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Abstract. Previous research and development with cognitive tools has been limited by
an inadequate conceptualization of the complexity underlying their nature and af-

fordances for supporting learning and performance. This paper provides a new per-
spective on cognitive tools through the lens of the theories of distributed cognition
and expertise. The learner, tool, and activity form a joint learning system, and the
expertise in the world should be reflected not only in the tool but also in the learning

activity within which learners make use of the tool. This enhanced perspective is used
to clarify the nature of cognitive tools and distinguish them from other types of
computer tools used in learning contexts. We have classified cognitive tools consid-

ering how expertise is classified: domain-independent (general) cognitive tools,
domain-generic cognitive tools, and domain-specific cognitive tools. The implications
are presented in reference to research, development, and practice of cognitive tools.

The capabilities of cognitive tools should be differentiated from those of the human,
but regarded as part of the system of expertise. Cognitive tools should be accompa-
nied by appropriate learning activities, and relevant learner performance should then

be assessed in the context of tool use.

Keywords: cognitive tools, distributed cognition, expertise, human–computer interac-

tion, learning activity, learning technology, theoretical framework

Introduction

In the past, proponents of educational technology have argued that
there simply were not enough computers, software, or support in
classroom to have significant impact on educational outcomes. Over
the last decade, however, the ratio of students to computers has stea-
dily improved, increasingly powerful software packages have become
widely available, and assistance for teachers and faculty has been
increased through the introduction of technology coordinators in
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K-12 schools and additional technology support personnel on college
and university campuses (Becker, 2000; Pittinsky, 2003). Despite enor-
mous increases in technological infrastructure and support, it still
remains difficult to find evidence of significant impact of computers
on teaching and learning at any level of education (Cuban, 2001).

Many of the problems with how people view, develop, use, and
study computers in education stem from thinking about computers
within the framework of long-established mainstream educational
practices. As described in Jonassen and Reeves (1996), much of the
disappointing results of the application of computers in education can
be attributed to a misguided emphasis on using technology as some-
thing that students should learn ‘‘from’’ in a fashion similar to how
they might learn ‘‘from’’ classroom teachers, textbooks, or television.
Although the conceptualization of using computers as tutor, tool, and
tutee was proposed a quarter century ago (Taylor, 1980), researchers
and practitioners have more recently attempted to employ computers
as ‘‘cognitive tools’’ for learners to learn ‘‘with’’ while they are
solving problems or completing tasks (Lajoie and Derry, 1993b;
Lajoie, 2000). Unfortunately, immature use of computers as cognitive
tools has also led to disappointing results. Instead of using computers
as tools to learn ‘‘with,’’ teachers focused on helping their students to
master the tools themselves. This approach has been justly criti-
cized as schools trying to teach ‘‘hammer’’ instead of ‘‘carpentry’’
(Oppenheimer, 1997).

Cognitive tools to date: issues and a need

The scholarship of cognitive tools is founded on constructivist
beliefs about how learning occurs and how learning environments
should be designed accordingly. Although complex and rife with
controversy (Phillips, 2000), constructivism in education can be
boiled down to the concept that learners actively construct their
own knowledge rather than passively receive it (von Glasersfeld,
1995). Constructivist learning requires constructing our meanings
through reflection and continuously reconsidering our existing inter-
pretations of the world (Salomon and Almog, 1998). Although cog-
nitive constructivists such as von Glasersfeld (1995) emphasizes
individual construction of meaning, social constructivists ‘‘reject the
notion that the locus of knowledge is in the individual’’ (Prawat,
1996, p. 217), viewing knowledge creation as more of a shared
experience than an individual one.
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The results of the cognitive activities of learners should be the
consequences of constructing knowledge ‘‘with’’ computer tools rather
than learning ‘‘from’’ computer tutorials in a manner previously struc-
tured by someone else. The focus on the use of computer tools for cogni-
tive activities for learners to think ‘‘with’’ is derived from the theory of
distributed cognition (Salomon, 1993c). Distributed cognition implies
that learners are enabled to think deeply and create certain types of arti-
facts that represent their thinking by working with cognitive tools.

