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Abstract Algebra students studied either static-table, static-graphics, or interactive-

graphics instructional worked examples that alternated with Algebra Cognitive Tutor

practice problems. A control group did not study worked examples but solved both the

instructional and practice problems on the Cognitive Tutor (CT). Students in the control

group requested fewer hints and made fewer errors on the CT practice problems but

required more learning time on the instructional examples. There was no difference among

the four groups in constructing equations on a paper-and-pencil posttest or on a delayed

test that included training and transfer problems. However, students who studied worked

examples with a table were best at identifying the meaning of the equation components.

The concept of transfer-appropriate processing (the overlap between instructional task and

assessment task) aided our interpretation of the findings. Although the CT had a short-term

effect on reducing errors and hint requests on CT practice problems, the worked examples

were as effective on delayed paper-and-pencil tests. The subsequent construction of a

new module for the Animation Tutor (Reed and Hoffman, Animation Tutor: Mixtures.

Instructional software, 2011) used both the interactive-graphics and static-table worked

examples to take advantage of the complementary strengths of different representations

(Ainsworth, Learn Instr 16:183–198, 2006).

Keywords Cognitive Tutor � Transfer-appropriate processing � Worked examples �
Word problems

A broad ongoing debate in instructional design concerns the relative effectiveness of

minimally guided instruction versus direct instructional guidance. Kirschner et al. (2006)

argue that direct instruction improves learning outcomes by reducing the students’ need to

search for solutions. They argue that such search activities tie up limited working memory
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capacity without directly leading to learning. Hmelo-Silver et al. (2007) respond to

Kirschner et al.’s (2006) claim by arguing that inquiry learning is often effective because it

is supported by scaffolding that does offer guidance.

The use of unassisted problem solving in math and science curricula is a microcosm of

this broader debate and one in which the interplay of minimally guided problem solving

and direct instruction in the form of worked examples has been extensively studied. In a

seminal study Sweller and Cooper (1985) showed that, for solving algebra equations,

interleaving worked examples with student problem solving generally led to greater

acquisition (as measured by posttest problem solving) in less learning time. This result has

been extensively replicated for novice students across a wide variety of mathematics and

science domains (Paas 1992; Paas and van Merrienboer 1994; Pashler et al. 2007; Tarmizi

and Sweller 1988; van Gog et al. 2004). Interleaved worked examples can also lead to

better transfer to solving novel problems than unassisted problem solving (Cooper and

Sweller 1987; Ward and Sweller 1990). An exception is the ‘‘expertise reversal’’ effect that

occurs when experienced students learn more from unassisted problem solving than from

interleaved worked examples (Kalyuga et al. 2003, 2001a, b).

Worked-example solutions and unassisted problem solving lie at the guided and

unguided extremes of what Koedinger and Aleven (2007) call the ‘‘assistance dilemma’’—

how much information to provide students to optimize student learning. They note that

Cognitive Tutors (CTs) provide an intermediate level of assistance. In this environment

students generate problem solutions and the tutors typically provide step-by-step accuracy

feedback, requiring the student to remain on a successful solution path. Upon request a CT

will also provide advice on the student’s next step so the student always reaches a suc-

cessful conclusion (Anderson et al. 1995). The result is that CTs have yielded dramatic

improvements in student learning compared to unassisted problem solving (Anderson et al.

1995; Ritter et al. 2007).

The effectiveness of the CTs raises the question of whether the impact of interleaved

worked examples generalizes to problem solving that is supported by an effective tutor.

Problem solving with step-by-step feedback and advice as provided by CTs is also

expected to decrease extraneous cognitive load (Paas et al. 2004) and yield better learning

than unassisted problem solving with less time on task (Corbett and Anderson 2001). Ten

experiments have compared intelligent-tutor assisted problem solving to either interleaved

worked examples or ‘‘faded’’ worked examples (Renkl and Atkinson 2003) in CTs for

stoichiometry (McLaren et al. 2008), algebra equation solving (Anthony 2008), geometry

problem solving (Salden et al. 2010; Schwonke et al. 2009, 2011) and in a closely related

ASSISTment intelligent tutor for topics in introductory statistics (Weitz et al. 2010).

These comparisons yield two consistent results. The six studies that report learning

times consistently replicate a major finding in the classic comparisons of worked examples

and unassisted problem solving, that learning is more efficient when worked examples are

incorporated with problem solving. Even with the feedback and advice available in assisted

problem solving, students completed the same set of problems more quickly with worked

examples. However, these studies generally failed to replicate the finding from unassisted

problem solving that incorporating worked examples resulted in improved problem solving

on immediate tests. Seven of the studies found no difference in immediate problem

solving, one study (Schwonke et al. 2011) found that assisted problem solving alone was

superior to incorporating worked examples for simple principles, but found no differences

for difficult principles, while two experiments (Salden et al. 2010) found some benefits for

one type of faded worked examples on immediate problem solving.
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The algebra and geometry studies found mixed results for the third fundamental issue

raised in the classic worked examples literature—whether worked examples yield deeper

understanding of the problem-solving domain. Anthony (2008) found greater retention of

problem solving knowledge in her interleaved worked example condition and Salden et al.

(2010) found greater retention of problem-solving knowledge for one type of faded worked

examples. The first experiment in Schwonke et al. (2009) obtained greater transfer to

conceptually related problems in the worked-example condition but that result was not

replicated in their second experiment nor in Schwonke et al. (2011).

We continue the investigation of this topic by conducting an exploratory study of linear

algebra modeling within the Algebra CT by following the recommended procedure of

interweaving worked examples with problem solving (Pashler et al. 2007). After studying

each worked example of a word problem students used the CT to solve an equivalent

practice problem that had the same story content (either interest or ore) and the same

equation structure as the previous worked example. A control group solved the instruc-

tional problems on the CT rather than study worked examples. Unlike when solving

problems using paper and pencil, students in this group received hints and feedback to

evaluate whether assisted problem solving would be more effective than worked examples.

