were further classified
by their physiognomic type (broadleaf deciduous, broadleaf evergreen, conifer, and palm)
and mature size (tree height less than 10 m for small, 10–20 m for medium, > 20 m
for large) (Table 1). These 8,962 trees covered 0.46 km2 (115 ac). Broadleaf deciduous
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Table 1. The campus tree composition by species, tree number, and
canopy cover. Data were from the existing campus tree inventory. A total
of 8,962 trees covered 0.46 km2 (115 ac). Broadleaf deciduous trees were
the most abundant tree type (55%). More than half (59%) of the trees on
campus were large trees and they accounted for 74% of the canopy cover.

Number of Number of Number ot Canopy cover
Typea species trees trees (%) (%)

BDL 41 2,421 27.0 38.3
BDM 34 1,422 15.9 14.3
BDS 32 1,075 12.0 4.8
Total 107 4,918 54.9 57.4
BEL 19 956 10.7 19.5
BEM 16 499 5.6 3.8
BES 26 361 4.0 2.8
Total 61 1,816 20.3 26.1
CEL 30 1,910 21.3 16.0
CEM 7 240 2.7 0.2
CES 3 15 0.2 0.1
Total 40 2,165 24.2 16.3
PEL 2 10 0.1 0.1
PEM 3 17 0.2 0.0
PES 2 36 0.4 0.1
Total 7 63 0.7 0.1
Grand total 215 8,962 100.0 100.0

aBD = Broadleaf Deciduous; BE = Broadleaf Evergreen; CE = Conifer;
PE = Palm; L = Large; M = Medium; S = Small.

trees were the most abundant tree type (55%). More than half (59%) of the trees on cam-
pus were large trees and they accounted for 74% of the canopy cover. Most of the street
trees were not irrigated. They rely on water from their supporting soil or adjacent lawn
irrigation.

In summer 2004, two sets of field data were collected. The first set included 81 open
growing trees from the existing GIS layer. These were randomly selected from each of the
four tree types. Their health was evaluated in the field to develop a health index for each tree
type. The tree health index is defined as the ratio of healthy pixels to the entire tree pixels
within the tree crown. This data set included 16 unhealthy and 65 healthy trees. The second
data set included 1,186 trees randomly selected from the inventory to check the accuracy
of the tree health mapping. This data set included 100 species (Table 2).

Vegetation mapping

Vegetation mapping included mapping vegetation cover and tree health. In this study, three
types of vegetation were classified: tree, shrub, and grass. Tree health was classified as
either healthy or unhealthy. Non-vegetation land covers were not mapped in this study.

The spectral reflectance of vegetation is completely different than the reflectance proper-
ties of the b̀ackground material’ (i.e., water, soil, and pavement). Vegetation absorbs light
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Table 2. The number of species and tree types that comprised the random
sample used to assess accuracy of the health classification

Type Number of species Number of trees

BDL 20 432

BDM 16 170

BDS 15 142

Total 51 744

BEL 11 159

BEM 4 52

BES 8 43

Total 23 254

CEL 19 170

CEM 2 8

CES 1 1

Total 22 179

PEL 1 1

PEM 1 1

PES 2 7

Total 4 9

Grand total 100 1,186

for photosynthesis. In the NIR region, vegetation has a high reflectance, with a very rapid
transition to low levels between red and NIR regions at ∼750 nm. This unique charac-
ter of the vegetation spectrum makes it possible to separate vegetation from background
material with remotely sensed multispectral data that at least includes NIR and red region
reflectance.

Vegetation indices (VIs) are commonly used to evaluate vegetation based on the veg-
etations’ spectral characteristics in the NIR and red spectral region or at the red edge. A
high VI value indicates healthy vegetation and a low value indicates senescent, diseased,
foliage damaged, water stressed vegetation, or non-vegetated area. NDVI is a good index
for distinguishing vegetation and non-vegetation cover. NDVI is the ratio of the reflectance
difference between NIR and red and the sum of the reflectance at NIR and red. Healthy
vegetation has a higher NDVI value than unhealthy vegetation.