In general, physical tools are utilized to enhance the performances
of human activities (e.g., digging a hole in the ground) or to do tasks
otherwise impossible (e.g., examining cell structures of fruit flies).
Tools for cognitive activities are comparable to the physical tools that
are invented for everyday human activities in that they change and
enhance our way of doing mental activities, create new ones, and are
steadily improved as they are adopted and used by more and more
people. A good example of the development, effects, and refinement
of cognitive tools is the way that mathematical symbols have evolved
throughout history.

The conceptualization of computers as cognitive tools has been
refined and the development of actual cognitive tools has progressed
greatly in recent years (Nickerson, 1993). Unfortunately, researchers
have used different names to signify the application of computers to
advanced mental activities, such as cognitive technologies, technologies
of the mind, cognitive tools, and mindtools (Jonassen and Reeves,
1996). Salomon et al. (1991) describe computers as ‘‘partners in cogni-
tion’’ that extend human cognitive capabilities. Given the abstractness
of the term, it is hardly surprising that researchers and theorists
proposing these new ideas about cognitive tools have expressed diverse
views (Lajoie, 1993; Salomon, 1993a; Jonassen, 1996).

These different labels share similar connotations with both physical
tools (e.g., hammer) and intangible mental tools (e.g., symbols) in
that they help by enhancing or extending human capabilities
(e.g., Falbel, 1991; Salomon et al. 1991; Lajoie, 1993; Salomon,
1993b; Jonassen and Reeves, 1996). At the simplest level, cognitive
tools can be defined as aides for cognitive tasks such as complex cal-
culations (Lajoie, 1993). With more elaboration, Jonassen and Reeves
(1996) characterized cognitive tools as ‘‘technologies that enhance the
cognitive powers of human beings during thinking, problem solving,
and learning’’ (p. 693). By enhancement, they meant that people can
have deeper, more reflective thoughts by distributing mundane tasks
to the tools (e.g., calculations), or are able to perform cognitive tasks
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impossible without such tools (e.g., modeling complex interactions)
(Jonassen and Reeves, 1996).

Salomon (1993a) added more conditions to explain cognitive tools
by suggesting that they are open-ended instruments that students
operate and manipulate to help themselves engage in constructive
thinking, allowing them to think beyond their cognitive limitations.
The ‘‘open-endedness’’ is important in Salomon’s definition because it
signifies that students are the ones who actively make decisions about
their mental processes and the need for cognitive support.

The movement to use computers as cognitive tools or partners in
education over the last decade has not progressed to the degree that
has long been desired by advocates such as Lajoie (1993), Jonassen
(1996), Papert (1993), Salomon (1993c), and others. Perhaps cognitive
tools researchers should be more mindful and reflective in defining
what makes a computer program a cognitive tool. One prominent
issue is whether the nature or the use of a tool makes it a cognitive
tool. Lajoie and Derry (1993a) introduced cognitive tool initiatives
that basically have three different natures: modelers of learners’ think-
ing, non-modelers, and initiatives that combine the two. Others have
discussed computer tools as specially designed cognitive ‘‘partners’’
(Salomon, 1993b). By contrast, Jonassen and Reeves (1996) focused
their discussion on the use of everyday computer programs such as
spreadsheets and databases as cognitive tools that learners’ employ
for knowledge construction.