Purpose

Our study continued the investigation of the relative merits of worked examples versus CT

assisted problem solving but included several changes from previous studies. First, our

study investigates problem-solving tasks in an Algebra CT in which students generated

algebraic expressions to model real-world problem situations. Earlier studies, in contrast,

focused on the analysis and manipulation of explicit formal representations (e.g., geometric

problem solving or algebra equation solving). In our study, students learned to write

equations to model ‘‘mixture’’ problems such as

You have an American Express credit card with a balance of $715 at an 11% interest

rate and a Visa credit card with a 15% interest rate. If you pay a total of $165 in

annual interest, what is the balance on your Visa card?

The learning goal was to construct a symbolic model of the situation that could be used to

solve the problem, such as

0:11 � $715ð Þ þ 0:15 � Vð Þ ¼ $165

Extending the investigation of worked examples to the Algebra CT is important because of

its widespread use in algebra classrooms.

A second departure is that previous studies used worked examples that were imple-

mented in, and fully isomorphic to, the tutor-supported problem-solving task but the

algebra modeling task evaluates the relative effectiveness of different types of worked

examples. In our study, a table is included in worked examples for the static table

instructional group and in CT problem solving to scaffold the relationship between real-

world problem referents and the hierarchical components of the mathematical models. In

contrast, graphical representations were developed for the static graphics and interactive

graphics instructional groups to illustrate the quantitative relationships among the problem

referents. Students in CT Algebra courses were randomly assigned to one of the four

instructional groups; three groups distinguished by the format of their interleaved worked

examples (static table, static graphics, or interactive graphics) and a fourth CT control
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group who solved all problems on the Algebra CT. We did not create an interactive table

group because the CT includes interactive tables and we designed the worked examples to

differ from CT instruction.

The static table group studied text-based explanations of the solutions that included a

table for linking components in the equation to the concepts in the problem. Such solutions

are typically provided in textbooks and in research on word problems (Reed 1999). The

text-based format is also similar to the instructional guidance provided by the CT. The two

graphics groups studied either static or interactive bar-graph representations of the solu-

tions to encourage visual thinking (Reed 2010). Emphasis on perception and action

(manipulation in the interactive graphics condition) is consistent with theories of grounded

cognition in which perception and action are central, rather than peripheral, aspects of

cognition (Barsalou 1999; Wilson 2002).

A third departure from previous studies is our use of standard, rather than enhanced,

worked examples that had used fading (Salden et al. 2010; Schwonke et al. 2009) or self-

explanations (Berthold et al. 2009). Although these enhancements are typically effective,

they raise questions about the effectiveness of combining standard (nonenhanced) exam-

ples with the CT. Our use of standard worked examples also simplifies comparisons of the

static table, static graphics, and interactive graphics instruction because self-explanations

and fading would differ across these different instructional conditions.

Finally, because previous studies have yielded inconsistent results on robust learning, in

this study we employed three distinct measures of students’ depth of understanding of the

problem solving domain: retention, transfer to novel but related problems, and an

assessment of students’ ability to map symbols in an equation onto their real-world

referents.

Instructional conditions

Figure 1 shows a worked example for the static table group. This instruction uses a table to

represent and label the components of the equation before the components are combined to

form an equation. Figure 2 shows a worked example for the static graphics group in which

stacks of money represent credit card debt and darker colors represent amount of interest as

a percentage of the debt. The numbers beneath the stacks are used to form the equation.

The instruction for the interactive graphics group was the same as for the static graphics

group except it attempts to take advantage of the enactment effect (Engelkamp 1998; Reed

2008) by requiring students to manipulate the bars. Construction for the arithmetic word

problems required clicking on the interest in the first bar and dragging a copy to the

location of the Total Interest bar; then clicking on interest in the second bar and placing a

copy on top of the copy from the first bar. For algebra word problems students raised and

lowered the bar that represented a variable to observe how changing the variable influenced

numbers in the equation and the height of other bars. The goal was to make the difficult

concept of a variable (MacGregor and Stacey 1997; Philipp 1992) directly observable by

showing how changing its value would impact other values in the equation.

The CT activities for the instructional and practice problems were developed with the

Cognitive Tutor Authoring tool (Aleven et al. 2009). Figure 3 shows that the CT problems

employ the same table as the static table worked examples, which is intended to scaffold

the relationship between the problem referents and the symbols in the equation. As in all

CTs, step-by-step accuracy feedback was provided and advice was available upon request.
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Fig. 1 Worked example for the static table group

Fig. 2 Worked example for the static graphics group
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Theoretical comparisons

The many variables that influence learning can make it difficult to make predictions about

the relative effectiveness of different instructional conditions, particularly when the

instruction includes multiple representations (Ainsworth 2006). Ainsworth’s DeFT

framework proposes that such predictions need to be based on the design parameters that

are unique to learning with multiple representations, the functions that multiple repre-

sentations serve in supporting learning, and the cognitive tasks that are undertaken by a

learner. As a result, different instructional approaches, including the ones investigated in

this study, seldom differ along a single dimension.

We propose that the four different types of instruction—CT problem solving, static

table, static graphics, and interactive graphics worked examples– serve different design

goals in supporting learning (Table 1). The five goals are (1) provide declarative knowl-

edge, (2) organize information in a table, (3) organize information in a diagram, (4)

encourage interactive learning, and (5) create multiple memory codes.

Provide declarative knowledge

The initial design of the CTs was based on the ACT* theory of learning in which complex

skills are decomposed into a set of production rules (Anderson 1990). However, the theory

assumed that all knowledge begins in a declarative representation that is typically acquired

from instructions and/or by studying worked examples. Solving problems converts the

declarative knowledge into efficient procedures for solving specific problems. Although

initial versions of the theory emphasized learning declarative knowledge from instructions,

Fig. 3 Cognitive Tutor work space

Table 1 Design features of instruction

Learning
conditions

Declarative
knowledge

Table
organization

Diagram
organization

Interactive
learning

Multiple
memories

Cognitive Tutor 9 9

Static table 9 9

Static graphics 9 9 9

Interactive graphics 9 9 9 9
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more recent versions emphasize learning declarative knowledge from worked examples

(Anderson and Fincham 1994). Providing worked examples before students confront

comparable problems on the CT is therefore consistent with the ACT* theory of learning.

