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Abstract The goal of this paper is to isolate the preparatory effects of problem-generation

from solution generation in problem-posing contexts, and their underlying mechanisms on

learning from instruction. Using a randomized-controlled design, students were assigned to

one of two conditions: (a) problem-posing with solution generation, where they generated

problems and solutions to a novel situation, or (b) problem-posing without solution gen-

eration, where they generated only problems. All students then received instruction on a

novel math concept. Findings revealed that problem-posing with solution generation prior

to instruction resulted in significantly better conceptual knowledge, without any significant

difference in procedural knowledge and transfer. Although solution generation prior to

instruction plays a critical role in the development of conceptual understanding, which is

necessary for transfer, generating problems plays an equally critical role in transfer.

Implications for learning and instruction are discussed.
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Introduction

Eminent mathematicians and scientists have long underscored the importance of problem-

posing in advancing and deepening knowledge and understanding. For example, Einstein

and Infeld (1938) argued: ‘‘formulation of a problem is often more essential than its

solution, which may be merely a matter of mathematical or experimental skill. To raise

new questions, new possibilities, to regard old problems from a new angle, require creative

imagination and marks real advance in science.’’ (p. 95).
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An increasing number of mathematics educators and researchers have also argued for

the importance in getting students to pose problems, so that their learning experiences

afford them opportunities not just for problem-solving, but also problem-posing (e.g.,

Brown and Walter 2005; Ellerton 1986; Moses et al. 1990; Silver and Cai 1996; Silver

1994, 2013). Although both problem-solving and problem-posing are important part of

mathematical education, interest and active research in the latter only started some

30 years ago. As with problem-solving, there remain challenges in defining the what

constitutes problem posing (Singer et al. 2013). Nonetheless, it is possible to glean its key

features from Silver (1994)’s widely-accepted definition, which defines problem posing as

either the reformulation of a given problem, or the generation of new problems from a

given situation.

The former type of problem posing happens during the problem solving process, in

which the solver reformulates the problem, and transforms a given statement of a problem

into a new version that becomes the focus of problem solving. For example, given the

situation in Fig. 1, suppose the problem, which is currently unspecified, was specified as

finding the better of the two football strikers. Although the situation is already specified in

Fig. 1, the problem of finding the better of the two strikers specifies the problem as well.

The goal for the problem solver is to solve the specified problem, and in the process of

doing so, may reformulate the problem as one of finding the total goals scored by each

striker, or perhaps how many times one striker outperformed the other, and so on.

In the latter type of problem posing, the goal is not to solve a given problem per se. It

cannot be because the problem is not specified to begin with. It is left open, and the goal of

problem posing is to create a new problems from the given situation or context. This can

occur prior to problem solving, such as the coming up of a problem from a given contrived

or naturalistic situation, or after a problem is solved, where one might examine the con-

ditions of the problem and generate alternative related problems. In this paper, problem

posing refers to this latter type, that is, the generation of new problems from a given

situation, where students may generate either only the problems, or the associated solutions

as well (see Fig. 1).

Among the benefits, problem-posing is seen as important for nurturing students’

mathematical thinking (Silver 1994). Not only does it afford students opportunities to be

actively engaged in both creating solution strategies and the problems that demand them

(Moses et al. 1990), problem-posing is invariably a reflective process that may stimulate

students’ overall abilities to mathematize and develop understanding within new situations

(Cifarelli and Sheets 2009). In addition, research has suggested that students-generated

problems provides one with an insight to students’ mathematical understanding (e.g.,

English 1998), problem-solving abilities (e.g., Ellerton 1986; Silver and Cai 1996), and

creativity and originality (Silver 1997; Perrin 2007).

Given problem-posing’s generative nature and its potential to provide a window into

students’ mathematical knowledge and conceptions, it seems well placed as a preparatory

activity that prepares students to learn from subsequent instruction (Schwartz and Brans-

ford 1998; Schwartz and Martin 2004; Schwartz et al. 2011).

From a discovery learning perspective, opportunities to generate problems and solutions

prior to learning a new concept, especially in the context of reasoning with data, may

potentially help students discover features of the concept that they may otherwise not be

able to. In turn, although these features in and of themselves may not be sufficient to learn

the concept, they constitute the knowledge that is necessary to ‘‘learn with’’ during sub-

sequent instruction (Bransford and Schwartz 1999).