There are other issues that contribute to sometimes confusing con-
versations about cognitive tools. The notion of cognitive tools has
been explored by many scholars, but still remains somewhat abstract,
thus limiting progress in research, development, and application. Not
only does the very concept of cognitive tools remain ambiguous, but
problems muddle its associated ideas for research and practice:

1. There is a lack of understanding about the design and values of
cognitive tools;

2. Adoptions of cognitive tools in classrooms are too brief and/or
inappropriate; and

3. Disintegrated research approaches do not provide sufficient
feedback to advance the fundamental ideas.

The lack of understanding of design and values

Even the simplest invention, such as plastic cups, has benefits and
losses, e.g., consumer convenience and environmental pollution.
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Cognitive tools also have their trade-offs of which we must be
mindful (Pea, 1993). Many people have come to rely on email com-
munications, and yet at the same time, some miss the intimacy of
hand-written letters. The activities inherent in writing a traditional
letter, such as choosing good stationary and a fine pen, presenting
content within the guidelines of certain formats, writing addresses,
and attaching stamps, are either transformed or completely lost in an
electronic format. With respect to using cognitive tools in education,
we should think about whether we are providing cognitive tools that
transform learners’ cognitive activities toward higher-level thinking,
or providing them with future disabilities by requiring the use of cog-
nitive tools in the formal learning environment, but expecting learners
to do without them outside of schools. For example, according to a
recent report (Levin and Arafeh, 2002), some middle and high school
students have become so reliant on the Internet as a source for educa-
tional content and instruction that they have come to view traditional
media (e.g., textbooks) and even their teachers as irrelevant.

Falbel (1991) addresses another design issue by seeing a tool by it-
self as both value-neutral and value-laden. Tools embody certain val-
ues imposed by their design, but they are value-neutral until used in
certain ways by particular learners (Falbel, 1991). The choices that
learners make to use cognitive tools can be more open or limited
depending on the nature of the tools and the design of the learning
environment in which they are to be employed. Educators should be
aware of both the value that cognitive tools bring to the fore in any
educational context as well as the possibilities they open up for the
learners. Cognitive tools can be developed with elaborate features in-
tended for higher-level learning and thinking, but problems arise
when the value of them are not seen by the learners or are not re-
flected in learning activities. Although some studies report advances
in using cognitive tools in formal instructional contexts, most such
studies report that learners were often unable to use the various fea-
tures of tools to go beyond modest expectations (e.g., Brown et al.,
1993; Edelson et al., 1999; Spitulnik et al., 1999).

The brief and/or inappropriate adoptions

It is a dubious assumption that learners will automatically take
appropriate and measured advantage of the affordances of computer
tools when involved in cognitive activities with them (Perkins, 1993;
Salomon, 1993a). For cognitive tools to actually become an extension
of human cognition, learners must strive for mindful engagement in
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activities. Mindful engagement requires learners to be fully involved
in examining novel, multiple perspectives and categories when prob-
lem-solving (Langer and Moldoveanu, 2000). Unlike films that auto-
matically generate movement and sound to gain passive attention
from people, cognitive tools require deliberate attention and effort
from learners to make use of the affordances of the tools. Learning
activities requiring cognitive tools are not as effortless as watching a
multimedia presentation, which perhaps could fall into Mayer’s (2001)
narrow definition of multimedia learning as ‘‘learning from words and
pictures,’’ but as vigorous as creating one. Learners should be mind-
ful and reflective in working with cognitive tools through deep
thought, comparison and contrast, and decision-making beyond the
experience of predetermined arrangements of words and pictures.
Such mental engagement leads to constructing original knowledge or
new knowledge representations (Norman, 1993).

We should carefully study the transactions that learners make
when they interact with cognitive tools and develop their cognitive
partnerships because cognitive tools are intended to leave the deci-
sion-making and higher-order thinking on the part of the learners,
not to provide them with instruments that allow them to accomplish
tasks and solve problems mindlessly. For example, students using
statistical analysis packages as cognitive tools sometimes mindlessly
accept results that are preposterous.