Organize information in a table

Worked examples of word problems often include a table that links numbers and symbols

to the concepts described in the text. For instance, the table in Fig. 1 shows that the amount

of interest owed on the Mastercard is .21 9 $532. Reed and Ettinger (1987) found that

including completed tables in worked examples helped students construct equations.

However, requiring students to enter quantities into the tables was not helpful because

students often entered incorrect values.

The CT requires that students enter values into tables (Fig. 3) but provides feedback that

enables them to complete the table correctly. This difference between the two conditions

allows us to compare completed tables in the static-tables worked examples with the

constructive feedback provided by the CT.

Organize information in a diagram

The static and interactive graphics conditions use diagrams instead of tables to organize the

problem information. Displaying quantities in rectangles has traditionally played an important

role in helping students represent quantities and relationships among quantities in word

problems (Fuson and Willis 1989), including part/whole relations (Gamo et al. 2010; Ng and

Lee 2009). The bar diagram in Fig. 2 shows part–whole relations in each stack of money by

representing the amount of interest as a percentage of the amount owed on each credit card. It

also shows that the total interest is the sum of the interest owed on both credit cards.

Goldstone et al. (2009) have advocated that scientific and mathematical reasoning

should be grounded in perceptual processing. They refer to the research of Goldstone and

Son (2005) as demonstrating the perceptual basis of successful transfer across two complex

visual simulations based on the same (isomorphic) principles. Our instructional and

practice problems included ore problems that are isomorphic to the credit card problems.

Isomorphic problems have the identical equation structure but different story content, as

shown by the corresponding interest and ore types in Appendix 1. The bar graph repre-

sentation was the same for the ore problems in which the amount of iron or gold was shown

as a percentage of the mined ore. The same diagrammatic depiction of the interest and ore

problems may facilitate transfer between the two sets of problems.

Encourage interactive learning

Chi (2009) proposes a conceptual framework that she uses to support the hypothesis that

interactive learning is more effective than constructive, active, and passive learning.

Interactive learning includes feedback and guidance provided by a computer system or

pedagogical agent. Moreno and Mayer (2007) introduced a special issue on interactive

learning environments by referring to five types of interactivity. One type—manipulat-

ing—is a central feature of the interactive graphics condition.

Constructing the Total Interest bar for the arithmetic problems and adjusting the

unknown variable for the algebra problems, however, does not provide the extensive

feedback that is a central feature of the CT. The tutor instruction provides the most
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interactive learning followed by the interactive-graphics condition. The static-graphics and

static-table conditions do not allow for interactivity.

Create multiple memory codes

An advantage of the two graphics conditions is that the equation is shown both visually and

symbolically. According to dual coding theory (Paivio 1986) two memory codes should

provide a better memory of the solution. Mayer’s (2001) research provides extensive

support for the multimedia principle that students learn more from pictures and words than

from words alone.

An advantage of the interactive graphics condition over the static graphics condition is

that manipulation provides a third (motor) code that can also enhance memory (Engelkamp

1998; Reed 2006, 2008). There is extensive evidence provided by Engelkamp and others

that enactment aids recall. The interactive graphics condition supports visual, verbal, and

motor codes; the static graphics condition supports visual and verbal codes; and the static

table and tutor conditions support verbal codes. Additional memory codes should be

particularly advantageous during delayed testing.

In conclusion, the four instructional conditions have different strengths summarized in

Table 1 that make it difficult to make predictions about their relative effectiveness. This

study is therefore exploratory.

Method

Participants and context

A total of 128 students enrolled in CT Algebra courses in three Pittsburgh area high

schools participated in the project. Students completed the study activities as part of their

sessions in their computer labs that ran the Algebra CT software (Koedinger et al. 1997).

The study involved mixture problems that can be represented by general linear models of

the form ax ? by = c that are discussed in Units 15–16 of the Algebra I CT curriculum.

Students at two of the schools were enrolled in CT Algebra II. This course begins with a

two-chapter review of linear functions, which these students had completed shortly before

participating in this study in the late fall. Students in these courses were in the CT lab two

class periods per week. Students at the third school were enrolled in the second year of a

two-year Algebra I sequence. Students in this course had also completed work on linear

functions and were in the CT lab one double-period per week.

Design and procedure

The study consisted of three consecutive computer lab sessions that were typically sepa-

rated by either several days or 1 week. Students received eight arithmetic (mixture)

problems during session 1 that were used to help prepare them (Moreno and Mayer 2007)

for the eight algebra word problems in session 2. Session 3 contained a variety of test

problems to measure robust learning.

We based our decision to begin with arithmetic, rather than algebra, problems in session

1 on the assumption that arithmetic problems are typically easier than algebra problems,

as proposed in Heffernan and Koedinger’s (1998) developmental model of algebra
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symbolization. Performance of high school students on a variety of arithmetic and algebra

problems supported their model. The arithmetic problems therefore helped prepare stu-

dents for the more demanding algebra problems in session 2.

The students in each of the three schools were randomly assigned to one of the four

instructional conditions. In each of the first two sessions, students in the three worked

example conditions studied worked example solutions of the four odd-numbered instruc-

tional problems and solved the four even-numbered practice problems with the CTs.

Students in the CT condition solved all eight problems using the CT. The even-numbered

CT practice problems, which were common to all four groups, served both as learning

experiences for all the students and as evaluations of the effectiveness of the four different

learning activities by determining how much assistance was required for further learning.

