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Abstract Eighth grade students in Australia (N = 60) participated in an experiment on

learning how to solve percentage change problems in a regular classroom in three con-

ditions: unitary, pictorial, and equation approaches. The procedure involved a pre-test, an

acquisition phase, and a post-test. The main goal was to test the relative merits of the three

approaches from a cognitive load perspective. Experimental results indicated superior

performance of the equation approach over the unitary or pictorial approach especially for

the complex tasks. The unitary approach required students not only to process the inter-

action between numerous elements within and across solution steps, but also to search for

critical information, thus imposing high cognitive load. The pictorial approach did not

provide a consistent approach to tackling various percentage change problems. Coupled

with the need to coordinate multiple elements within and across solution steps, and the

need to search for relevant information in the diagram, this approach imposed high cog-

nitive load. By treating the prior knowledge of percentage quantity as a single unit, the

equation approach required students to process two elements only. Empirical evidence and

theoretical support favor the equation approach as an instructional method for learning how

to solve percentage change problems for eighth graders.
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In Australia, the enrolment figures in mathematics education in upper secondary school are

on the decline. The National Mathematics Curriculum: Framing paper (2009) attributes the

decline to the middle school students’ disengagement in mathematics education. Clearly,

reform in middle school mathematics education is urgently needed to improve students’

mathematics performance. Among various potential actions to reverse the downward trend,

improvement in pedagogical approaches so as to enhance learning effectiveness would be

helpful. Nevertheless, there are certain topics in the mathematics curriculum that are

intrinsically difficult to learn. A typical example is solving problems that involve per-

centage changes. A problem asking students to find the price of an item when it is

increased by 5 % and then decreased by 5 % is an intrinsically difficult algebra problem

(Parker and Leinhardt 1995). To teach students in 8th grade to solve this problem, the

Australian Curriculum v3.0 Mathematics (ACARA 2012) does not specify a particular

approach. Most Australian mathematics textbooks (Kalra and Stamell 2005) tend to use a

short-cut version of the unitary method to teach this topic. Although other possible

approaches may work better for most students, no research to date has scrutinized the

effectiveness of the commonly used approaches. In the present study, we attempted to

delineate the cognitive load involved in three approaches (unitary, pictorial, and equation)

for learning how to solve percentage change problems. We hope to provide evidence for an

improved instructional design for teaching the topic of percentage change problems.

Importance of percentage change problems

The study of percentage change problems represents an integral part of the early junior

secondary mathematics curriculum. Students learn to calculate a pay rise, a discount or a

markup price, Government sale tax (GST), sales commission, a rise in rent, petrol price and

so on. Essentially, the mastery of percentages should enable students to judge, which is a

better offer when there is a discount of 10 % or two successive discounts of 5 % each, to

interpret ‘‘What does it mean to have 0.5 % increase in unemployment?’’. This knowledge

will hopefully help students make wise decisions in everyday contexts.

Why is it difficult to teach percentages?

The learning of percentages and changes in percentages is unfortunately a major challenge

to many students. Parker and Leinhardt (1995) have provided a comprehensive review of

such challenges. For example, students tend to write � and � % interchangeably as if they

could disregard the % symbol. Conversion between percentages and decimal fractions is

also problematic for many students, and particularly so with percentages greater than

100 %. A typical example is that students often express 120 % as 0.12. It also seems

difficult for some students to grasp the conversion of common fractions and percentages

(e.g., one and a half = 150 %). Some students are also confused when both a decimal

number and the percentage symbol appear together (e.g., 0.5 %). Parker and Leinhardt’s

findings demonstrate that the teaching and learning of percentages is challenging because

students need to process information in different forms at the same time (e.g., converting

fractions, decimals and percentages that share a common numerical value but presented in

different forms). The relational nature of percentages poses yet another challenge to stu-

dents (Parker and Leinhardt 1995). Students tend to rely on their intuitions using addition

and subtraction to solve both of these: (a) Find the price when it is increased by $5 and
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decreased by $5; (b) Find the price when it is increased by 5 % and then decreased by 5 %.

Most students are unaware of the multiplicative relation required to solve the percentage

change problems.

Cognitive load in percentage change problems

Central to cognitive load theory (Sweller et al. 1998; Merriënboer and Sweller 2005) is a

human cognitive structure that comprises working memory and long-term memory.

Working memory is limited in capacity (Miller 1956) when processing unfamiliar infor-

mation. Long-term memory has unlimited capacity to store organized information struc-

tures in the form of schemas with varying degrees of automation. In mathematics, a schema

implies abstract knowledge for a category of problems together with their associated

solution steps. An expert who possesses an automated schema is able to solve problems by-

passing working memory limitations, because the information and solution steps can be

processed as a single unit, which can be easily handled cognitively. In the absence of a

schema, an instructional tool may provide a guideline to generate the missing schema in

long-term memory. Ideally, the presentation of instructional materials would guide the

process of knowledge elaboration (Kalyuga 2009) through which the knowledge structures

in the long-term memory will be integrated with the new knowledge structure to form a

relevant schema. Hence the aim of any mathematics instruction is to assist learners to

acquire a schema and then with further practice, to automate the acquired schema (Cooper

and Sweller 1987). In this study, we examined the effectiveness of three approaches to

assisting learners to acquire a schema for solving percentage change problems from a

cognitive load perspective. The approaches are: (1) the unitary approach which first

reduces percentages to 1 % and uses this as a basis for calculating the changed amount, (2)

the pictorial approach which uses a diagram to depict both the concept of percentage

change and the procedure for calculating it, and (3) the equation approach which guides the

learners to formulate and solve an algebraic equation. In the following, we first describe the

various kinds of cognitive load and then illustrate how cognitive load is associated with

each of the three problem solving approaches.

Cognitive load research has described three types of cognitive load that may influence

the effects of instructional materials: (1) intrinsic cognitive load, (2) extraneous cognitive

load, and (3) germane cognitive load. Each of these plays an important role in influencing

the learners’ acquisition of schema. These are discussed with regard to solving percentage

change problems, which is the focus of this study.

Intrinsic cognitive load

Intrinsic cognitive load arises from the interaction between elements within a task (see

Sweller 1994, 2010; Sweller and Chandler 1994). Learning material has low element

interactivity and thus low intrinsic cognitive load if each element can be processed and

learned in isolation. In contrast, learning material constitutes high intrinsic cognitive load

when learning depends on an understanding of the interaction between multiple elements,

which is likely to overload working memory.

For a percentage change problem such as, ‘‘A discount of 10 % was given for a digital

camera with a marked price of $350. Find the price paid after the discount.’’, the learner

needs to identify relevant information in different units (10 %, $350), specify key words

such as ‘price paid’, and construct a relation between values and variable (price paid) in an
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equation: price paid = $350–$350 9 10 %. Although there are only three elements (price

paid, $350, 10 %), the interaction between these elements must be considered simulta-

neously to allow understanding to occur. This mental process involving high element

interactivity may overwhelm working memory.