62 M. Kapur

123



Yet, although there is much work documenting the preparatory effects of problem-

solving prior to instruction, problem-posing’s efficacy as a preparatory activity to help

prepare students to learn new mathematical concepts remains severely under-researched by

comparison. As the following section will reveal, although Kapur’s (2015) study compared

the preparatory effects of problem-posing with that of problem-solving, students in the

problem posing condition generated both problems and solutions. Therefore, the study was

not able to isolate the preparatory effects of problem generation from solution generation in

problem-posing contexts.

Therein lies the aim of this paper: to build on Kapur’s (2015) study to isolate the

preparatory effects of problem-generation from solution generation in problem-posing

contexts, and their underlying mechanisms on learning from instruction.

Game Mike Dave
1 14 13
2 11 11
3 15 14
4 12 16
5 16 14
6 12 12
7 16 14
8 13 15
9 17 14

10 14 17
11 14 14

Mike and Dave are the top 
two strikers in a Football 
league. The table shows the 
number of goals scored by 
Mike and Dave in 11 games 
in the league. 

Generate as many 
different mathematics 
questions or problems that 
can be answered from the 
information provided in the 
table. 

Where possible, answer or 
solve the problems/questions 
you have generated.

Problem Posing with Solution Generation
Football Strikers

Game Mike Dave
1 14 13
2 11 11
3 15 14
4 12 16
5 16 14
6 12 12
7 16 14
8 13 15
9 17 14

10 14 17
11 14 14

Mike and Dave are the top 
two strikers in a Football 
league. The table shows the 
number of goals scored by 
Mike and Dave in 11 games 
in the league. 

Generate as many 
different mathematics 
questions or problems that 
can be answered from the 
information provided in the 
table. 

You are NOT to answer or 
solve the problems/questions 
you generate. 

Problem Posing without Solution Generation
Football Strikers

Fig. 1 The problems given to
problem-posing students during
the problem-posing phase
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I start by briefly reviewing research on the preparatory effects of problem-solving,

followed by a review of problem-posing in math learning. I then describe the attendant

preparatory mechanisms of problem-posing to derive hypotheses for effects on learning.

These hypotheses are then tested in a randomized-controlled experiment. I end by dis-

cussing the findings and drawing implications for math learning and instruction.

Preparatory effects of problem-solving

The goal of a preparatory activity is to prepare students to learn from instruction (Schwartz

and Bransford 1998; Schwartz and Martin 2004; Schwartz et al. 2011). Preparatory

activities are designed to engage students in generating and inventing solutions to problems

that target concepts they have yet to learn formally. This is then followed by direct

instruction on those very concepts. To the extent that students are able to generate a range

of solutions to the problem, even if incorrect, they are better prepared to learn from

subsequent instruction on the targeted concepts, compared to the case where students start

with instruction (Kapur 2016).

There is now a growing body of evidence that preparatory activities such as generating

solutions to novel problems prior to instruction can help students learn better from the

instruction. Evidence comes not only from quasi-experimental studies conducted in the real

ecologies of classrooms (e.g., Kapur 2012, 2013; Schwartz and Bransford 1998; Schwartz

and Martin 2004), but also from controlled experimental studies (e.g., DeCaro and Rittle-

Johnson 2012; Kapur 2014; Loibl and Rummel 2013; Roll et al. 2011; Schwartz et al.

2011).

For example, in a study with eight-grade students, Schwartz et al. (2011) compared

students who invented solutions with contrasting cases before receiving instruction on the

concept of density with those who were instructed first and then practiced with the same

cases. They found that the guided invention activities prepared students to learn the deep

structure of density better than those who received instruction first. Likewise, DeCaro and

Rittle-Johnson (2012) had second- to fourth-grade students solve unfamiliar math problems

on number sentences before or after receiving instruction on number sentences. Once

again, students who solved problems first developed better conceptual understanding than

those who first received instruction. More recently, in a randomized-controlled experiment

with ninth-graders learning the concept of standard deviation (SD), Kapur (2014) had

students individually generate solutions to a novel problem before or after receiving

instruction. He found that students who engaged in problem-solving prior to instruction

demonstrated significantly better performance on conceptual understanding and transfer

than those who engaged in problem-solving after instruction.