Tree crown delineation

NDVI was generated from the NIR and red bands for the study area. The NDVI threshold
of 20 was used to separate vegetation and non-vegetation (we assumed that each pixel was
either vegetation or non-vegetation). The vegetation cover included trees, shrubs, and grass.
Tree crowns in parking lots were automatically delineated based on their NDVI values. Non-
vegetation pixels inside the tree drip line were excluded to increase accuracy of the analysis
results (Meyer et al., 1996; Gougeon, 1995; Leckie et al., 1992).
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Trees and shrubs located in parks and along some road sites had the same NDVI values
as the surrounding turf grass. Due to the limited spectral information in this remote sensing
dataset, we were unable to further separate trees and shrubs from grass based on their spectral
characteristics. Rather, we digitized the trees and shrubs based on manual interpretation of
the remote sensing imagery.

The tree layer derived from the remotely sensed data was linked to the existing GIS data
to obtain the tree information based on the ground survey. The most important information
from the existing GIS data layer was the scientific name and dbh class. These data were
used to classify trees into different physiognomic types and mature sizes.

Tree health mapping

For the same tree species, a higher NDVI value indicates a healthier tree. Clearly, the
leaf size, leaf water content, leaf pigmentation, and the stem structure and non-vegetation
background visible in the overhead view strongly affect these indices. NDVI works well
in places where vegetation species are homogeneous. In urban forests, where vegetation
species are heterogeneous and have diverse backgrounds, tree-health mapping becomes
more complex. For example, a healthy, well-grown conifer tree may have the same NDVI
value as an unhealthy broadleaf deciduous tree has. To solve this mixing problem, a mul-
tiple masking technique (Xiao et al., 2004) was used to perform the tree health mapping
for each physiognomic tree type. The first mask was created based on the classification
of land cover types. This mask was used to mask out all non-vegetation. The remaining
vegetation was mapped into five layers based on the physiognomic tree type. These five
layers were broadleaf deciduous, broadleaf evergreen, conifer, palm, and mixed. The mixed
layer included shrub and clustered trees. The clustered trees were defined as multiple trees
that had overlapping crowns.

Tree health was first evaluated at the pixel scale. A pixel-based analysis of the NDVI
value and tree health from the field survey was performed for each tree type. For each tree
type, the thresholds for both NDVI and health index were determined based on histogram
analysis for both healthy and unhealthy trees in the 81-tree sample. The pixels for each tree
crown were classified as healthy or unhealthy. The NDVI threshold was 31 for a broadleaf
deciduous tree, 30 for a broadleaf evergreen tree, and 24 for both conifer and palm trees.
NDVI values above the threshold were classified as healthy pixels, while other values
were classified as an unhealthy pixel. The number of healthy pixels, unhealthy pixels, and
average NDVI were derived for each tree. Figure 2 shows the field tree health evaluation,
average NDVI, and percentage of healthy pixels for all of the broadleaf deciduous trees,
38 of 81 trees that were used to derive the health threshold value. Average NDVI values
for all eight unhealthy trees were less than 30 and the percentage of healthy pixels was less
than 70.

At the single tree scale, the tree was mapped as either a healthy or unhealthy tree.
Healthy pixels, unhealthy pixels, and average NDVI were calculated for each tree based
on tree species and all NDVI values under the tree crown. A tree was mapped unhealthy if
30% or more of the pixels were unhealthy and the average NDVI value was less than the
threshold for healthy as described in the pixel-based mapping for each tree type.
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Figure 2. Average NDVI, percentage healthy pixel (HP), and field tree evaluation of the 38 broadleaf deciduous
trees. These are all of this tree type in the 81 filed tree samples that were used for develop tree health index. Eight
trees were unhealthy from the field tree health evaluation (FTHE). Tree was evaluated as either health ( = 0) or
unhealthy ( = 1). These unhealthy trees had NDVI less than 30 and HP less than 70.