Nevertheless, whether element interactivity would constitute learning difficulty depends

on the learner’s expertise in the domain (Kalyuga et al. 2001). An expert can process

several interrelated elements as a single unit (e.g., $350 9 10 %) and thus would expect to

experience less intrinsic cognitive load associated with the problem. However, for most

students learning percentage change problems as a novice, the interacting elements that

require simultaneous processing inevitably generate an unduly high cognitive load. To

enable a novice to accomplish a task with high element interactivity, instruction can be

introduced as separate but sequential units (Gerjets et al. 2004), which are later integrated

as a whole (Pollock et al. 2002). The premise is to build hierarchical levels of concepts to

build the schema. This idea was adopted in designing the equation approach, which will be

discussed later.

Extraneous cognitive load

Extraneous cognitive load occurs when inappropriate instruction compels the learners to

engage in cognitive activities that are unrelated to schema acquisition (e.g., searching for a

solution path). Earlier cognitive load theory research focuses on designing worked

examples to reduce extraneous cognitive load (Cooper and Sweller 1987; Paas and Mer-

riënboer 1993, 1994; Sweller and Cooper 1985; Merriënboer and Sweller 2005). A worked

example integrating text with a diagram was found to reduce extraneous cognitive load by

minimizing the split-attention effect arising from processing information from disparate

sources (Sweller et al. 1990). As will be discussed later, the unitary approach imposes

extraneous cognitive load due to the need to search and match percentage and quantity

from disparate sources of information. For the pictorial approach which uses a diagram to

help learners visualize the relations between elements, the extraneous cognitive load arises

from searching and matching percentage and quantity in the diagram.

Germane cognitive load

Germane cognitive load occurs when the learner exerts mental effort to understand relevant

aspects of a schema. As will be discussed later, the use of mental effort to process relevant

information in the diagram of the pictorial and equation approaches constitutes germane

cognitive load. Furthermore, when students are asked to practise solving a variety of

problems to reinforce their schema acquisition, the process inevitably generates germane

cognitive load. Because the variability of the worked examples during the practice process

helps to foster schema acquisition, germane cognitive load is ‘‘healthy’’ as it facilitates the

learners to comprehend identical structural features across different contexts (Paas and

Merriënboer 1994; Quilici and Mayer 1996). Therefore, in our study, we incorporated

multiple example-problem pairs similar to variability of worked examples that introduce

germane cognitive load to facilitate the mastery of major concepts and problem solving

capabilities.

Recent development in cognitive load theory (Beckmann 2010; Sweller 2010, 2011,

2012) has included element interactivity to define extraneous cognitive load as well as

germane cognitive load. Sweller (2010) argued that only an instructional designer is able to

distinguish the variation between the three aspects (intrinsic, extraneous, germane) of the

688 B. H. Ngu et al.

123



cognitive load but not a learner. Presented with a task, a learner needs to invest cognitive

load to process the interacting elements; and the more interacting elements the learner

needs to process, the higher the cognitive load. An instructional designer would regard

those interacting elements as extraneous cognitive load if they inhibit learning; otherwise,

they would constitute germane cognitive load. In line with the recent formulation of

cognitive load theory, we adopted element interactivity as the point of reference in dis-

tinguishing the design features of the unitary, pictorial and equation approaches discussed

below.

Instructional approaches

Unitary approach

The unitary approach calculates 1 % of a given quantity and then a multiple of this amount

to arrive at the answer. This approach involves interaction between multiple elements that

imposes a high level of cognitive load. Consider this problem: ‘If your father wants to

increase your weekly allowance of $20 by 5 %, what will be your new weekly allowance?’

A typical unitary approach solution procedure is shown in Table 1 below.

Step 1 has two elements, 5, 100 %, and the learner needs to handle two sets of concepts:

(1) that 5 % is an addition on top of 100 %, and (2) that 105 % denotes an increase above

the original amount. These elements and concepts need to be processed together.

Step 2 has two elements, $20 and $100, and involves three sets of concepts: (1) $20 as

the original quantity, (2) 100 as the concept of percentage (100 out of 100 in this case), and

Table 1 Unitary approach, pictorial approach and equation approach for solving a percentage increase task

Approach Question: If your father wants to increase your weekly allowance of $20 by 5%, what will be your new weekly allowance?

Unitary 
approach

1.         increase the allowance by 5% 100% + 5% = 105%
2:  calculate 1% of the allowance  $20 ÷100 = $0.2 
3: calculate 105% of the allowance  $0.2 x 105 = $21 

Answer: The new allowance is $21
Pictorial 
approach

0%
         100%  105% 

$20                                                                            
New allowance

1.         From the diagram,     10% of $20 = $2  
2:        Therefore,                      5% of $20 = $1 
3:         New allowance                          $20 + $1 = $21

Equation 
approach

Part 1: Review of percentage quantity

½ x 10 = 5 
50% x 10 = 5 
20% x 10 = 2    
¼ x 8 = 2 
25% x 8 = 2 

Part 2: Problem translation and integration

original allowance              increased amount

1. New allowance  = original allowance + increased amount
2. New allowance = $20   +    $20 x 5% 
3. New allowance = $21
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(3) the sub-goal is 1 % of the original quantity although no % sign is used anywhere. The

mental processing involves an interaction among three elements: money value ($20), the

equivalence of 100 % to $20, and 1 % of the money value.

Step 3 has two elements and three concepts like step 2. However, it is further com-

plicated by the concept of $105 %, which exceeds the limit of 100 % in the concept of

percentage, which is often a source of difficulty for many learners (Parker and Leinhardt

1995).

Further to the interactivity of the elements in each step that would introduce intrinsic

cognitive load, the interaction between the three steps introduces further intrinsic cognitive

load. This is because each step cannot be considered in isolation. For example, the learner

needs to refer to 105 % in step 1 in order to understand the role of 105 % in step 3.

Therefore, the consideration of the elements in each step and across different steps

simultaneously is likely to overwhelm working memory capacity.

Apart from dealing with the high intrinsic load as a result of the high element interactivity

within and across solution steps, the lack of clarity between the three solution steps would

impose extraneous cognitive load. In step 1, the interpretation of percentage change will be

difficult without a point of reference such as $20 means 100 %. To overcome this, the learners

need to search and make inferences between $20 and 100 %. This is possible by integrating

information from two separate sources (i.e., percentage in step 1 and quantity in step 2), and

this involves a split attention between two discrete sources (Chandler and Sweller 1992;

Yeung et al. 1998). In short, the combined consequences of high element interactivity within

and across the solution steps, coupled with extraneous load to search for relevant information

may overwhelm limited working memory capacity especially for the novices, leaving

inadequate cognitive resources to learn the percentage increase problem.

It should be noted that instead of three steps, the authors of some mathematics textbooks

(Kalra and Stamell 2005) condense them to two steps without providing a clear rationale

for the step skipping: 100 % ? 5 % = 105 % (step 1); and 105 % 9 $20 = $21 (step 2).

The absence of unit percentage (skipped step) will further increase extraneous cognitive

load because the learners need to search for too many missing elements.

Pictorial approach

White and Mitchelmore (2005) designed a diagram depicting 100 % as ten equal chunks with

each chunk represented 10 %. This is similar to a percentage bar diagram used in previous

research to facilitate learning of percentage problems (Heuvel-Panhuizen 2003). The main

idea is to calculate 10 % of a quantity, and then to derive all other percentage quantities based

on multiples of 10. The concept of 10 % is frequently used in the context of percentage

problems because it is an easy number to conceptualize during mental calculation and esti-

mation. The pictorial approach in the study performed by White and Mitchelmore (2005) was

therefore found to enhance primary students’ grasp of percentage quantity (e.g., 54 9 20 %),

though their learning outcomes fell short of what the authors had expected.