Both instructional and practice problems were presented on a computer to ensure fidelity of

treatment across training conditions.

Learning materials

Four types of mixture problems were developed, two arithmetic types, for use in session 1,

and two algebraic types for use in session 2. Two pairs of equivalent instructional–practice

problems were developed for each of the four problem types, for a total of 16 problems.

One pair of each type involved interest payments on two credit cards, as displayed in the

figures. The other pair of each type consisted of mining problems, which involved

extracting metal from two ores of different quality (metal content). In all 16 problems, the

goal is to generate an equation as a mathematical model of the problem situation (but not to

solve the resulting equation). Appendix 1 shows the initial (instructional) problems for

each of the eight problem pairs. The four problems of each type were presented in suc-

cession, in the order shown in Appendix 1. Within each type, students completed the pair

of equivalent interest problems first, followed by the pair of equivalent ore problems.

We selected both interest and ore problems to provide students with the opportunity to

apply general linear models in two different domains. Reed (1987) found that students had

difficulty in both mapping quantities and constructing equations across isomorphic ver-

sions of mixture problems, including ore and interest problems. We therefore hoped that

instruction on interest problems would help students construct equations for ore problems.

The displayed graphic solutions follow two principles of multimedia design based on the

research of Sweller (2003) and Mayer (2001; Moreno and Mayer 2007). The first is the

proximity principle that different media be closely integrated in space. Text explanations

are therefore placed above each of the bars and the equation appears directly below the bars

(Fig. 2). The second principle, minimize cognitive load, is achieved by presenting the

solution in three segments. After seeing the problem statement, students successively press

the Continue arrow to see the (1) first bar with explanation, (2) second bar with explanation,

and (3) third bar with explanation and equation. The text above the table in the static-table

worked examples also occurred in three segments (Fig. 1). Gerjets et al. (2004) presented

evidence showing that such modular presentation of worked examples improves learning.

During session 1, students in the interactive graphics group clicked on and moved

copies of the interest bars (the darker green parts of the stacks) to construct the Total

Interest bar on the right side of the equation. The first interest bar and its copy have a red

border when clicked and the second interest bar and its copy have a blue border when

clicked. The borders enable students to distinguish the two quantities in the Total Interest

bar and relate them to their referents on the left side of the equation. Clicking on bars also

changes the color of terms in the equation (red for the first term and blue for the second
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term) to dynamically link the graphics to the equation (Berthold and Renkl 2009). Students

could not advance in the instructional sequence until they completed these manipulations.

During session 2, students in the interactive graphics group changed the value of the

unknown variable by raising and lowering the height of this bar for each of the four worked

examples. Varying this bar enabled them to see changes in the height of other bars and in

the values in the equation. Only the height of the bar on the right side of the equation (total

interest or ore) changed for the first two problems but both of the other bars changed for the

last two problems because the unknown variable occurs twice in these equations (such as

D and $1405 - D). Students were instructed to restore the bar to its initial height following

this exploration.

We implemented the graphics worked examples by integrating the graphics capabilities

of the Animation Tutor (Reed 2005) with the CT. This software integration took longer

than anticipated so we were only able to provide interactive graphics for the first worked

example in session 1. The interactive graphics group studied static graphics for the

remaining three worked examples so we are unable to draw conclusions about interactive

graphics for the arithmetic word problems. In session 2, students in the interactive graphics

group adjusted the bar representing the unknown variable in all four worked examples so

we are able to evaluate the effect of manipulations for algebra word problems. Readers can

perform these manipulations by downloading the Mixtures module from the Animation

Tutor web site (http://www.sci.sdsu.edu/mathtutor/index.htm).

Test materials

Four measures of student learning from the 16 on-line problems were developed, an

immediate test of students’ algebra problem solving knowledge and three tests of the

‘‘robustness’’ of student learning. These three robust learning tests included (a) a retention

test of problem solving knowledge, (b) a transfer test of problem solving knowledge, and

(c) a test of students’ explanations of mathematical model structure.

Session-2 problem-solving test

This paper-and-pencil test consisted of one interest and one ore problem that were

equivalent to the two types of algebra problems presented in the Session-2 on-line envi-

ronments. Students were asked to generate an equation to model the situation in each

problem. Two test forms were developed so each form could serve as the pretest for half

the students who then switched to the other form in the posttest.

Session-3 retention test

This paper-and-pencil test consisted of four problems that were equivalent to the four types

of problems students had encountered in the on-line learning environments. Students were

asked to generate an equation to model the situation for two interest and two ore problems.

Session-3 transfer test

This paper-and-pencil test consisted of one arithmetic interest problem and one algebra

ore problem with novel situations. Students were asked to model these situations with

equations that also had novel structures.

10 S. K. Reed et al.
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Session-3 model component descriptions

The CT Model Analysis Tool (Corbett et al. 2000, 2003, 2007) was employed to ask

students to explain the structure of the arithmetic and algebraic models. As displayed in

Appendix 2, each problem presents a problem description and a mathematical model of the

situation. Students select entries from menus to describe what each hierarchical component

of the symbolic model represents in the problem situation. As in all CTs, students received

feedback on each problem step, could request advice on each step, and were required to

complete a correct solution to the problem. Four Model Analysis problems corresponded to

the four problem types that students had solved during the prior two sessions.

Results

All tasks, in both learning and testing, required constructing an equation so correct solu-

tions refer to correct equations rather than to correct numerical answers. We excluded 4

students from the data analysis for missing the second session and seven students because

they talked to others as they worked on the problems. The excluded students included three

from the CT group, one from the ST group, three from the SG group, and four from the IG

group. Of the remaining 117 students, there were 29 in the CT condition, 29 in the static

table condition, 28 in the static graphics condition and 31 in the interactive graphics

condition. Some of the evaluations are based on fewer than the remaining 117 students

because of missing students or missing data. We report the sample size for each analysis.