Another issue facing researchers focused on educational applica-
tions of cognitive tools is communicating their ideas of cognitive tools
to practitioners and ensuring that these tools are used appropriately
in the classroom. Salomon and Almog (1998) argued that no matter
how we try to transform the way students learn in classroom with
new technologies, the established classroom structure usually under-
mines the intended use of the tools (e.g., instead of using a tool such
as CADCAM software for complex tasks, students are taught one
way of using the tool step-by-step to accomplish routine tasks).
Admittedly, the ill-structured nature of activities using cognitive tools
sometimes makes it harder to manage classrooms and assess student
performances, thus making appropriate use of them more difficult
(Resnick and Ocko, 1991).

The disintegrated research approaches

Significant research and development have been done under the broad
umbrella of cognitive tools in the last decade with various research
approaches. Studies of cognitive tools vary widely in the sorts of tools
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used, e.g., simulation of medical experts’ activities (Lajoie, 1993) and
employment of scientific visualization tools (Schwartz et al., 2000).
Using various research methods, such as tests, observations, inter-
views, and think-aloud protocols, researchers have attempted to find
what significance these tools have in student learning. Contemporary
learning theories extend the property of knowledge and performance
outside an individual’s mind (Brown et al., 1993). Some research stud-
ies on computers in education (e.g., Azevedo et al., 2004) rigorously
examine the complex cognitive and metacognitive processes of learn-
ing; but such detailed attempts to capture the complex interrelation-
ships between the performances of computers and learners are still
difficult to find.

Researchers have confronted similar issues in ways that may have
limited progress in the development, research and application of cog-
nitive tools. Erkunt (1998), in reporting his study about a cognitive
tool, concluded that the concept of cognitive tool is useful but vague,
thus making related empirical research difficult to describe. The re-
search approaches applied to it have not been sufficiently differenti-
ated from other kinds of educational research. Computer applications
designed or adopted as cognitive tools have been investigated in terms
of what learners were able to accomplish during and/or after learning
with the tools. However, the relationships between learners and tools,
i.e., their roles as intellectual partners and partnering processes, were
not adequately addressed in most research studies. It is hard to cap-
ture the partnering process within a short period of usage time and
often not possible to observe and report the process with conven-
tional research approaches. As a result, the principles of using com-
puters as cognitive tools have not been realized at any level of
education. New researchers in cognitive tools who wish to contribute
to their development and application, thus, should adopt research
methods that can take complex interrelationships into account.

A need for an integrated framework

There is a clear need to define an integrated framework for the study
and practice of cognitive tools. This framework should be conceptu-
ally coherent to foster more successful design, application, and re-
search. Such a framework would allow designers and researchers to
specify what features of tools are used or not used and how they are
used for certain cognitive tasks. The practical issues of cognitive tools
would then come down to developing appropriate learning activities
for higher-level cognitive tasks, so that the tools are used in ways that
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neither give learners easy answers nor frustrate them with unnecessar-
ily complicated features. Learners could be challenged with authentic
tasks, which require them to engage in the types of discourses and
problems similar to those of experts in the world, such as historians
and scientists (Savery and Duffy, 1996), and wherein cognitive tools
are actually needed to accomplish them.

In light of this need, the primary purposes of this paper are:

1. to critically review and identify the potential benefits and weak-
nesses of the previous research and development of cognitive tools;

2. to propose an integrated framework for research and development;
3. to redefine cognitive tools and examine renowned learning technol-

ogies with the alternative framework;
4. and to prescribe an agenda for research and development to maxi-

mize benefits and overcome weaknesses.

In short, we intend to develop the meaning of the cognitive tool
beyond its abstract conception, in order to improve research and
practice related to computers as cognitive tools. We first describe two
underlying learning theories (distributed cognition and expertise),
present the new framework, and then explore the potential for
advancing cognitive tools based on this new perspective.