Because of the apparently strong effect of the visual stimulus, previous researchers

(Edens and Potter 2008; Hegarty and Kozhevnikov 1999; Zahner and Corter 2010)

advocated the use of diagrams to scaffold the underlying problem structure in the problem

texts. We adapted the work of White and Mitchelmore (2005) to construct the pictorial

approach (Table 1) to highlight the underlying problem structure. The diagram in the

pictorial approach comprising 10 equal blocks scaffolds the relative position of 10, 20,

30 % and up to 100 % which corresponds to the original amount ($20). Therefore, the

diagram depicts the structural feature of the original amount ($20) in the problem text and
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the implicit 100 % that corresponds to the original amount. Accordingly, the calculation of

a subgoal such as 10 % is derived from the point of reference where $20 means 100 %. In

other words, the diagram uncovers the proportion concept relating to a multiple of 10 %

required to solve the percentage change problem. The cognitive load involved in the

pictorial approach is detailed in Table 1.

For the same percentage increase problem as in the unitary approach above, the pictorial

approach requires students to learn solution steps in conjunction with the diagram

(Table 1). Step 1 has two elements, 10 % and $20. The learner needs to handle two sets of

concepts: (1) one out of 10 blocks (i.e., each block in the diagram) represents 10 %, and (2)

that 100 % represents $20. The learner needs to process these elements and concepts

simultaneously. Since the diagram aligns the original amount ($20) and its corresponding

100 % so as to act as a point of reference, it reduces extraneous cognitive load by avoiding

a split-attention effect between $20 and 100 %. In addition, the germane cognitive load is

increased to elicit the proportion concept in a multiple of 10 % to enable the learners to

deduce 10 % of $20.

Step 2 has two elements, 5 % and $20. However, it involves three sets of concepts: (1)

$20 is the original quantity, (2) 5 % is an addition on top of 100 %, (3) an increase of 5 %

is only half of 10 % (i.e., half of a block in the diagram). Hence the mental processing here

involves an interaction between these elements and therefore a high intrinsic cognitive

load. Furthermore, half a block representing 5 % is not explicitly illustrated in the diagram

so the learner is required to infer the relation between percentage and money value. This

involves extraneous cognitive load. Step 3 has two elements, $20 and $1; and it involves

three sets of concepts. (1) $20 is the original amount, (2) $1 is the increased amount, (3) the

sum of the original ($20) and the increased amount ($1) gives the new allowance ($21). For

this step, intrinsic cognitive load is not particularly high because the two elements have the

same unit ($), and can easily be added up.

Therefore, for this particular problem, only step 2 in the diagram seems to involve high

cognitive load. For a problem involving percentage other than a multiple of 10 % (e.g., an

increase of 12 %), the diagram using each block to represent 10 % does not help at all because

the learner needs to generate an extra step (such as a unit percentage) to solve the problem.

In sum, on one hand, the alignment of the original amount ($20) and 100 % in the

diagram eliminates a split-attention effect and highlights the structural feature of the

problem situation, which facilitates learning. On the other hand, the diagram imposes

extraneous cognitive load when the learners need to search relevant information that is not

explicitly depicted in the diagram (e.g., half a block represents 5 %). Furthermore, the

diagram is unable to provide a consistent procedure for percentage change problems in a

variety of contexts (e.g., increase 12 %). Therefore, the pictorial approach may not offer

instructional advantage any better than the unitary approach.

Equation approach

Prior research has supported the use of proportional thinking expressed in the form of an

equation for teaching and learning percentage problems (Dole 2000; Jitendra et al. 2011;

Shield and Dole 2008). For example, Dole (2000) put the known and unknown variables on

a single-line to facilitate the translation of proportional thinking into an equation such as

25/100 = ?/60 in order to solve 25 % of 60. However, it is necessary for the learner to

have prior knowledge of proportion; otherwise, he or she may fail to see the link between

various concepts within a hierarchy of concepts (Low and Over 1992; Zhu and Simon

1987).
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To ascertain that learners had adequate prerequisites so as to form a schema for fac-

torization, Zhu and Simon (1987) required students to review the concepts of (1) the

product of two numbers (e.g., 2 9 4), and (2) the sum of these two numbers (i.e., 2 ? 4),

which formed part of the factorization (e.g., x2 ? 6x ? 8). Reviewing these concepts in

isolation may have alleviated the intrinsic cognitive load associated with factorization

where multiple concepts are broken down into separate manageable steps.

The equation approach presented here used the same rationale. In essence, this approach

divided the learning process into two parts (Table 1). Part 1 started with a revision of prior

knowledge such as percentage quantity that students had previously learned. The review

process of prior knowledge is expected to involve low cognitive load. This is because first,

students had learned these before; and second, this process with each step building on the

preceding step engages students in deductive reasoning (Stacey and Vincent 2009) in

which the connection between fraction and percentage, which constitutes a major concern

in learning percentage problems (Parker and Leinhardt 1995), is analytically handled. This

assists the learners to capitalize on their prior knowledge of the relation between fraction

and quantity so as to master the relation between percentage and quantity.

Part 2 followed by translating the problem situation and integrating the multiple

components. This was done through adapting Zhu and Simon’s (1987) approach of

building links between the components and Dole’s (2000) approach of putting these

components together within an equation. Hence, the focus of Part 2 is on problem trans-

lation and integration (Table 1). Again, similar to previous research (Edens and Potter

2008; Hegarty and Kozhevnikov 1999; Zahner and Corter 2010), the horizontal line in the

diagram serves to represent the underlying problem structure. Therefore, germane cogni-

tive load is increased to process the horizontal line depicting the underlying problem

structure that comprises the original amount and increased amount. The horizontal line not

only assists the learners to activate the schema of percentage quantity (increased amount)

established in Part 1, but it also helps the learners express the problem structure in an

equation for generating subsequent solution steps. It should be stressed that the activation

of schema such as percentage quantity allows the learners to process the problem using

fewer elements in working memory (also see Jitendra et al. 2007; Nathan et al. 1992; Ngu

et al. 2009; Weaver and Kintsch 1992).

Apart from processing the diagram in Part 2, the learners need to process the solution

procedure in Part 2. The mental processes associated with the solution steps will be: Step 1

translates the problem structure into an equation. As the diagram clearly illustrates the relation

between the original and increased amount, translating such a relation into an equation that adds

up these two amounts will involve little cognitive load. Step 2 comprises two elements—the

original amount ($20) and the increase (5 %), but also two concepts: (1) the multiplicative

relation between $20 and 5 % to form $20 9 5 %, and (2) the sum of $20 and $20 9 5 %. The

element interactivity would normally constitute high cognitive load. Nevertheless, given the

schema reinforcement procedure in Part 1 above, which has presumably built a link between the

$ and % components (Zhu and Simon 1987), the cognitive load involved in assimilating these

elements together within an equation would have been lowered.