The total number of missing cases, including the 11 excluded from all analyses, was 15

from the CT group, 11 from the ST group, 14 from the SG group, and 15 from the IG

group. Missing cases are therefore fairly uniformly distributed across groups.

Task times (sessions 1 and 2)

Each of the learning sequences in sessions 1 and 2 consisted of four pairs of problems in

which an initial worked example (or CT problem in the control condition) was followed by

an equivalent CT practice problem. The instructional software did not record when stu-

dents began to study the first worked example so we do not know the amount of time they

spent working on the first pair of problems. We were able to record the amount of time

spent on each of the six problems in the second, third, and fourth pairs. We excluded 13

students (four CT, three static table, three static graphics, three interactive graphics) from

analyses of the first session and 16 students (six CT, two static table, four static graphics,

four interactive graphics) from analyses of the second session because of missing data.

An ANOVA of the learning times for the three pairs of arithmetic problems during the

first session revealed significant differences across the four instructional groups, F(3,

100) = 6.88, p \ .001, partial g2 = .171. Bonferroni comparisons revealed that the CT

group differed from each of the three worked example groups at a p = .02 level or lower,

and the three worked example groups did not differ from each other. The CT group took

more time per problem than the static table group (M = 33.27, SD = 10.86), static

graphics group (M = 36.88, SD = 11.07), and the interactive graphics group (M = 46.83,

SD = 10.86). Instruction and practice problems followed immediately after the conclusion

of the previous problem so the total time spent on these problems is the total instructional

time.
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These times, however, hide a highly significant problem 9 group interaction,

F(3,100) = 93.12, p \ .001, partial g2 = .737, that is shown in Table 2. For session 1, the

three worked example groups spent an average of 47 s studying the initial worked

examples and 152 s solving the subsequent CT practice problems. The CT group averaged

179 s solving the CT instructional problems and 98 s solving the subsequent CT practice

problems. The CT group was able to gain some time on the worked example groups on the

practice problems but nonetheless required more total time because of the time required to

solve the instructional problems.

An ANOVA of the learning times for the three pairs of algebra problems during the

second session revealed an identical pattern. There were again significant differences in

learning times for the four instructional groups, F(3, 97) = 6.33, p \ .001, partial

g2 = .164. Bonferroni comparisons revealed that the CT group differed from each of the

three worked example groups at a p = .02 level or lower, and the three worked example

groups did not differ from each other. The CT group took more time per problem than the

static table group (M = 26.52, SD = 8.96), the static graphics group (M = 37.76,

SD = 9.05), and the interactive graphics group (M = 28.17, SD = 8.88).

The problem 9 group interaction, F(3,97) = 90.19, p \.001, partial g2 = .736, was

again significant, as revealed in Table 2. The three worked example groups spent an

average of 37 s studying the worked examples and 160 s solving the subsequent CT

practice problems. The CT group spent 169 s solving the CT instructional problems and

90 s solving the CT practice problems.

A caveat is that the study times did not include the time to study the first instructional

problem. It is possible that the first problem may have been more challenging in some

instructional conditions than in others. For instance, the initial demands posed by an

unfamiliar interactive approach (the IG condition) could be more time consuming than for

a familiar interactive approach (the CT) or for a noninteractive approach (the ST and SG

conditions).

CT practice problems (sessions 1 and 2)

Our next comparison of the four instructional methods examined the number of errors and

the number of requested hints on the four CT practice problems in sessions 1 and 2.

Figure 4a shows the number of errors made by the instructional groups on the Session-1

arithmetic problems. There was a significant effect of instruction, F(3,105) = 10.05,

p \ .001, partial g2 = .223, in which Bonferroni post hoc tests revealed that the CT

instruction was more effective than the worked examples, which did not differ among the

three groups. The CT group made fewer errors per problem than the static table group

Table 2 Average learning time per problem (seconds) for sessions 1 and 2

Learning conditions Session 1 times Session 2 times

Instruct Practice Instruct Practice

Cognitive Tutor 179 (6.5) 98 (11.3) 169 (5.3) 90 (10.7)

Static table 48 (6.2) 163 (10.9) 40 (5.0) 166 (10.1)

Static graphics 49 (6.5) 154 (11.3) 32 (5.1) 152 (10.3)

Interactive graphics 44 (6.2) 139 (10.9) 40 (4.9) 163 (9.9)
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(M = 3.21, SD = .74), the static graphics group (M = 3.79, SD = .76), and the interactive

graphics group (M = 2.81, SD = .75).

There was also a significant effect of problem, F(3, 315) = 23.18, p \ .001, partial

g2 = .181, and a significant problem 9 group interaction, F(9, 315) = 3.24, p = .001,

partial g2 = .085. Figure 4a reveals that all the worked-example groups performed rela-

tively well on problems 2 and 4 (which are isomorphic versions of problems 1 and 3). The

findings reveal that practice on the credit card problems helped these students solve the

isomorphic ore problems while students in the CT condition performed well on all

problems.

The pattern of errors across the four algebra problems during the second session is

almost identical (Fig. 4b). These data are based on the same 117 students from the first

Fig. 4 Effect of instruction on CT errors on the four (a) arithmetic and (b) algebra practice problems
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session except one student who made 259 errors on one problem was eliminated as an

outlier. There was a significant effect of instruction, F(3,104) = 5.82, p = .001, partial

g2 = .144, in which Bonferroni post hoc tests revealed that the CT instruction was more

effective than the worked examples, which did not differ among the three groups. The CT

group made fewer errors per problem than the static table group (M = 4.18, SD = 1.02),

the static graphics group (M = 3.79, SD = 1.04), and the interactive graphics group

(M = 3.16, SD = 1.03).

There was also a significant effect of problem, F(3, 312) = 37.39, p \ .001, partial

g2 = .264, and a significant problem 9 group interaction, F(9, 312) = 2.31, p \ .05,

partial g2 = .063. As occurred for the arithmetic word problems, students who received

worked examples reduced their errors on the isomorphic ore problems. Students in the CT

group made few errors on all problems.