These studies collectively point to the efficacy of preparatory activities that engage

students in solving novel problems prior to instruction. However, these studies present

students with situations where the problem is given to the students, and they have to

generate only the solutions. In other words, these studies speak only to the preparatory

effects of problem-solving on learning from instruction. They remain silent on if and how

problem-posing might prepare students to learning from instruction.

Given that math education research emphasizes problem-posing as an instructional and

learning goal, I now turn to review literature on problem-posing in math learning, espe-

cially as a preparatory activity for learning new math concepts. However, as we will see in

the following section, the efficacy of engaging in problem-posing to learn new math
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concepts has not been systematically tested because empirical evidence to date remains

largely descriptive in nature.

Problem-posing in math learning

A review of research on problem-posing in math learning revealed that past research is

largely theoretical or descriptive in nature (e.g., English 1998; Silver and Cai 1996).

Purported benefits of problem-posing include the development of greater learner agency

and reflection (Kilpatrick 1987), responsibility and insight that helps understanding and

reduces anxiety (Brown and Walter 2005), and ownership and engagement that can

potentially help math learning (Perrin, 2007; Silver, 1994). Because evidence for these

benefits comes mainly from descriptive studies, the absence of any comparison or controls

limits what one can infer from these studies about the preparatory effects of problem-

posing.

The closest experimental comparison in math learning, though not from a preparatory

lens, comes from the work of Sweller and colleagues (Mawer and Sweller 1982; Sweller

et al. 1982; Sweller et al. 1983). They showed that a reduction in or elimination of goal

specificity of a given problem situation, a move that essentially requires students to pose

and answer as many questions for solving a particular problem, helped schema acquisition

for problem-solving.

For example, Sweller et al. (1983) first taught students targeted geometry concepts

before assigning them to solve either no-goal or goal-specific problems. The no-goal

problem required students to ask and answer as many unknown angles as possible in a

geometry diagram. The goal-specific problem required students to solve for a particular

unknown in the same diagram. As hypothesized, findings suggested that the no-goal stu-

dents performed better than goal-specific students on subsequent problem-solving on

similar geometry problems.

Note that students in Sweller’s studies were first taught the targeted concepts before

they solved problems, with or without goals. Hence, whereas these studies may speak to

the cognitive load mechanisms of using problem-posing as a problem-solving strategy after

learning a concept, they do not directly speak to the preparatory mechanisms of problem-

posing before learning and for learning a new concept.

From the lens of preparatory activities (Schwartz and Martin 2004; Schwartz et al.

2011), one would want to examine how problem-posing can prepare students to learn new

concepts in the first place, where participants engage in problem-posing before learning the

targeted concepts.

To my knowledge, only one study (Kapur 2015) has experimentally examined the

preparatory effects of problem-posing. However, Kapur’s study compared the preparatory

effects of problem-posing in comparison with that of problem-solving. Findings revealed

students engaged in problem-posing prior to instruction achieved better transfer outcomes

than those in problem-solving prior to instruction, even though the latter developed better

conceptual knowledge. In other words, although problem-solving helped in the develop-

ment of conceptual knowledge, problem-posing played a more critical role in transferring

that knowledge to novel problems.

This trade-off between the development of conceptual knowledge and transfer as a

function of the preparatory effects of problem-solving and problem-posing is most

intriguing. Yet, given that Kapur’s study compared the preparatory effects of problem-
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posing with that of problem-solving, it was not able to isolate the preparatory effects of

problem generation from solution generation.

Therein lies the need for a study that experimentally isolates the preparatory effects of

problem generation with versus without solution generation on the development of con-

ceptual understanding and transfer. The following section unpacks the underlying

preparatory mechanisms of problem-posing and their hypothesized effects on the devel-

opment of conceptual understanding and transfer.

Preparatory mechanisms of problem posing

There are several preparatory mechanisms at work when students engage in problem-

posing with or without generating solutions.

First, one could expect problem-posing with solution generation to afford greater prior

knowledge activation and differentiation than problem-posing without solution generation.

By knowledge activation, I refer to the problems and/or solutions students generate during

problem-posing. Of course, this activated knowledge is a function of math ability, but it is

also a function of the design of the problem-posing context and how students persist in

problem-posing. Therefore, a distinction needs to be made between pre-existing differ-

ences between math ability and the knowledge activation that occurs during problem-

posing prior to instruction.

In problem-posing with solution generation, both the problem and solution spaces are

not only open, but also the problem space is potentially generative with the solution space.