In essence, by reviewing percentage quantity in Part 1, students are expected to reinforce

their schema for $20 9 5 % and treat this as a single unit, hence reducing the burden on

working memory. Accordingly, manipulating the interaction between the two elements in

Part 2 ($20 and $20 9 5 %) through knowledge elaboration described by Kalyuga (2009) to

generate a schema expressed in a single equation would constitute relatively low intrinsic

cognitive load. For step 3, the values in the same unit ($) can be added up easily and, as

described in the pictorial approach above, is unlikely to impose a high cognitive load.
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The current study

Based upon prior studies (Dole 2000; Jitendra et al. 2011; Shield and Dole 2008; White and

Mitchelmore 2005; Zhu and Simon 1987), we evaluated the relative merits of the unitary,

equation and pictorial approaches from a cognitive load perspective. Both the unitary and

pictorial approaches not only involve high element interactivity but also impose extraneous

cognitive load due to the need to search for critical information. In contrast, the cognitive

load invested to process two elements in the equation approach is expected to be lower.

Therefore, we hypothesized that test scores subsequent to these respective approaches

would favor the equation approach.

Method

Participants

Participants were 60 eighth grade Australian students (31 girls, 29 boys, mean

age = 14 years) studying in a private secondary college in a rural community of Australia

who consented to participate in the study. According to the head teacher, all students had

learned percentage quantity as illustrated in Appendix A. Some students were taught how

to solve percentage change problems via a short-cut version of unitary method (see Unitary

approach) commonly found in mathematics textbooks (Kalra and Stamell 2005). As our

purpose was to test the effects of intervention on new learning, these students were

excluded from the analysis. In short, all students had gone through the same mathematics

curriculum and there was no evidence of any difference in prior knowledge of the contents

covered in the experiment.

Materials

Materials were designed for a pre-test, an instruction sheet, acquisition problems, and a

post-test. Both the instruction sheet and acquisition problems were used to facilitate

learning. The pre-test and post-test were used to establish the instructional effects upon

learning.

Instruction sheet

The first page of the instruction sheet was common across the three groups. It had the

definition and meaning of percentage as well as the revision for percentage quantity, which

they had learned earlier (Appendix A). For each approach, two worked examples were

given-one percentage increase problem and one percentage decrease problem.

Acquisition problems

We constructed booklets including six pairs of acquisition problems structured respectively

in terms of each approach. In other words, the three approaches have identical material but

the presentation of the material differs. For each of these pairs, a worked example was

paired with an equivalent practice problem sharing a similar problem structure. Three of

the six pairs were percentage increase problems, and the other three pairs were percentage
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decrease problems. The acquisition problems were designed to capitalize on the variability

of the problems with varying surface features to foster schema acquisition by generating a

‘‘healthy’’ germane cognitive load (Paas and Merriënboer 1994; Quilici and Mayer 1996).

At the top of the first page of acquisition problems, there was a written instruction

informing the students to study each worked example carefully to ensure that they

understood it so as to use the same way to solve the following problems. Students were

required to show their work in the space provided in the booklet.

Both the instruction sheet and acquisition problems constituted the learning phase

whereby students were exposed to 14 percentage change problems (two worked examples

in the instruction sheet, plus six pairs of acquisition problems). Though both the instruction

sheet and acquisition problems were expected to contribute toward schema acquisition, the

acquisition of schema would predominately occur when students studied a worked example

alternated with solving a practice problem across the six pairs of acquisition problems.

In fact, the worked examples providing full solution steps served as direct instruction.

The extent to which students had acquired schema would be assessed on the basis of their

ability to solve test items. If students could show correct solution steps (even if they made

computational errors), this will mean that they had acquired schema.

Pre-test and post-test

The pre-test had identical content to the post-test. Two types of tasks were included

(Table 2)—the simple tasks (the first 10 items) and the complex tasks (the last two items).

The differentiation between simple and complex tasks was based on their structural and

surface features (Fuchs et al. 2004; Holyoak and Koh 1987; Reed 1987; Reed et al. 1994;

Richland and McDonough 2010). In our case, the simple tasks were isomorphic to the

acquisition problems because both shared the same solution (problem structure) but had

different story contexts (Reed 1987). The complex tasks included features (e.g., 120 % in

the first complex test item) that did not appear in the acquisition problems (Reed et al.

1994).

Procedure

The data collection was scheduled to align with the sequence of the mathematics topics to

be covered in actual classroom. Data collection occurred after the students had learned

percentage quantity. Students in 8th grade were invited to participate in the study. The

aims of the study and students’ involvement were explained in the invitation letter to their

parents. Sixty students from whom consent were obtained were randomly assigned to three

conditions: 20 in the unitary approach, 20 students in the pictorial approach, and 20

students in the equation approach, respectively.

The three conditions were conducted concurrently on the same day in three separate

classrooms. Each of these conditions was conducted in a single 40 min lesson by a

researcher and a class teacher. Students in each condition were told to work individually to

complete a pre-test, an acquisition phase (an instruction sheet ? acquisition problems) and

a post-test. The pre-test took 10 min. Next, students were given 5 min to study their

respective instruction sheets (Appendix A) in which the first page was common across the

groups. They were encouraged to seek help if they could not understand the materials in

the instruction sheet. Then, the class teacher gave each student a booklet to work on six

pairs of acquisition problems. For each of these pairs, students were instructed to follow

the respective solution procedure (unitary, pictorial, equation) depicted in the worked
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example and adapt this to solve a practice problem sharing a similar problem structure.

Students were allowed to have access to the instruction sheet while working on the

acquisition problems. They completed as many acquisition problems as they could in the

15 min allocated. Because they were randomly assigned to groups, differential completion

of practice problems would be inferred as a function of the approaches rather than students’

prior knowledge. We expected differential completion of practice problems, which would

also impact upon the performance outcomes. The students took 20 min to complete the

acquisition phase (instruction sheet ? acquisition problems). Finally, all students under-

took a post-test (10 min), which had identical content to the pre-test.

In sum, the consistency between the three conditions was maintained where students

across the three groups were matched in terms of time and content materials. All handouts

(test papers, instruction sheet, acquisition problems) were collected after each phase.

Table 2 Correct solutions for simple and complex tasks (in %) across the unitary, pictorial, and equation
approaches

Question Unitary
approach
n = 19

Pictorial
approach
n = 19

Equation
approach
n = 17

Simple test

1. A retail store marks up the wholesale price on a dress listed at $90 by
55 %. What is the retail price of the dress?

55 50 85.3

2. A nursery was having its annual clearance sale on all plants. It
discounted the trees by 15 %. Find the cost of buying a cherry tree
with a list price of $50

60 39.5 88.2

3. Last semester Nikki scored 80 marks for mathematics test. She has
improved her mathematics marks by 10 % this semester. Find
Nikki’s mathematics marks for this semester

70 42.1 97.1

4. The value of a computer is $3200. If it depreciates each year by
15 %, what is its value after one year?

60 34.2 88.2

5. Sam’s saving is $400. When he withdrew money to buy a second-
hand bike, his savings decreased by 20 %. How much remain in his
saving?

70 34.2 79.4

6. Jim’s employer has decided to award him a 7 % pay rise. Calculate
Jim’s new salary if his present salary is $52,000

70 36.8 88.2

7. Joshua earns $560 a week and 28 % of this is used to pay rent. How
much money remains after he has paid the weekly rent?