Students could request hints from the CT as they filled out the table and constructed the

equation so it is necessary to check whether fewer errors were caused by an increase in

requests for hints. Figure 5a shows that students who received CT instruction requested

fewer hints than the students who received worked examples, F(3,105) = 10.66, p \ .001,

partial g2 = .233. There was also a significant effect of problem, F(3, 315) = 70.32,

p \ .001, partial g2 = .401, and a significant problem 9 group interaction, F(9, 315) =

4.15, p \ .001, partial g2 = .106. The interaction in this case is primarily caused by the

steep drop in hint requests between the first and second problems (Fig. 5a) for students

who studied the worked examples. A comparison of Figs. 4a and 5a reveals that fewer

errors were typically accompanied by fewer requests for hints. The one exception is that

students did not reduce their requests for hints on the final problem although they did reduce

their errors.

Figure 5b reveals that students in the CT group also requested fewer hints for the

algebra problems, F(3,105) = 4.18, p \ .01, partial g2 = .107. There was also a signifi-

cant effect of problem, F(3, 315) = 32.73, p \ .001, partial g2 = .238, but the prob-

lem 9 group interaction was not significant, F(9, 315) = 1.89, p [ .05, partial g2 = .050.

Figure 5b reveals that all groups requested more hints for the third problem in which the

unknown variable occurred twice in the equation.

In summary, solving practice problems on the Algebra CT was facilitated by also

solving the preceding instructional problems on the Algebra CT. Students who received

worked examples made more errors and requested more hints than students who solved all

problems on the CT. These findings generalized across the three high schools; there were

no significant main effects or interactions with the schools for the data displayed in

Figs. 4a, b, 5a and b.

A central construct for designing instruction is transfer-appropriate processing.

According to this construct, instructional task should closely duplicate the test task so

students learn the information that appears on the test. For example, presenting information

in a problem-oriented, rather than a fact-oriented, manner helped students use that infor-

mation to solve riddles (Adams et al. 1988). Transfer-appropriate processing therefore

predicts that solving the initial instruction problems on the CT should help students solve

the corresponding CT practice problems on the CT.

These findings are consistent with transfer-appropriate processing in which solving

problems on the CT helps students solve subsequent problems on the CT. It is unclear,

however, whether the advantage of the CT over worked examples would generalize to

constructing algebra equations on a paper-and-pencil posttest given at the end of the

second session.
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Paper-and-pencil pre- and posttest (session 2)

The superior performance of the CT group on the practice problems did not generalize to

the paper-and-pencil posttest problems. Accuracy in constructing equations increased from

7% on the pretest to 37% on the posttest for the CT group, from 7 to 28% for the static

table group, from 4 to 34% for the static graphics group, and from 7 to 28% for the

interactive graphics group.

We analyzed these results in an ANOVA in which test (pretest, posttest) and problem

(1, 2) were within-subject variables and instruction (static graphics, interactive graphics,

static table, tutor) and school (a–c) were between-subject variables. There was a significant

learning effect in which the probability of a correct response increased from .06 on the

pretest to .32 on the posttest, F(1,105) = 52.14, p \ .001, partial g2 = .332. There were

Fig. 5 Effect of instruction on CT hints on the four (a) arithmetic and (b) algebra practice problems
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also significant differences between the two problems, F(1, 105) = 8.35, p \ .01, partial

g2 = .074 and the three schools, F(2, 105) = 3.55, p \ .05, partial g2 = .063. The effect

of instruction was not significant, F(3, 105) \ 1, p [ .05, partial g2 = .012, nor was the

instruction 9 test interaction, F(3, 105) \ 1, p [ .05, partial g2 = .017. There was an

interaction of school with instruction, F(6, 105) = 2.60, p \ .05, partial g2 = .129, but the

school 9 instruction 9 test interaction was not significant, F(6, 105) \ 1, p [ .05, partial

g2 = .042. The four instructional conditions therefore produced similar gains from pretest

to posttest across the three schools.

In summary, although the CT instruction was more helpful than worked examples for

solving CT practice problems on the tutor during the learning session, the four instructional

groups experienced comparable gains on the paper-and-pencil posttest.

Delayed test, transfer, and model analysis (session 3)

Results for the three tests of robust learning in session 3, delayed recall, transfer, and

conceptual understanding, are displayed in Table 3. Fifteen students (two CT, five static

table, four static graphics, four interactive graphics) who participated in the initial two

instructional sessions were unavailable for the third session so these data are based on 102

students. Students used paper and pencil to construct equations for six word problems

representing four problems that were equivalent to instructional problems and two transfer

problems. Students performed better on the training than on the transfer problems, F(1,

90) = 21.81, p \ .001, partial g2 = .195. However, there were no significant differences

among the four instructional groups, F(3, 90) \ 1, p [ .05, partial g2 = .006, on the

training and transfer problems.

The paper-and-pencil robust learning evaluation was followed by the CT Model

Analysis task described in Appendix 2 in which students were asked to identify the

meaning of the numbers, symbols, and terms in the equations. The model analysis required

identifying a total of 31 equation parts across the four problems. The number of correctly

identified parts on the first attempt was 16.36 (SD = 6.56) for the static graphics group,

16.13 (SD = 7.36) for the interactive graphics group, 18.07 (SD = 4.54) for the static

table group, and 16.20 (SD = 5.49) for the CT group. An ANOVA revealed that there were

no differences among the four groups, F(3, 97) \ 1, p [ .05.