Whereas for the latter, only the problem space is open. Following previous work (e.g.,

Kapur 2012, 2014; Wiedmann et al. 2012), greater activation simply means the numbers of

problems and solutions students are able to generate.

However, there is likely to be a trade-off between greater knowledge activation and how

relevant the activated knowledge is, that is, conceptually related to and beneficial in

learning the targeted concept. Therefore, the extent to which students benefit from greater

prior knowledge activation may be contingent upon whether such activation is relevant to

the learning of the targeted concept.

Further support for the trade-off hypothesis comes from research on the role of goal

specificity and learning. This research suggests that the benefits of problem-posing (akin to

having no goal or low goal specificity) are derived mainly if the lack of a goal actually

affords students the opportunities to attend to the deep structure of the problem and

solution spaces (Burns and Vollmeyer 2002; Miller et al. 1999; Vollmeyer et al. 1996).

Prior knowledge activation also affords opportunities to: (a) notice inconsistencies in

and the limits of prior knowledge, and (b) compare and contrast (that helps student notice

and encode the critical features of the concept better) between a learner’s prior knowledge

and the correct knowledge (Alfieri et al. 2013; Rittle-Johnson and Star 2009; Schwartz

et al. 2011). However, consistent with the above-mentioned trade-off, these benefits are

contingent upon the extent to which prior knowledge activation in problem-posing is

relevant to the targeted concept.

Therefore, from a knowledge activation perspective, problem-posing with solution

generation may lead to better learning than without solution generation, provided the

activated knowledge is relevant to the targeted concept.

However, activation is not the only mechanism at play. One may hypothesize the

reverse effect from a cognitive load perspective, where research suggests problem-solving
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may impose a greater load than problem-posing (Sweller et al. 1983; Wirth et al. 2009).

Problem-posing reduces or eliminates the goal by turning a goal-specific problem into a

goal-free problem. This reduces the burden on limited working memory resources to

reduce differences between problem and goal states. Therefore, problem posing without

solution generation may impose a lower cognitive load, and consequently, enable more

cognitive processing capacity to be available for schema acquisition. However, goal-free

effect of problem posing is contingent upon the degree to which students generate and

explore relevant problem states that help them notice the deep structure of the problem

space. If not, a reduction in cognitive load may not translate into effective schema

acquisition.

Finally, on the development of transfer, problem-posing may afford greater contextual

flexibility in encoding and assembling new knowledge by virtue of having students gen-

erate multiple ways of contextualizing the data that was given to them. Bransford and

Schwartz (1999) argue that such generation may help learners discover relevant and

irrelevant features of the domain—knowledge that they can use to learn the targeted

concept during subsequent instruction. Generating different problems for the same data

may also be a useful mechanism for reducing the likelihood of functional fixedness

(Duncker 1945; Frank and Ramscar 2003) and set effects (Lurchins and Lurchins 1959),

which in turn may allow for more pathways for such knowledge to be cued, retrieved, and

used in a novel context, that is, aid transfer performance. At the same time, one cannot

transfer without conceptual knowledge. If solution generation is critical to the development

of conceptual knowledge, then it is reasonable to hypothesize that problem-posing with

solution generation would result in better transfer than problem-posing without solution

generation.

Purpose

The purpose of this study is to isolate the preparatory effects of problem generation with

versus without solution generation on the development of conceptual understanding and

transfer.

Participants

Participants were 72 ninth-grade mathematics students (14–15 year olds; 37 boys, 35 girls)

from a co-ed private school in the national capital region of India. All students were of

Indian ethnicity. English is the medium of instruction in the school.

Research design and procedures

A posttest-only randomized controlled design was used. Students were randomly assigned

to engage in either problem-posing with solution generation (n = 36) or problem-posing

without solution generation (n = 36) prior to receiving instruction on the concept of SD.

For three reasons, there was no pretest:

(a) students had not had any instruction on SD because this topic is not taught until the

eleventh grade;
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(b) past research with a similar cohort of students suggested that ninth grade students

did not know the concept of SD and were not able to solve problems requiring this

concept when given a pretest on the same concept (e.g., Kapur 2014);

(c) having students solve problems on SD on the pretest would have meant both

problem-posing conditions engaging in problem-solving on SD prior to instruction,

thereby confounding experimental attribution of effects.