Conceptual background of cognitive tools

Inquiries into how learners construct their knowledge require as much
attention to learning processes as to learning outcomes. Theories con-
cerning human knowledge and cognition, such as constructivism and
distributed cognition have been adopted by many researchers investi-
gating cognitive tools in education. Constructivism is a theory of how
people gain knowledge about the world, which posits that people
come to know about the world by imposing their own meanings on it
(Duffy and Jonassen, 1992; von Glasersfeld, 1995). There is no one
right way to view the world according to the tenets of constructivism,
and thus a constructivist learning environment should draw attention
to multiple perspectives and diverse ways of viewing and solving
problems. Constructivist approaches emphasize learners’ active partic-
ipation in meaningful activities (tasks to complete or problems to
solve) that foster building new knowledge and richer understanding
(Phillips, 1995; Duffy and Cunningham, 1996; Salomon and Almog,
1998; Herrington et al., 2003). Distributed cognition is a view that
cognition does not reside only in one’s mind, but that cognition is
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distributed among people, artifacts and symbols during thinking,
reflection, and learning (Salomon, 1993a). The theory of distributed
cognition provides insights into how learners use their environment
and its sub-components as integral parts of their learning process
(Salomon, 1993c). The attempt to comprehend how learners use cog-
nitive tools as an integral part of their learning process is a primary
focus of this paper.

Distributed cognition has not been conceived and described consis-
tently. Focusing on the social aspects of human thinking, some theo-
rists agree with Vygotsky (1978) that cognition and activity are
distributed basically among people but mediated by signs and tools
(e.g., Resnick et al., 1991; Wertsch, 1991; Hutchins, 1995). On the
other hand, others consider that cognition resides not only in persons
but also in signs and tools, conveying cultural meanings and history
(Salomon, 1993c; Lebeau, 1998).

Another major difference among views on distributed cognition is
regarding whether or not the distribution is an absolute characteristic
of human thinking. Some suggest that cognitive activity is always dis-
tributed in some respects even when carried out by a person in isola-
tion by virtue of the language used (e.g., Cole and Engeström, 1993;
Pea, 1993; Wertsch, 1991). Others recommend making a distinction
between individual cognition and distributed cognition (Brown et al.,
1993; Perkins, 1993; Salomon, 1993a). Common to these views is the
notion that human cognition relates to the environment outside of an
individual.

Kinds of distribution

There is some agreement among researchers that there are social,
symbolic, and physical (or material) distributions of cognition
(Perkins and Grotzer, 1997; Salomon, 1993a). Social distribution
of cognition is often exemplified in workplace settings where the
dynamics of team thinking and group decision making are critical
(e.g., Derry et al., 1998). Symbolically distributed cognition includes
signs, symbols, language, and representation that make our everyday
thinking possible. Some researchers do not include symbolic distribu-
tion in their dimensions because symbols are almost always embedded
in other kinds of cognition (e.g., Pea, 1993; Perkins, 1993; Karasavvi-
dis, 2002). Symbols used for mathematical multiplication problems
(i.e., the two numbers, the position of two numbers, the sign � for
multiply, and the line drawn underneath the arrangement of these
symbols) have their own culturally provided meanings and convey the
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cognition of the person who designed the problem (Wertsch, 1998).
Physical distribution includes everything visible or tangible, ranging
from pencil and paper to artificial intelligent machines. A popular
example of physical distribution is the use of a calculator or abacus
for mathematical tasks.

A cognitive activity usually reflects some aspects of all three cogni-
tive distributions: social, symbolic, and physical. For example, brain-
storming for ideas as a team exemplifies social distribution of
cognition among people. Drawing a diagram on the board to visual-
ize their discussed ideas reflects their dependence upon the symbolic
and physical distribution.

Distributed cognition and cognitive tools

People working together affect one another’s thinking and behavior
according to social structures and norms. Symbolic and physical
means affect our thinking in different ways from people. The symbols
that we use have the most direct relationship with our internal mental
representations. Physical distribution usually involves some change in
artifacts as the result of the thinking process (e.g., the position of
beads on an abacus) (Vygotsky, 1978). When using physical means
and representations for mental processes, they become a part of the
interactions and outcomes of thinking (Pea, 1993; Salomon, 1993a).
Sometimes, the involvement of novel symbolic and/or physical means
in mental process changes the very nature of the activity (Cobb et al.,
1991). In this sense, computers as symbolic and physical means, en-
hance or extend our cognitive powers, through speed and accuracy in
processing information and representations, off-loading laborious
tasks for higher-level thinking, and decision-making and problem-
solving based on the result of the computer processing. Statistical
analysis software, for example, has changed the nature of data analy-
sis activities to allow statistics to become a part of the interactions
and outcomes of diverse human decision-making processes.