55 26.3 85.3

8. Michael’s annual car insurance costs $800 plus 10 % GST. How
much does Michael need to pay?

45 21.1 82.4

9. In a class of 28 students, 6 % were absent on Monday. How many
students were present on Monday?

45 21.1 70.6

10. Find the new cost of an iPod if the advertised price of $250 is
marked up by 12 %

40 21.1 82.4

Complex test

1. Due to the decline in oil production, a litre of petrol has increased
120 % above the normal price of $1.25 a litre. What is the new price
for a litre of petrol?

22.5 10.5 67.8

2. Which is the better deal on a digital camera marked at $2100:

(a) a discount of 20 % 20 5.3 64.7

(b) a discount of 10 % and then a further discount of 10 % 15 5.3 47.1
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Results

Coding and analysis

Of the 60 participants, four students scored 8 or above in the pre-test indicating their prior

knowledge of percentage change problems, and one student did not hand in the practice

problems. Thus the scores of these five students from different treatment groups were

excluded from the analysis. Because our focus was on conceptual rather than computation

accuracy, computational errors were ignored. Therefore, one mark was awarded for

demonstrating correct solution steps. If a student demonstrated accurate solution steps but

made a computational error, the solution was scored correct.

Each task was allocated one mark, except for one item in the complex task, which had

two parts, and thus two marks were allocated for this task. We also recorded the frequency

of non-attempted problems and errors made. Any problem unsolved was regarded as a non-

attempted problem. The errors made included conceptual and other errors. For example, a

conceptual error included inability to calculate the subgoal of 1 % in the unitary approach

(i.e., $95/55 instead of $95/100 for test item 1, Table 2). Other errors included incomplete

or obscure solutions. The sum of these errors was recorded as errors made.

The dependent variable for group comparisons of pre-test scores was correct solutions.

For each of the six pairs of acquisition problems, the first was a worked example, and the

second was a practice problem. We analyzed the six practice problems only. For both

practice problems and post-test, the dependent variables for group comparisons were

correct solutions, non-attempted problems, and errors made. However, the post-test items

could be further differentiated into simple or complex tasks, which were analyzed

separately.

In the pre-test, the Cronbach’s alpha was 0.87 (10 items) for the simple tasks. The

Cronbach’s alphas was not computed for complex tasks because only one student from the

equation approach attempted the complex tasks. In the post-test, the respective Cronbach’s

alpha for the simple and complex tasks was 0.96 and 0.90. One of the researchers scored all

test items and a mathematics teacher scored 20 % of the test items. The inter-scorer

correlation computed on the 20 % test items was above 0.95. In cases where the scorers

differed, they discussed and decided on a mutually agreed score. The same procedure was

used for establishing the reliability of the correct solutions, non-attempted items and errors.

To establish equivalence of sample across groups, we used a one-way analysis of

variance (ANOVA) on the pre-test scores (simple and complex tests separately). To detect

any differential gains between pre-test and post-test scores among the three conditions, we

performed a 3 group (unitary, pictorial, equation) x 2 test (pre-test, post-test) ANOVA,

with group as a between-group factor and test as a repeated measure. We also examined the

correlations between practice problems and post-test scores to determine whether superior

post-test performance can be attributed to the success in solving practice problems. Finally,

we also analyzed the solution strategies adopted by students in the post-test as explicated

on the answer sheets. The purpose was to ascertain that the post-test results were a direct

consequence of the instructional approach.

Pre-test

Table 3 presents the proportion of correct solutions for the pre-test. The analysis was

conducted separately for the simple and complex tasks.
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Simple test

One-way ANOVA on pre-test simple tasks indicated non-significant difference across the

three groups, F(2, 52) = 1.02, MSE = 0.04, p = 0.37. Thus there was no differential

performance on pre-test between the three groups prior to the intervention.

Complex test

Nonsignificant difference was also found among the three groups on pre-test, F(2,

52) = 1.12, MSE = 0.00, p = 0.33. Once again, the three groups did not show differential

performance prior to the intervention.

Practice problems

Table 3 shows the means and standard deviations of correct solutions, non-attempted

problems and errors made in the practice problems. One-way ANOVA performed on these

variables for the three groups indicated significant differences on correct solutions, F (2,

52) = 8.30, MSE = 42.41, p \ 0.01, non-attempted problems, F (2, 52) = 3.19,

MSE = 12.85, p = 0.05, and errors made, F (2, 52) = 5.51, MSE = 14.85, p = 0.01.

In regard to correct solutions, post hoc Tukey test showed significant mean differences

between the equation and pictorial approaches, Ms = 4.53 and 1.66 respectively,

SE = 0.75, p \ 0.01; unitary and pictorial approaches, Ms = 3.95 and 1.66 respectively,

SE = 0.73, p = 0.01. For the non-attempted problems, significant mean difference was

found between unitary and pictorial approaches, Ms = 0.84 and 2.47 respectively,

SE = 0.65, p = 0.04. In relation to the errors made, significant difference was found

between the equation and pictorial approaches, Ms = 0.00 and 1.82 respectively,

SE = 0.55, p = 0.01. In short, the equation group solved significantly more practice

problems than the unitary group, which solved more than the pictorial group. The pictorial

group tended to have more non-attempted problems and made more errors.

Post-test

Table 2 shows correct solutions (in percentages) generated for individual post-test items

across the three groups. For the simple test that resembled acquisition problems, the unitary

approach ranged from 45 % (items 8 and 9) to 70 % (items 3, 5 and 6), the pictorial

approach ranged from 21.1 % (item 9) to 50 % (item 1); and the equation approach ranged

from 70.6 % (item 9) to 88.2 % (items 2, 4 and 6). A similar pattern emerged for the

complex test. The equation group performed considerably better than either the unitary or

pictorial group. The respective percentage score for items 11, 12(a) and 12(b) across the

three groups was: 67.8, 64.7, 47.1 % (equation approach), 22.5, 20, 15 % (unitary

approach), and 10.5, 5.3, 5.3 % (pictorial approach).

Simple test

Table 3 presents proportion correct solutions for the post-test, non-attempted problems and

errors. A 3 (group) x 2 (test) ANOVA with group as a between-group factor and test as a

within-subjects repeated measure showed a significant group effect, F(2, 52) = 8.43,

MSE = 0.11, p \ 0.01, g2 = 0.25, a significant test effect, F(1, 52) = 101.37,

MSE = 0.06, p \ 0.01, g2 = 0.66, and a significant group x test interaction effect,
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F(2, 52) = 8.60, MSE = 0.06, p \ 0.01, g2 = 0.25. These results indicated that there were

significant differences on the performance from pre-test to post-test across the three groups

after the intervention. As shown in Fig. 1a, all three groups improved from pre-test to post-

test, but the pictorial group experienced the least improvement.

As the equivalence across groups was established at the pre-test, it was possible to compare

post-test group means directly. One-way ANOVA was conducted on correct solutions, non-

attempted problems and errors made in the post-test. Significant difference was found between

the groups on correct solutions, F (2, 52) = 10.88, MSE = 1.4, p \ 0.01. Post-hoc Tukey test

indicated significant differences between the unitary and pictorial approaches, Ms = 0.57 and

0.29 respectively, SE = 0.12, p = 0.04; and also between the equation and pictorial approa-

ches, Ms = 0.85 and 0.29 respectively, SE = 0.12, p \ 0.01; but the difference between the

unitary and equation approaches was not statistically significant (p [ 0.05).