Figure 1 presents the problem-posing situation—Football Strikers—students were given.

Students in the problem-posing with solution generation condition were asked to answer or

solve the problems they generated. Students in the problem-posing without solution gener-

ation condition were asked not to answer or solve the problems they generated.

On the day of the experiment, students experienced two 1-h phases: a problem-posing

phase followed by an instruction phase. The instruction phase was the same for all students,

where the same teacher taught both the conditions together in the same lecture hall. Neither

the teacher nor the students were made aware of the experimental hypotheses being tested.

For the problem-posing phase, students were seated in a classroom, provided with blank

A4 sheets of paper together with the problem in Fig. 1 as appropriate to their assigned

condition.

Students worked individually. They were asked to clearly number and demarcate their

solutions, or problems and solutions as appropriate to their assigned condition. Because

students could only rely on their prior knowledge to generate problems and/or solutions,

the number of problems and/or solutions generated was taken as a proxy measure of their

prior knowledge activation (e.g., Kapur 2012, 2014; Wiedmann et al. 2012).

To determine the number of problems and solutions generated, student work artefacts

were analyzed using an analytical scheme developed by Kapur and Bielaczyc (2012).

Accordingly, student work artefacts were segmented into different solutions and problems

as appropriate to the condition. Because students were instructed to clearly number and

demarcate their problems and solutions by using a separator (e.g., a line, numbering etc.),

segmenting was made easier by the presence of clear transitions in the artefacts. For

example, when a student moved from one problem (e.g., what is the average of each of the

players?) to another (e.g., what is the pattern in the scores over time?), or from one solution

(e.g., calculating the average) to another (e.g., drawing graphs). Repeated problems or

solutions were not double counted. For example, if a student generated the problems ‘‘what

is the average of Mike?’’ and ‘‘what is the average of Dave?’’ these were counted as one

problem, not two. Likewise, if the student generated the average of each of the two players,

it was counted as one solution, not two different solutions. The problems and solutions

generated were segmented independently of each other. This process was repeated for all

students. Two research assistants independently segmented the solutions and the problems

with inter-rater reliabilities (Krippendorff’s a) of .93 and .94 respectively. All conflicts

were resolved through discussion with the author.

In the instruction phase, students were seated in a classroom, and their teacher—an

experienced mathematics teacher at the high-school level—taught the concept and pro-

cedures of SD. The teaching of SD was organized around four problems that included

cycles of teacher modeling through worked-out examples demonstrating the concept and

procedures, student practice, and feedback. The design of the four problems in the form of

simultaneously presented, contrasting cases was done in line with the well-established

finding that contrasting cases help students attend to critical features of the problem, and

therefore aid learning (Rittle-Johnson and Star 2009; Schwartz et al. 2011). A detailed plan

can be found in Appendix.
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From an educational standpoint, instruction ideally ought to build upon the student

production (Loibl and Rummel 2013). However, for the purposes of a clean experimental

comparison, the teacher did not make any reference to or build upon any of the problems or

solutions generated by the students from the two conditions. Throughout this phase, the

teacher directed attention to the critical features of SD, and highlighted common errors and

misconceptions.

Immediately after each phase, all students estimated their amount of mental effort using

a 9-point rating scale that is commonly-used in the cognitive load literature as a measure of

cognitive load (Paas 1992). Thus, each student reported two mental effort scores.

Immediately after the second phase, all students took a 1 h posttest comprising 20 items

targeting:

(a) Procedural knowledge Five multiple-choice items (a = .81) testing the basic

procedure for computing and interpreting SD, e.g.,

Calculate the standard deviation (SD) of the following set of marks on a statistics

test: 30, 60, 50, 40, 70.

A. 10

B. 10
ffiffiffi

2
p

C. 20

D. 20
ffiffiffi

2
p

(b) Conceptual knowledge Ten multiple-choice items (a = .89) testing understanding of

critical features of SD and deducing its mathematical properties, e.g.,

A data set consisting of five numbers has mean, M = 7, and standard deviation,

SD = 4. If each of the five numbers is increased by 2, what are the new mean and

SD?

A. M = 7, SD = 4

B. M = 9, SD = 4

C. M = 7, SD = 6

D. M = 9, SD = 6

(c) Transfer Five multiple-choice items (a = .84) testing whether students can adapt

knowledge of SD to solve problems on the concept of normalization not taught

during instruction), e.g.,

An equal number of students competed in the 100 m sprint and 100 m swim finals.