There were 540 mixed trees (9%) excluded from the final analysis at the whole-tree
level because they lacked species information or their crowns overlapped. These trees were
treated as mixed conifers and evergreens (50%–50%) in the pixel level analysis based on
field observations of clustered trees.

Mapping and health classification accuracy assessment

Tree health was presented at two different spatial scales. The raster-based map presented
information at the pixel level, which included tree health and vegetation indexes for each
pixel of the tree crown. The vector-based map presented information at the whole tree
level. Each tree was classified as either healthy or unhealthy. In addition to the initial tree
information, the health index, number of healthy pixels, unhealthy pixels, and averaged
vegetation index were added to the tree GIS layer for each tree.

The accuracy check for tree health classification was performed at the individual tree level.
The confusion matrix (Kohavi and Provost, 1998) was used as the basis for comparison. The
study area was uniformly divided into 400 grids. Fifty-six grids were randomly selected
for the tree health classification accuracy assessment. All of the 1,186 trees (101 tree
species) within these selected grids were surveyed during the summer of 2004 for the health
assessment. Each tree was rated as healthy or unhealthy based on protocols described in
the Council of Tree and Landscape Appraiser’s Guide for Plant Appraisal (Gooding et al.,
2000). This protocol requires rating five factors: roots, trunk, scaffold branches, smaller
branches and twigs, and foliage. It provides guidelines for assigning five rating points to
each factor (extreme problem = 0 or 1, major problem = 2, minor problem = 3, no apparent
problem = 4, no problem = 5). Tree health was evaluated based on the total points each
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tree received. According to the protocol, trees receiving 19–22 points are classified as in
Good condition, while those with 23–25 points are in Excellent condition. Therefore, trees
that we surveyed in field that received 19 or more points were classified as healthy, while
unhealthy trees received less than 19 points.

Among the five factors used in the field tree health evaluation, remote sensing data are
most sensitive for detecting change in foliage health. Information on the other factors was
limited by view angle (such as for roots and trunks) and spatial resolution (such as for small
branches and twigs). However, most diseases or abiotic stresses to the roots or bole are
ultimately expressed as changes in the density, chemistry, color, and moisture content of
the foliage.

Results and discussion

Vegetation cover

The vegetation coverage of the campus core area was 37% (135.3 ha). Of this amount, 53%
(71.4 ha) was cover by tree /shrub and 47% (63.9 ha) was covered by grass. The campus tree
survey conducted during 2004 contained 9,862 individual trees within the core area. Based
on the tree inventory, the majority (55%) of campus trees were deciduous trees, accounting
for 57% of the total canopy cover. Broadleaf evergreen trees accounted for 20% of the total
tree population and 26% of canopy cover, while conifers accounted for 24% of the total
tree population and 16% of canopy cover. Palm trees accounted for less than 1% of the total
tree population and canopy cover.

Most of the trees were near buildings and along streets and pathways. The spatial dis-
tribution of both number of trees and the size of trees were closely related to campus
development. Large and old trees were common in the older parts of campus. In the newly
developed areas, trees were young, and canopy cover in these areas was relatively low.

Health index

Tree health was mapped as either healthy or unhealthy at both the pixel and single tree
levels (Table 3). Broadleaf deciduous and coniferous trees had the highest percentage of
unhealthy pixels, 16% and 15%, respectively. Parking lots and streets trees were dominated
by deciduous species. In August, when the imagery was acquired, many of these trees were
in water stress, which caused a decrease in their photosynthetic activity. For some trees,
leaves had begun to fall. Thus, these trees had a lower NDVI value compared to the same
species planted in well irrigated areas. Most conifer trees in the study area were large trees.
Many were located where they did not receive regular irrigation, thus these trees were in
water stress during later summer. Low photosynthetic activities in these trees resulted in a
lower NDVI compared to the well irrigated trees. The spatial distribution of tree health is
presented in (figure 3) at the pixel scale (figure 3c) and whole tree scale (figure 3d). There
were unhealthy trees due primarily to adverse impacts of construction work in both the
north and west side of the lot. We selected this parking lot, which had the worst tree health
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Table 3. Tree health at the pixel and whole tree level by tree type