For the non-attempted problems, significant difference was found across the three

groups, F (2, 52) = 6.20, MSE = 0.57, p \ 0.01. Post-hoc Tukey test showed significant

difference between the equation and pictorial approaches, Ms = 0.07 and 0.43 respec-

tively, SE = 0.10, p \ 0.01. There was no significant difference between the three groups

on errors made, F (2, 52) = 1.60, MSE = 0.14, p = 0.21.

The results so far partially support the hypothesis. The mean correct solutions were

higher for the equation group than for the other groups, but the superiority of the equation

group was statistically significant only over the pictorial group, not the unitary group.

Hence the equation group experienced only marginal advantage over the unitary group in

simple tasks.

Table 3 Means and (SD) of scores in practice problems, pre-test, and post-test, and frequency of non-
attempt problems and errors made

Dependent variable Unitary approach n = 19 Pictorial approach n = 19 Equation Approach
n = 17

M SD M SD M SD

Practice problems

Correct solutions 3.95 2.57 1.66 2.06 4.53 2.10

Non-attempted problems 0.84 1.50 2.47 2.34 1.47 2.10

Errors made 1.05 1.93 1.82 2.02 0.00 0.00

Pre-test (proportion)

Simple test 0.11 0.18 0.07 0.20 0.17 0.22

Complex test 0.00 0.00 0.00 0.00 0.02 0.08

Post-test (proportion)

Simple test

Correct solutions 0.57 0.43 0.29 0.36 0.85 0.25

Non-attempted problems 0.25 0.33 0.43 0.38 0.07 0.12

Errors made 0.17 0.32 0.26 0.35 0.08 0.18

Complex test

Correct solutions 0.19 0.36 0.11 0.27 0.58 0.43

Non-attempted problems 0.74 0.38 0.86 0.32 0.24 0.40

Errors made 0.07 0.13 0.04 0.11 0.19 0.29

There were six practice problems (maximum score = 6). Simple test comprised 10 problems (maximum
score = 10). The complex test comprised two problems and one of these had two parts (maximum
score = 3)
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Complex test

The same analytical procedure for simple tasks was followed. The 3 (group) x 2 (test)

ANOVA found significant test effect, F(1, 52) = 36.31, MSE = 0.06, p \ 0.01,

g2 = 0.41, significant group effect, F(2, 52) = 9.10, MSE = 0.07, p \ 0.01, g2 = 0.26,

and significant group x test interaction effect, F(2, 52) = 8.29, MSE = 0.06, p \ 0.01,

g2 = 0.24. As shown in Fig. 1b, the equation group experienced greater improvement from

pre-test to post-test than either the unitary or pictorial group. Similar to the simple test, the

pictorial group experienced the least improvement from pre-test to post-test.

Directly comparing the post-test scores, we conducted one-way ANOVAs. Significant

difference was found between the groups on post-test solutions, F (2, 52) = 8.83,

Fig. 1 Pre-test and post-test for the unitary, pictorial and equation approaches for a simple test, and
b complex test

Percentage change problems 699

123



MSE = 1.12, p \ 0.01. Post-hoc Tukey test showed that significant differences were

between the equation and unitary approaches, Ms = 0.58 and 0.19 respectively,

SE = 0.12, p = 0.01; and between the equation and pictorial approaches, Ms = 0.58 and

0.11, SE = 0.12, p \ 0.01. This implies clear superiority of the equation approach over the

other two approaches.

Significant difference was found between the three groups on non-attempted problems,

F (2, 52) = 14.29, MSE = 1.93, p \ 0.01. Post-hoc Tukey test showed that the differences

were between the equation and unitary approaches, Ms = 0.24 and 0.74 respectively,

SE = 0.12, p \ 0.01; and between the equation and pictorial approaches, Ms = 0.24 and

0.86 respectively, SE = 0.12, p \ 0.01. There was significant difference across three

groups on errors made, F (2, 52) = 3.16, MSE = 0.11, p = 0.05. Post-hoc Tukey test

indicated significant difference between the equation and pictorial approaches, Ms = 0.19

and 0.04 respectively, SE = 0.06, p = 0.05.

The results further support the hypothesis. The equation group significantly outper-

formed not only the pictorial group but also the unitary group. The unitary group did not

outperform the pictorial group. Between the unitary and pictorial groups, although the

unitary group seemed to do better, the advantage of the unitary approach was not partic-

ularly great.

Evidence of acquisition effects

Taking the practice problems as reflecting the learning process and the posttest as reflecting

the outcome of learning, we would be able to examine the relation between learning and

outcome in respective approaches. Specifically, the correlation between practice problems

and post-test scores would indicate whether the post-test outcome could be attributed to the

instructional approach.

Simple test

Strong positive correlation coefficients were found between practice problems and simple test

scores for all three groups: unitary, r = 0.81, p \ 0.01; pictorial, r = 0.77, p \ 0.01; and

equation, r = 0.73, p \ 0.01. It appears that the ability to solve practice problems was trans-

lated into success in solving post-test problems of a similar nature, irrespective of approach.

Complex test

A strong positive correlation was found between the practice problems and the complex

test scores for the equation group, r = 0.70, p \ 0.01 indicating that students in the

equation group were able to translate their learning to solve complex tasks that were

different from the practice problems in terms of problem structure. Relatively weaker

correlations were found between practice problems and complex test scores for the unitary

group, r = 0.40, p = 0.09 and for the pictorial group, r = 0.53, p = 0.02. However, these

correlations did provide support for the effects of the practice exercise leading to the post-

test scores. Hence the critical difference between the three approaches lies with the success

of the acquisition process.
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Solution strategies

We inspected the solution strategies adopted by students across the three groups. These

were the students’ scribble in the space provided on the post-test paper where the students

worked out their solutions. The solution strategy adopted by a student each in the unitary,

pictorial and equation approaches respectively is presented in Fig. 2. The student in the

unitary group attempted to find the value of 1 % and used it for calculating the changed

value. The student in the pictorial group attempted to use 10 % for a similar purpose. The

student in the equation group attempted to use an equation that included all values on a

single line. Interestingly, almost no student was able to use the pictorial approach to solve

complex tasks. As can be seen in Fig. 2, the solution strategy in the unitary approach for

the complex task involved far more steps than the equation approach. This provided

evidence for the high cognitive load involved in the problem solving process.

Further to this evidence, an analysis of all students’ solution strategies revealed that the

percentage of students who used their respective solution strategies to successfully solve

simple tasks were 42, 10 and 82 % for the unitary, pictorial and equation approaches

respectively. For complex tasks, the respective percentages were 16, 0 and 59 %. Evidently,

the equation approach was much easier to follow. It was therefore not surprising for the

students using the equation approach to outperform those who used the other two approaches.