The timings (in s) of the champions of the 100 m sprint and 100 m swim are shown

below, as are the average timings and the SDs of the finalists in the two

competitions.

100 m sprint (s) 100 m swim (s)

Champion 11 40

Average of the finalists, M 12 45

SD of the finalists 1 10
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Assuming all else being equal, between the two champions, who is the better performer?

A. The sprint champion

B. The swim champion

C. Both are equally good

D. Not enough information to decide

Each correct answer was awarded one mark. For ease of comparison, composite scores

for each type of item were scaled linearly to 10. This score upon 10 for the three types of

items, namely procedural knowledge, conceptual knowledge, and transfer, formed the three

dependent variables.

Results

Table 1 presents the descriptive statistics for math ability, mental effort, process measures,

and posttest performance.

Pre-existing math ability differences

An ANOVA with experimental condition as the between-subjects factor revealed no sig-

nificant difference between the two conditions on math ability, F(1, 70) = .008, p = .930.

Student production: problem and solution generation

Table 1 shows that problem-posing without solution generation students produced on

average about just under eleven problems. By comparison, problem-posing with solution

generation students posed on average under six problems and between 3 and 4 solutions.

Mental effort

A mixed ANOVA was carried out with mental effort as the within-subjects dependent

variable, and experimental condition as the between-subjects factor. For mental effort,

there were no significant differences between the two phases, F(1, 70) = .212, p = .647,

Table 1 Summary of math
ability, mental effort, process
measures, and posttest
performance

Problem-posing w/o solutions Problem-posing
w/solutions

M SD M SD

Math ability 4.56 1.21 4.58 1.44

Mental effort 1 6.28 1.23 6.75 .87

Mental effort 2 6.38 1.61 6.78 1.20

# Solutions – – 3.58 .94

# Problems 10.75 1.30 5.78 1.61

Posttest

Procedural 8.23 1.37 8.11 1.35

Conceptual 5.78 1.05 6.53 1.13

Transfer 3.61 1.15 3.83 1.30
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or of condition, F(1, 70) = .109, p = .742, or interaction between phase and condition,

F(1, 70) = 2.773, p = .100.

Posttest results

A MANCOVA with scores on procedural knowledge, conceptual knowledge, and transfer

as the three dependent variables, experimental condition as the between-subjects factor,

and math ability as the covariate revealed significant multivariate main effects of exper-

imental condition, F(3, 67) = 4.083, p = .010, and math ability, F(3, 67) = 9.445,

p\ .001. Covariate-by-condition interaction effect was not significant.

Univariate ANCOVAs suggested that the multivariate effect of math ability was largely

due to its effect on procedural knowledge, F(1, 69) = 26.108, p\ .001. The effect of math

ability on conceptual knowledge and transfer did not reach significance.

Furthermore, there was no significant difference between the conditions on procedural

knowledge, F(1, 69) = .438, p = .510, d = .12, or transfer, F(1, 69) = .578, p = .450,

d = .18. However, problem-posing students with solution generation significantly outper-

formed their counterparts on conceptual knowledge, F(1, 69) = 8.445, p = .005, d = .65.

To better understand the effect on transfer, another ANCOVA was carried out with

transfer as the dependent variable, condition as the between subjects factor, and math

ability, procedural knowledge, and conceptual knowledge as the three co-variates. There

was a marginally significant effect of conceptual knowledge on transfer, F(1, 67) = 3.230,

p = .075. None of the other effects were significant.

Finally, Table 2 presents the correlations between the numbers of problems and solu-

tions generated and posttest scores.

General discussion

The study reported in this paper examined the preparatory effects of problem-posing with

versus without solution generation on learning from subsequent instruction on three

measures: procedural knowledge, conceptual knowledge, and transfer.

There were no significant differences between the two conditions on procedural

knowledge or transfer. However, students in the problem-posing condition with solution

generation significantly outperformed their counterpart on conceptual knowledge.

That was no significant difference on procedural knowledge can be explained in part

due to the relatively straightforward nature of computing and interpreting SD. Indeed, this

pattern is consistent with earlier work on preparatory effects.