Although the ANOVA revealed no significant differences, we noticed that the static

table group performed consistently well in identifying components, showing the highest

accuracy on 18 of the 31 components (compared to five for each of the graphics groups and

three for the CT). Insignificant parametric analyses can be caused by high within-group

variance as revealed by the high SDs. We therefore performed a nonparametric analysis

by rank ordering the four groups for each of the 31 components in order to conduct a

Friedman two-way ANOVA across components (Siegel 1956). This analysis was signifi-

cant, v2(3) = 20.00, p \ .001. The sum of the ranks was 51.5 for the static table group, 77

Table 3 Robust learning mea-
sures: retention, transfer, and
model analysis accuracy

Learning conditions Retention
%correct

Transfer
% correct

Model analysis
% correct

Cognitive Tutor 32 15 52

Static table 26 13 58

Static graphics 29 21 53

Interactive graphics 29 18 52
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for static graphics, 89 for interactive graphics, and 92.5 for the CT. The range of the sums

could vary from 31 (if a group always scored the highest across each of the 31 compar-

isons) to 124 (if a group always scored the lowest across each of the 31 comparisons).

Although the parametric ANOVA across participants revealed a nonsignificant difference,

a nonparametric ANOVA across items revealed instructional differences in the ability to

correctly identify the components of the equations.

Discussion

Cognitive Tutor versus worked examples

The goal of this study was to evaluate four instructional conditions distinguished by three

different kinds of worked example solutions (static graphics, interactive graphics, static table)

and a tutor that guided students through the same arithmetic and algebra modeling problems.

We proposed that these instructional approaches differ in their relative strengths of providing

declarative knowledge, organizing information in a table, organizing information in a dia-

gram, encouraging interactive learning, and creating multiple memory codes.

In order to evaluate these different strengths, it is necessary to use a variety of methods.

Our evaluations included (1) the time spent on instructional and practice problems, (2) the

number of errors and requested hints while using the CT to construct equations for practice

problems, (3) improvement on a paper-and-pencil pre-posttest, (4) the number of correct

equations on a delayed test that measured both learning and transfer, and (5) the number of

correctly identified components of these equations.

The analyses of student performance on the sixteen instructional and practice problems

yielded two principal results. First, we found instructional effects on constructing equations

for the CT practice problems. Students who used the CT to construct equations for the

instructional problems, rather than study the solutions, made fewer errors and requested

fewer hints in constructing equations for the CT practice problems. This finding is con-

sistent with transfer-appropriate processing, in which increasing the similarity between the

instruction and practice situations enhances practice performance (Adams et al. 1988), and

with Chi’s (2009) hypothesis that interactive processing is more effective than passive

processing. All students had been using the CT in lab sessions, and the result persisted

through the final practice problem in each session, so the finding is unlikely caused by

general unfamiliarly with using the CT. Rather, it was likely caused by providing hints and

correcting errors on the preceding equivalent instructional problem. This facilitation effect,

however, was achieved at a cost. The second main result for the learning sessions is that

students took longer to solve the instructional problems on the CT so took more time to

complete the learning sessions.

However, the greater time on task in learning for the CT group and the greater success

of the CT group in solving the CT practice problems did not translate into greater posttest

problem-solving accuracy. Instead, there were no reliable differences among the four

groups on pretest–posttest learning gain in session 2. This finding is consistent with pre-

vious studies in other domains (chemistry, geometry) that found that incorporating worked

examples into tutor-supported problem solving can increase learning efficiency—reducing

the learning time to achieve similar learning gains on problem solving tests.

On the whole, there were also no differences among the four groups on the robust

learning tasks designed to measure retention of problem-solving knowledge and transfer to

novel problems. The only difference among the four learning conditions emerged in the
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model analysis task in which students who received the static table worked examples were

more successful than the students in any of the other three conditions in identifying the

meaning of the hierarchical equation components. Among the three worked-example

conditions, this finding is consistent with transfer-appropriate processing because the

column and row labels in the tables (Fig. 1) associate verbal descriptions with the equation

components, while the graphic representations do not.

The difference between the static-table worked-example and CT problem-solving

condition for this robust learning task is particularly interesting, because both of these

representations employ the same table format with the same verbal labels, but in contrast

with Chi’s (2009) hypothesis and case studies, the relatively passive worked examples are

more successful than interactive CT problem solving. This appears to be a case in which

transfer-appropriate processing trumps interactive processing. The chief activity in the

static table worked examples is to read further verbal descriptions of how to represent

components of the problem situation in a mathematical model, while the chief activity in

CT problem solving is to actually construct the model. The relatively passive verbal

activity appears to transfer more readily to the model analysis task than does the interactive

equation construction activity.

The immediate problem-solving test and transfer test results are consistent with this

transfer-appropriate analysis. There were no differences between static table condition and

CT conditions on these two tests. Students in both conditions had relevant experience in

writing mathematical equations during learning, in the CT practice problems, and that

knowledge transferred equivalently to the two types of model generation tests. The benefit

of static table worked examples only emerged when students were asked to perform the

verbal model analysis task.

It should also be noted that the learning outcomes were modest for all instructional

conditions, with students averaging 32% correct on the immediate problem-solving post-

test during the second session. These were challenging problems for the students, based on

their pretest scores and a likely cause of the modest outcomes is that students received only

two training sessions. That students achieved 25 percentage-point learning gains after

devoting 12–20 min to each problem type is promising and more time on task would seem

warranted. Another likely cause is that students did not participate in more conceptually

oriented supplemental activities such as providing self explanations (Berthold et al. 2009).

Variations in worked examples

This study strongly replicates earlier findings in mathematics and chemistry that incor-

porating worked examples with tutor-supported problem solving can improve learning

efficiency. A difference between our study and previous studies that combined the CT with

worked examples is that we compared worked examples that either incorporated a static

table, static graphics, or interactive graphics. What can be concluded about which forms of

worked examples to include? As indicated in Table 1 these worked examples differ along a

number of dimensions. Differences in representations can have both advantages and dis-

advantages for learning (McNeil et al. 2009). Ainsworth (2006) has therefore proposed that

an advantage of using multiple representations is that they can complement each other by

combining different strengths.