Pixel level Whole tree level

Pixels % Treesb %

Type Ha UNHa Total H UNH H UNH Total H UNH

BDL 1,196,861 239,905 1,436,766 83.3 16.7 1,494 323 1,817 82.2 17.8

BDM 465,909 74,327 540,236 86.2 13.8 939 131 1,070 87.8 12.2

BDS 153,975 31,619 185,594 83.0 17.0 574 107 681 84.2 15.8

Total 1,816,745 345,851 2,162,596 84.0 16.0 3,007 561 3,568 84.3 15.7

BEL 643,191 73,709 716,900 89.7 10.3 551 72 623 88.4 11.6

BEM 132,362 15,232 147,594 89.7 10.3 258 37 295 87.4 12.6

BES 96,852 9,782 106,634 90.8 9.2 183 26 209 87.7 12.3

Total 872,405 98,723 971,128 89.8 10.2 992 135 1,127 88.0 12.0

CEL 512,734 92,656 605,390 84.7 15.3 890 132 1,022 87.1 12.9

CEM 7,557 1,310 8,867 85.2 14.8 38 8 46 83.2 16.8

CES 1,682 353 2,035 82.7 17.3 4 1 6 78.9 21.1

Total 521,973 94,319 616,292 84.7 15.3 932 141 1,073 86.9 13.1

PEL 3,895 183 4,078 95.5 4.5 9 0 9 100.0 0.0

PEM 1,113 40 1,153 96.5 3.5 4 4 8 50.0 50.0

PES 4,314 466 4,780 90.3 9.7 26 0 26 100.0 0.0

Total 9,322 689 10,011 93.1 6.9 39 4 43 90.7 9.3

Grand Total 3,220,445 539,582 3,760,027 85.6 14.4 4,970 841 5,811 85.5 14.5

aH = Healthy UNH = Unhealthy.
b540 trees were excluded in this table because they were not single trees in the GIS data set.

among all parking lots on campus, to show how tree mapping was presented at the pixel
and whole tree scales.

In the study area, 86% of the trees were healthy (Table 3). Palms had the highest per-
centage of healthy trees (91%), followed by broadleaf evergreen (88%), conifer (87%), and
deciduous (84%). These results compared well with results at the pixel scale.

By mapping tree health at these two different spatial scales, urban foresters can obtain
critical information for tree management. For example, at the individual tree level data
can be compiled to reflect the overall health of the tree population. At the pixel level it is
possible to identify the relative magnitude of stress within individual tree crowns, and use
this information to prioritize inspections to diagnose and treat health threats.

Health classification accuracy

Tree health classification accuracy was checked at the single tree level with 1,186 trees.
Field survey assessments agreed with remotely sensed classification for 88% of the sample.
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Figure 3. Spatial distribution of tree health. A parking lot is expanded for viewing in (Figure 3(a)). Figure 3(b)
shows the color infrared image. Figure 3(c) shows tree health at the pixel scale, and figure 3(d) shows tree health
at the whole tree scale. There were unhealthy trees due primarily to adverse impacts of construction work in both
the north and west side of the lot.

The accuracy for deciduous trees was 86% but varied with tree size. Accuracies were 80%,
94%, and 94% for large, medium, and small deciduous trees, respectively. Classification
accuracies were 92%, 91%, and 89% for broadleaf evergreen, conifer, and palm trees,
respectively (Table 4). Small conifer and all of the palm species accounted for less than
0.5% of the total tree population. The accuracy values for these trees carried less weight
than values for more abundant tree types in the classification of overall health.