Table 2 Correlations between numbers of problems and solutions generated and posttest scores

Problem-posing
w/o solutions

Problem-posing
w/solutions

#Problems #Problems #Solutions

Procedural r(33) = .23, p = .191 r(33) = .26, p = .193 r(33) = .34, p = .045

Conceptual r(33) = .33, p = .051 r(33) = .39, p = .020 r(33) = .67, p\ .001

Transfer r(33) = .42, p = .012 r(33) = .52, p = .001 r(33) = .36, p = .032
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Also consistent with the hypothesis was the finding on conceptual knowledge. As

expected, a lack of opportunity for solution generation in the problem-posing without

solution generation condition potentially constrained the activation of prior knowledge,

which may have adversely affected the development of conceptual knowledge. Said

another way, only generating problems is neither sufficient nor optimal as a preparatory

activity for the development of conceptual knowledge.

Evidence for the activation mechanism is further supported by the significant correlation

between the number of solutions generated and conceptual understanding. Two patterns are

noteworthy in Table 2: (a) the number of problems generated by students in the problem-

posing without solution generation condition was only marginally significant, r = .33,

p = .051. However, the same correlation in the problem-posing with solution generation

reached significance, r = .39, p = .020, and (b) these two correlations (r = .33 and .39)

were still not as high as that between the number of solutions generated and conceptual

knowledge (r = .67). This preliminarily suggests an interplay between problem generation

and solution generation on the development of conceptual knowledge. Problem generation

alone is not sufficient, but when combined with solution generation, it does seem to play a

role in the development of conceptual knowledge.

That there was no significant difference between the two conditions in either of the

phases on cognitive load does not support the cognitive load mechanism. Even though

solution generation was hypothesized to put greater cognitive load on the students,

adversely affecting learning, data do not support this mechanism. Therefore, any

explanatory basis for the findings on conceptual knowledge cannot rely on cognitive load

differences. One must acknowledge here the obvious limitation of a single-item self-report

measure of mental effort that was used in this study. One must also note that the appli-

cability of the goal-free effect of problem posing is contingent upon the degree to which

students generate and explore relevant problem states that help them notice the deep

structure of the problem space. If not, a reduction in cognitive load may not translate into

effective schema acquisition.

Finally, contrary to the transfer hypothesis, there was no significant difference between

the two conditions. Although the transfer performance of problem-posing with solution

generation students was descriptively better by a small effect size, d = .18, it was not

significant. Controlling for math ability, condition, and procedural knowledge, the effect of

conceptual knowledge was marginally significant on transfer. In other words, conceptual

knowledge is necessary but not sufficient for transfer.

Once again, Table 2 shows that even though the number of solutions generated cor-

related significantly with transfer, the numbers of problems generated correlated with

transfer more strongly in both the conditions. Interestingly, when students generated both

problems and solutions, the numbers of problems generated correlated more strongly with

transfer than the case when students generated only the problems. These findings suggest

that whereas solution generation and its attendant preparatory mechanisms play an

important role for transfer, problem generation also plays a critical role. Much like the

effect of problem generation on conceptual knowledge was stronger when coupled with

solution generation, the same seems to be true for transfer as well.

As hypothesized, one mechanism is that problem generation allows for greater con-

textual flexibility for encoding and assembling of schemas. One can infer this by noting

that the transfer items targeted normalization. This required students to reason by flexibly

assembling the data point (x), average (x-bar), and SD into a single metric (the normalized

score), either qualitatively or quantitatively. Thus, successful performance on these items

required not only conceptual understanding of the various components but also aflexible
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assembling and reasoning with the components. The noticing and encoding of these

components may have been further enhanced when problem generation was coupled

solution generation. On the one hand, students need conceptual understanding of these

components. On the other, if such understanding is not flexibly encoded, then it may not

transfer well. By backward inference, the opportunity to generate different problems from

the same data/situation must have been a useful mechanism for the development of such

flexibility in assembly, while at the same time, reducing the likelihood of functional

fixedness and set effects. Taken together, this may have allowed for more pathways for

such knowledge to be cued, retrieved, and used in a novel context such as the ones targeted

by the transfer items.

Finally, it is noteworthy that an alternative interpretation of these findings stems from a

comparison with earlier studies on Productive Failure (PF), which have shown how and

why generating solutions prior to instruction works (for a review, see Kapur 2016; also see

Loibl et al. 2017). In this study too, students generated solutions. The difference however

was is in terms of the problems to which solutions were generated; the problems being

generated by students themselves as opposed to being specified in previous PF studies.