A difference between research and practice is that different instructional approaches,

such as the three variations of worked examples, are typically competitors in research but

can become collaborators in practice. For example, Reed (2005) discusses how he com-

pared the relative effectiveness of instruction based on either simulations, computations, or
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conceptual reasoning in research (Reed and Saavedra 1986) but integrated the three types

of instruction in designing the Animation Tutor: Average Speed module.

Reed and Hoffman (2011) also used an integrated instructional approach in designing

the Animation Tutor: Mixtures module that can be downloaded from the Animation Tutor

web site http://www.sci.sdsu.edu/mathtutor/index.htm. The module combines the com-

plementary strengths of interactive graphics (interactive learning, multiple memories) and

static tables (mapping concepts to mathematical symbols). The worked examples in the

Mixture module consist of the interactive graphics instruction (Fig. 2) for the algebra

problems in Appendix 1. Each of the worked examples is followed by an equivalent test

problem that requires the computation of a numerical answer. Each test problem is then

followed by a detailed solution based on the interactive table instruction (Fig. 1).

The interactive graphics condition might have been more effective if students had to

explain why manipulating one bar does or does not affect other bars. Interventions that

encourage self explanations have enhanced the effectiveness of worked examples

(Atkinson and Renkl 2007; van Gog et al. 2004), including the integration of multiple

representations (Berthold et al. 2009). A challenge, however, in comparing different

instructional methods is that self-explanations would differ across methods. We therefore

decided that initially establishing a ‘‘baseline’’ comparison without differential scaffolding

would be more valuable in our initial research.

However, withholding scaffolding is not necessary in practice. The interactive graphics

instruction in the Animation Tutor: Mixture module therefore requires that students explain

why adjusting one bar influences other bars to encourage them to reflect conceptually on

their manipulations. After receiving the worked examples for the first two algebra prob-

lems in Appendix 1, students type in an answer to the questions:

You were able to vary the variable by raising and lowering one of the bars. What

other bar changed as you raised and lowered this bar? Explain how and why this bar

changed?

Similar questions followed the last two worked examples in Appendix 1 in which

varying the variable changed the height of both of the other bars. The instruction provided

detailed explanations following students’ self-explanations.

Although interweaving interactive graphics with static table instruction and eliciting

conceptual explanations are promising additions to the worked-example instruction, there

is a need for continued interweaving of instructional design with research to assess

instructional modifications (Reed 2005). Prompting self-explanations is not always

effective (Gerjets et al. 2004). Interactions between design parameters, the functions of

multiple representations and the cognitive tasks (Ainsworth 2006) should keep instruc-

tional researchers and designers busy in enhancing and applying knowledge.

Appendix 1: Worked example problems

Session 1

Arithmetic type 1 interest

1. You have a MasterCard with a balance of $532 at a 21% interest rate. You also have a

Visa credit card with a balance of $841 at a 16% interest rate. How much money are

you paying in total annual interest?
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:21 � $532 þ :16 � $841 ¼ Total Interest

Arithmetic type 1 ore

2. The Acme Mine yielded 67 tons of low-grade (35% iron) ore in the first year of

operation. In the second year of operation, they yielded 62 tons of high-grade (75%

iron) ore. How much pure iron did the company mine in two years?

:35 � 67 tons þ :75 � 62 tons ¼ Total Iron

Arithmetic type 2 interest

3. At the end of her first year of using credit cards, Shelly owed $475 in total interest on

her MasterCard and Visa accounts. Her MasterCard charges 19% interest and her Visa

Card charges 22% interest. She paid the interest on her Visa Card debt of $1100. How

much interest does she still owe on her MasterCard?

$475� :22 � $1100 ¼ Remaining Interest

Arithmetic type 2 ore

4. A jeweler ordered 40 oz of pure gold. They supplier extracted the 40 oz from sylvanite

gold ore that contains 28% pure gold and calaverite gold ore that contains 40% pure

gold. If the supplier used 55 oz of calaverite ore, how much gold came from the

sylvanite ore?

40 ounces� :40 � 55 ounces ¼ Gold from Sylvanite Ore

Session 2

Algebra type 1 interest

1. You have an American Express credit card with a balance of $715 at an 11% interest

rate and a Visa credit card with a 15% interest rate. If you pay a total of $165 in annual

interest, what is the balance on your Visa card?

:11 � $715 þ :15 � V ¼ $165

Algebra type 1 ore

2. The Acme Mine yielded 67 tons of low-grade (35% iron) ore. How many tons of high-

grade (75% iron) ore will they need in order to yield 70 total tons of pure iron?

:35 � 67 tons þ :75 � H tons ¼ 70 tons

Algebra type 2 interest

3. You have a total balance of $1405 on two different credit cards— an American

Express credit card with a 12% interest rate and a Discover credit card with a 24%
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interest rate. If you owe a total of $224 in annual interest, what is your balance on the

Discover card?

:24 � D þ :12 � $1405� Dð Þ ¼ $224

Algebra type 2 ore

4. You have 51 oz of gold ore. The sylvanite gold ore contains 28% pure gold and the

calaverite gold ore contains 40% pure gold. If you have 16 total ounces of pure gold,

how many ounces of calaverite gold ore do you have?

:40 � C ounces þ :28 � 51� Cð Þ ounces ¼ 16 ounces

Appendix 2

CT Model Analysis problems

Each model analysis problem presents both a real-world situation and a symbolic model of

the situation. Students are asked to describe what each hierarchical component of the

symbolic model represents in the problem situation.
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Answers

Equation part English description

L The number of tons of low-grade ore they have

.32 The percent of copper in the low-grade ore

0.32L The number of tons of pure copper in their low-grade ore

91 The total tons of copper ore they have

(91 - L) The number of tons of high-grade ore they have

.82 The percent of copper in the high-grade ore

.82(91 - L) The number of tons of copper in their high-grade ore

0.16L ? .82(91 - L) The total number of tons of pure copper they have

42 The total number of tons of pure copper they have
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