Discussion

Findings

Irrespective of simple or complex tasks, the equation approach yielded significantly more

correct solutions, fewer non-attempted problems and errors. The positive instructional effect of

the equation approach over the unitary or pictorial approach was more marked for the con-

ceptually more difficult complex tasks rather than the simple tasks. Superior performance of the

equation group can be attributed to the success in solving the practice problems, which con-

tributed to their success in the post-test. The equation approach was easier to follow, evidenced

in the high percentage of students’ actual application of the approach in the post-test. Its

instructional effectiveness was evidenced in the high success rate during practice (M = 4.53,

SD = 2.10) with many students completing all six practice items with zero-error performance.

In sum, the two-part process in the equation approach allowed the students to learn with less

difficulty and perform with more precision for complex percentage change tasks.

An analysis of individual test items (Table 2) revealed that the gain in learning for the

equation group exceeded those in the unitary or pictorial group for most items, and par-

ticularly for the complex tasks. Evidently, about half of the students in the equation group

were capable of relying on a combination of multiplicative and subtraction (or addition)

relations (see items 11 and 12 in Table 2) to successfully solve the complex tasks.

Interestingly, one or two students in the unitary or pictorial group were able to generate a

modified 2-step equation approach, like the performance of the students in the equation

group, despite not gaining access to the instruction on the equation approach. This reflects

major limitations of the unitary and pictorial approaches in providing useful and man-

ageable directions for learners to follow in order to obtain a solution for complex tasks.
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Why does the unitary approach need improvement?

The beneficial effect of the unitary approach was found in the simple tasks but not the

complex tasks. The unitary approach does not effectively address the intrinsic cognitive

load related to unit percentage so as to lower the extent of interaction among the multiple

elements. Furthermore, searching for the relation between the quantity involved and its

corresponding percentage imposes extraneous cognitive load. Because such a relation was

not explicated in the solution steps, students who were unable to comprehend the relation

of elements expressed in different units would not be able to acquire a schema to handle

the sophistication of complex tasks.

To improve the design of the unitary approach, one may need to incorporate a diagram

depicting the relation between percentage and quantity to avoid the need to search and

integrate these two elements. A revision of the proportion concept may also help to ensure

that students understand how to calculate unit percentage. With these instructional cues in

place, the unitary approach can be modified to incur less cognitive load.

Alternatively, one may design a unitary approach comprising solution steps such as: (1)

calculate 1 % of the allowance ($0.2), (2) calculate 5 % of the allowance ($1), and (3) add

the change amount ($1) to the original allowance ($20) to get the new allowance. However,

the merit of this alternative unitary approach will require additional research.

Unitary approach Pictorial approach Equation approach

Simple task: Michael’s annual car insurance cost $800 plus 10% GST. How much does Michael need to pay? 

Complex task: Which is the better deal on a digital camera marked at $2,100: (a) a discount of 20%, (b) a 
discount of 10% and then a further discount of 10%

Non-attempted problem 

Non-attempted problem 

Fig. 2 Solution strategies adopted by a student each in unitary, pictorial and equation groups
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Why does the pictorial approach need improvement?

The pictorial approach exhibited the worst performance among the three approaches. The

pictorial approach requires an integration of multiple elements within and between the

solution steps. The diagram does not provide instructional support to explicate the logic of the

solution steps (e.g., half a block represents 5 %). It is therefore not surprising that it would

impose a high cognitive load. The pictorial approach could even have generated cognitive

conflict in the form of heavy extraneous load when the test problems involved percentages

other than a multiple 10 %, which is the only multiple the diagram illustrates. Consequently,

the use of the cognitive resources to search for an appropriate solution strategy may further

exacerbate the cognitive load incurred leading to the formation of a fragmented schema.

The development of the pictorial approach seems to be in its infancy. One could

probably improve its design by modifying the diagram. An improved pictorial approach

will need to subdivide each block in the rectangle into 10 equal units so that each unit

represents 1 %. With this additional feature, the solution steps of an improved pictorial

approach will consist of: (1) calculate 10 %, (2) calculate 1 %, and (3) calculate a multiple

of 1 % to obtain an answer. In other words, with the alignment of original allowance ($20)

and 100 % as a point of reference, the relative positions of 100 %, 10 %, 1 % in the

diagram will facilitate the grasp of their corresponding quantities, which should lead to the

calculation of a quantity to match a multiple of 1 % (e.g., 12 %). Therefore, this improved

pictorial approach may provide a means to solve percentage change problems irrespective

of whether these problems fall into a category having a multiple of 10 %. Such explicit

guidance is expected to reduce cognitive load required to process the pictorial approach.

Alternatively, one can design a pictorial approach to align original allowance ($20) with

100 %, and new allowance (x) with (105 %), where 105 % represents the percentage after

an increase of 5 %. Then, one can form an equation such as, 20/100 = x/105, solve

forx. The use ofx to represent the new allowance represents algebra method in problem

solving. The cognitive load involved in this format of pictorial approach will be affected by

the learners’ prior knowledge of algebra.

Why does the equation approach work?

The superiority of the equation approach may have stemmed from the application of

instructional design principles associated with cognitive load theory. The incorporation of

review in relation to percentage quantity (which the students had learned earlier) has

allowed the students to build a hierarchy of percentage concepts. The two-part process has

been crucial in alleviating the intrinsic cognitive load associated with the element inter-

activity involved in handling percentage change problems.

With the aid of a horizontal line, the germane cognitive load is increased to deduce the

underlying problem structure comprising the original amount plus the changed amount

(i.e., percentage quantity). With the help of review on percentage quantity, the changed

amount would be established in the learners’ schema and can therefore be treated as a

single element. As a result, processing the original and changed amount would constitute

two elements only, and this would greatly reduce the cognitive load that would have been

unmanageable for a novice when all various elements had to be handled simultaneously.

This coupled with the germane cognitive load by studying numerous pairs of worked

examples and solving equivalent problems seems to have helped students solve percentage

change problems effectively. Presumably, the acquisition of an automated schema in a
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single equation (e.g., $20 ? $20 95 %) resulted in freeing up cognitive resources to

comprehend structural features, especially in the complex tasks in which the interaction

between such features are different from the simple tasks (Cooper and Sweller 1987). The

evidence shows that about half of the students in the equation group were able to use the

multiplicative and subtraction (or addition) relation concepts to solve complex tasks.

The equation approach is essentially an algebra approach in problem solving when

students use a variable, x, to interpret the new allowance. Whereas the equation approach is

found to be an effective instructional method, its usefulness depends on students’ prior

knowledge and skills. Unless the students have a strong foundation of a range of algebraic

skills, it is unlikely that they would benefit from this approach for higher order complex

percentage change problems as discussed later. Hence there is room to further improve the

effectiveness of this approach by identifying ways to firmly establish the link between prior

knowledge and the application of this approach, and this will require further research.

Limitations and future directions

The study was conducted in a single school with a particular sample of students; it is

possible that differential students’ abilities had influenced the learning outcomes. In line

with the recent studies related to expertise reversal effect (Kalyuga et al. 2003; Kalyuga

2007; Kalyuga and Renkl 2010) in which novices would require greater instructional

support than those experts who have greater knowledge in the domain, future research

needs to include individual differences as a variable when testing the learning effects

among the three approaches.

To assess the instructional effects of different approaches on facilitating schema

development resulting in automation of information processing, further research may

include the measure of speed in addition to accuracy of performance. It would also be

worthwhile to further examine the retention of the schema to scrutinize long-terms effects

of instruction. By including these additional features in future investigations, we would be

able to draw stronger conclusions regarding the role of cognitive load across different

instructional approaches in facilitating short-term and long-term outcomes.