Both tree crown structure and the view angle of the remote sensing data collection system
affect mapping accuracy. Differences in crown structure lead to variations in within crown
shadows. These variations could result in underestimates of NDVI value of tree pixels under
the shadow, and thus underestimate the number of healthy pixels. Overlapping of tree and
turf grass could lead to underestimating of turf grass coverage and unhealthy trees due
to remote sensing data acquired from nadir (overhead view) angle. The remotely sensed
data detected tree health from above the tree crown. Thus, if the top of the crown had a
healthy leaf layer, the tree was classified as a healthy tree regardless of conditions lower
in the crown. Dead branches in the tree crown were the main cause for misclassification,
especially for the large deciduous trees. Tree health derived from remotely sensed data
is more sensitive to water stress, disease, and insect attacks that directly affect the leaves
than to poor tree health caused by senescence within the crown (Jackson et al., 1981). The
remotely sensed data were sensitive to the health of the tree’s foliage, which may or may
not be directly related to problems with the roots or bole. As a tree becomes increasingly
unhealthy and the amount of foliage decreases, this remote sensing detection system may
register increasing error. Dead trees, with a low NDVI value, may not be detected without
a GIS tree database. On the other hand, water stress can change the infrared signal, but
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Table 4. Tree health classification accuracy by tree physiognomic type. Columns show the number of trees
classified as healthy (H) and unhealthy (UH) based on field tree evaluation and the rows show remote sensing
classification (Classified). The last columns show the number and percentage of trees that were correctly
classified. Overall, 88% were correctly classified

LH LU MH MU SH SU Total Accuracy

Broadleaf deciduous
LHa 277 41 318

LU 45 69 114 80.1%

MH 145 9 154

MU 1 15 16 94.1%

SH 127 6 133

SU 3 6 9 93.7%

Total 322 110 146 24 130 12 744 85.9%

Broadleaf evergreen

LH 143 6 149

LU 4 6 10 93.7%

MH 44 2 46

MU 4 2 6 88.5%

SH 39 4 43

SU 0 0 0 90.7%

Total 147 12 48 4 39 4 254 92.1%

Conifer

LH 148 9 157

LU 5 8 13 91.8%

MH 6 2 8

MU 0 0 0 75.0%

SH 1 0 1

SU 0 0 0 100.0%

Total 153 17 6 2 1 0 179 91.1%

Palm

LH 1 0 1

LU 0 0 0 100.0%

MH 1 0 1

MU 0 0 0 100.0%

SH 6 1 7

SU 0 0 0 85.7%

Total 1 0 1 0 6 1 9 88.9%

(a L = larger, M = Medium, S = Small, H = Healthy, U = Unhealthy.)
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not necessarily be detected by field crews assessing tree health. This could lead to remote
sensing detecting unhealthy trees, but the field assessment evaluating the tree as healthy.
As such, this technique provides only one of the indications of health.

We did not further investigate nor quantify mapping errors caused by view angle and
crown structural variation in this study. However, these errors should be small. Most trees
in this urban setting were isolated, thus the nadir view angle minimized the shadow effect
caused by tree crown structure and adjacent trees.

We did not examine the cost-effectiveness of remote sensing to detect tree health versus
ground-based assessments. Field surveys can provide detailed information on a variety of
tree health indicators, and identify the priority of different management needs. This remote
sensing approach might be best applied in large scale assessments, allowing the manager to
target more intensive work where tree health is most compromised. Also, it might be used
as a form of detection monitoring to regularly assess the effectiveness of measures used to
improve tree health.

Conclusions

Urban tree health was assessed using multispectral high spatial resolution remotely sensed
data. This urban tree mapping method may be best applied for large scale assessments,
where it can provide valuable information to urban foresters for management. Tree health
mapping at the single tree level could be used to identify the need for tree removal and
replacement. Patterns at the pixel level could provide information for determining the need
for pruning, irrigation, or pest/disease treatment. This tree health evaluation approach allows
managers to identify the location of unhealthy trees for further diagnosis and treatment. It
can be used to track the spread of disease and monitor seasonal or annual changes in tree
health. In conjunction with a tree inventory, data from this analysis can be used to budget
costs for treatment and removal of trees. Also, it provides tree health information that is
fundamental to modeling and analysis of the environmental, social, and economic services
produced by urban forests.
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