Taking Kapur’s (2015) study that compared problem solving with problem posing together

with this one, findings suggest that boundary conditions for the applicability of PF, which

was previously limited only to solution generation, seem broader than previous research

has identified.

Conclusion

The work reported in this paper demonstrates that problem-posing with solution generation

is a more beneficial preparatory activity than problem-posing without solution generation.

It builds on Kapur’s (2015) study that compared the preparatory effects of problem-posing

with problem-solving to more clearly isolate the relative effects of problem and solution

generation on the development of procedural knowledge, conceptual knowledge, and

transfer. More broadly, the work builds upon the largely theoretical and descriptive studies

on problem-posing in the math education literature to experimentally demonstrate the

efficacy of problem-posing for learning new math concepts.

One must note however that this is only one study, which presents the start of an

experimental program of research on problem posing. Therefore, findings cannot be

generalized beyond the context, domain, topic, and the sampled profile of students. Clearly,

these findings need to be replicated before deriving more robust conclusions. Furthermore,

the study sheds no light on the nature of student production, and how its quality and

relevance influence learning from subsequent instruction. Such finer grained process

analysis is currently underway.

Given that the bulk of student experience in schools is largely centered on problem-

solving, and an equally strong focus can be found on problem-solving in the cognitive and

learning sciences, work such as the study reported in this paper advocates for the need for

more research on problem-posing, with the hope that better understanding of problem-

posing may translate into the design of learning in practice.
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Appendix: additional description of instruction phase

The approximate timeline for the activities in the instruction phase were as follows:

1. First 10 min The teacher engaged students in a qualitative examination of Problem 1

to disambiguate the concept of mean from SD, and to ensure that students understood

the concept of SD qualitatively first before learning its quantitative formulation.

Problem 1: Math grades on six tests for students, S1–S3

S1 A, B, A, B, A, B

S2 C, C, C, C, C, C

S3 A, E, A, E, A, E

(Problem 1 qualitatively contrasted the mean from the spread in a data. It was designed

to emphasize that S1 is better than S2 but S2 is more consistent than S1. Also that S1 is

not only better than S3 but also more consistent. Finally, S2 and S3 may have the same

average grade but S2 is more consistent.)

2. Next 20 minutes The teacher modeled and explained the solution to Problem 2 by

using a step-by-step procedure for calculating SD. Each student was also provided

with this step-by-step procedure typed on an A4 sheet of paper.

Problem 2: Marks on five tests out of 20 for students S1 and S2

S1 12, 13, 14, 15, 16

S2 12, 14, 14, 14, 16

(Problem 2 was designed to contrast how two data sets with the same mean and range

can have different SDs.)

Printed step-by-step procedure for calculating SD given to students:

xx

1. Calculate the mean x
�

2. Calculate the deviation between each point and the mean, and square this difference ðx � xÞ2

3. Sum the squared deviation
P

ðx � xÞ2

4. Take the average, i.e., divide the sum of the squared differences by the total number
of values

P

ðx�xÞ2

N

5. Take the square root of the average of the deviations. The square root of the average
deviations is the standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

ðx�xÞ2

N

q

3. Next 15 min the teacher gave students 5 min to solve Problem 3 on their own. Students

were allowed to use the procedure sheet. After the 5 min were up, the teacher invited

students to share their solutions, discussed and explained the solution, and provided

corrective feedback where needed.

Problem 3: Runs scored in five innings by two batsmen B1 and B2

B1 20, 40, 60, 80, 100

B2 0, 40, 60, 80, 120
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(Problem 3 was designed to contrast how changing the range affects the spread. Said

another way, even though B1 and B2 have the same mean, their SD is different

because the end points of B2 are further away from the mean, and the range is

greater.)

4. The last 10 min The teacher gave students 5 min to solve Problem 4 on their own but

without the procedure sheet this time. Student solutions on Problem 4 were collected

for analysis. The teacher then discussed and explained the solution.

Problem 4: Daily temperature over 5 days in two cities C1 and C2

C1 36, 38, 40, 42, 44

C2 36, 38, 40, 42, 54

(Problem 4 was designed to contrast data sets with and without an outlier. C1 and C2

are exactly the same except 44 is replaced with 54.)

The remaining 5 min were left as buffer to be used as appropriate throughout the

instruction phase.
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