Not all existing cognitive load research includes a measure of relative instructional

efficiency. In our study, the use of cognitive load theory to predict the relative instructional

efficiency of unitary, pictorial and equation approaches was supported. Indirectly, this

provides a degree of theoretical validation. Nonetheless, we recognize that a direct measure

of relative instructional efficiency will strengthen the theoretical rationale. Therefore,

future research should include a Likert scale to record the mental effort invested in the

learning phase (Paas and Merriënboer 1993) to more directly link performance scores to

cognitive load.

So far, prior cognitive load theory researchers (Gerjets et al. 2004; Pollock et al. 2002)

have managed to design part-task processes to reduce the intrinsic cognitive load that arises

from the complexity of the task itself. Our study differs from previous research in that we

designed three approaches with varying degrees of element interactivity and tested their

relative strength in fostering schema acquisition for percentage change problems. To verify

the impact of the varying degrees of element interactivity upon learning outcomes, addi-

tional research could include a rapid online method (Kalyuga 2008) for diagnosing the

level of the learners’ knowledge base after exposure to the three approaches. Students in

three respective groups would be expected to generate different solution formats (unitary,

pictorial, equation) for the same test items. Therefore, we anticipate accurate rapid
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diagnosis of solution steps would favor the equation approach followed by the unitary

approach and lastly the pictorial approach in line with the hypothesized degree of element

interactivity associated with the respective approaches.

We did not assess at which point of time the activation of prior knowledge occurred for

the learners. The horizontal line in the diagram is divided into two components reflecting

the problem structure that consists of the original amount plus increased amount. It is

possible that exposure to this schematic diagram during the treatment activates prior

knowledge of percentage quantity (increased amount, $20 9 5 %). Future research could

incorporate a think-aloud protocol (Hong and O’Neil 1992) to find out at which point of

time the activation of prior knowledge occurred.

Among the three approaches, the equation approach seems to be a promising

instructional format for enhancing students’ problem solving skills in percentage change

tasks especially the complex tasks. The unitary approach has limitation in solving

complex tasks. Parker and Leinhardt (1995) suggest that higher order complex per-

centage change tasks are particularly difficult for students to learn. Students tend to use

their additive intuitions to solve a markup task such as: ‘After a 12 % markup, the shoes

now cost $34. How much did they originally cost?’ (p. 448). Students tend to find 12 %

of $34 and subtract this amount from $34 to arrive at the original cost. It appears that

students draw on their prior knowledge of percentage quantity (e.g., calculate

$34 9 12 %), which is incorrect in this context. Also, they rely on their intuitions to

subtract $34 (cost after 12 % markup) from $34 9 12 %, as they perceive that the

original cost should be less than $34. Clearly, there is a difficulty in decoding what is

required. Nevertheless, students’ errors can be a source of excellent learning experience

if sufficient scaffolding is provided by the teacher through diagrams, models and con-

crete aids. The unitary method, however, is unlikely to provide such kind of learning

experience. However, the incorporation of a diagram in the unitary method may improve

its design. The diagram aligning the relative position of amount ($) and % not only

enables the learners to distinguish the relation between the original amount, changed

amount, and marked up price, but also it eliminates a split-attention effect. Hence future

research needs to include a diagram in the unitary method.

Nevertheless, a limitation of the study is the use of a diagram for both the equation and

pictorial approaches. In particular, incorporating a diagram in the equation approach

weakens the evidence of efficacy for the equation approach because it is unclear whether

the effects found in the equation approach was due to the generation of an equation or due

to the inclusion of a diagram, or both. Future research will benefit from separating the

effect of the diagram from the generation of an equation. However, it is important to note

that at least some students may not be able to make sense of the instruction for the equation

approach unless the ‘‘change’’ concept is triggered (see Appendix A). Consider the

example presented in Appendix B. Unless ‘‘increased amount’’ is defined, the equation

approach would not make sense to some learners. In order to define this concept of

‘‘change’’, we could use a few sentences but the text is likely to increase cognitive load

which counters our purpose of reducing it. Hence instead of using text, a better way which

we chose to use was the inclusion of a simple diagram to bring out the concept of change

but did not give specific information as did the diagram in the pictorial approach which

also guided the learners to follow problem solving procedures. In essence, the diagram

forms a necessary part of the equation approach which depicts the relation between the

unknown variable and values in the problem text so as to activate students’ prior knowl-

edge of percentage quantity (increased amount in this case), which mediates the con-

struction of an equation for generating a solution (Jitendra et al. 2007; Xin et al. 2005).
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Even though the higher post-test scores in the equation approach suggest that the

diagram is unlikely to be the contributing factor to success in solving the problem, future

research should consider alternative ways to clearly tease out the effects of the three

approaches. One possibility is to design another method of presentation in the instruction

for the equation approach to avoid the confounding diagram. Another possibility is to

separately scrutinize the equation approach by testing it with and without a diagram, or

also with and without a defining text. A third possibility is to use a diagram for all three

approaches, probably with the unitary and equation approaches sharing a simpler diagram

just depicting the concept without giving the specific problem-solving procedures delivered

in the pictorial approach. However, the question regarding the effects of the diagram may

still remain. In any case, future research should attempt to delineate the contribution of the

diagram from the effective problem-solving approach.

Although the diagram in the pictorial approach did not seem to benefit problem solving,

the diagram in the equation approach seems to work better. The beneficial effect of a

horizontal line in the equation approach may extend to the higher order complex per-

centage change tasks. Hence, for the above marked up task, the use of a horizontal line to

depict the underlying problem structure comprising the original cost, changed amount,

marked up price may help learners to grasp the relationship between these structural

features. Then, the learners can usex, a variable, to represent the original cost and set up an

equation such as $34 = x ? x 9 12 % to solve the task. Nonetheless, as noted previously,

the interaction between intrinsic cognitive load and a learner’s expertise (Kalyuga et al.

2003; Kalyuga 2007; Kalyuga and Renkl 2010) necessitates the selection of appropriate

prior knowledge (e.g., algebraic skills, factorization, equation with fractions) for revision

prior to learning how to solve this higher order complex percentage change task. Hence,

additional research needs to test the merit of equation approach for higher order complex

percentage change tasks and elucidate how it may reduce cognitive load.

Conclusion

To conclude, the design of the equation approach supported by the cognitive load

framework yielded better results than the other two approaches. The presence of a hori-

zontal line and the incorporation of prior knowledge reinforcement may help to decrease

intrinsic load and the two-part process would involve minimal strain on working memory.

The pictorial approach, and to a lesser extent, the unitary approach, incurred extraneous

load as the learners needed to search for critical information to solve percentage change

problems. In addition, both approaches lacked a mechanism to address high element

interactivity. One can hardly expect reform in middle school mathematics education to

have a positive impact unless mathematics educators are willinging to incorporate school-

based research evidence in structuring middle school mathematics curriculum. It is hoped

that evidence generated from this study will enable researchers and educators to identify

areas that need improvement. By identifying weaknesses and strategically improving

instruction, hopefully more middle school students will enjoy mathematics and more will

pursue mathematics education in upper secondary school.
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