This theory is closely related to the way constructivists think about
the role of the computer in the process of learning. The computer is no
longer perceived as a mere delivery medium, but as a technology that
has unique capabilities to complement a learner’s cognition (Kozma,
1991). Salomon et al. (1991) emphasize this cognitive process by mak-
ing an important distinction between effects ‘‘with’’ and effects ‘‘of’’
technology. Effects ‘‘with’’ technology result in enhanced intellectual
performance during learning by the physical distribution of cognition to
the technology. On the other hand, effects ‘‘of ’’ technology are
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evidenced by the cognitive ‘‘residue’’ that remains after completing a
cognitive task using technology (Salomon et al., 1991).

By distribution, it does not mean that a cognitive activity is di-
vided into parts and assigned to the computer so that learners could
think or work less. Rather, distribution implies a dynamic state of
cognition that is extended by the capabilities of the computer. Cogni-
tive tools should not take over important human thinking such as
decision-making, but perform those cognitive tasks that may prevent
learners from engaging in deeper thinking (e.g., doing repetitive calcu-
lations when calculation itself is not the important part of the task) or
help learners think outside of box (e.g., making connections between
boiling water and physics rules by using special software) (Pea, 1993;
Salomon, 1993a). By extending human cognition, cognitive tools
change the nature of activities and open possibilities for new activi-
ties. Moreover, they potentially transform our cognitive structure and
processes (Salomon and Perkins, 1998).

Tool affordances

The impact of computers in education rests in defining them as think-
ing partners that extend human cognitive capabilities beyond mere
delivery media (Salomon et al., 1991). The theory of distributed cog-
nition provides an agenda as to how cognition should be distributed
among participants of an activity, focusing on the novel opportunities
gained by using computers in learning.

Pea (1993, p. 51) employed Gibson’s notion of ‘‘affordances’’ as
properties of tools that determine their usage. Affordances in distrib-
uted cognition are the possibilities that symbols and artifacts provide
in the distributed relationships. Those affordances always exist, but
not all of them can always be used without the initiation and desire
of the person participating in the distribution (Pea, 1993). On the
contrary, we sometimes become so accustomed to being dependent
upon some symbols and artifacts (e.g., calendars in both symbolic
and physical forms) that their roles for our cognitive activities are not
even recognized, attributing the performance only to ourselves (Pea,
1993; Karasavvidis, 2002). Technological affordances, the kinds of
cognitive functions represented (or possible to represent) in the design
of a tool, are intended to support certain tasks through the designers’
reasoning and decisions, reflecting social norms and cultural meanings
(Pea, 1993; Karasavvidis, 2002). Ultimately, how the technology is
used depends on both the intentions of the designers and the users
(Moore and Rocklin, 1998).
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In summary, the theoretical assumptions about cognitive tools
based from the distributed cognition view are:

1. Cognition is distributed between learner(s) and a cognitive tool;
2. The way in which cognition is distributed is first determined by the

intentions of tool designers, i.e., tool affordances; and
3. It can then affected by how the learners decide to use it in specific

situations.

Expertise and technology

The theory of distributed cognition highlights the roles of tools in
assisting the cognitive tasks of learners, but ideas about how we
should decide what to include as functions of technology, how those
functions could work with learners, and how we should study these
have not been fully established. The theory of expertise provides an-
other dimension that complements the concept of cognitive tools by
clarifying perspectives on the nature of excellent performances. Within
the field of instructional technology, theories of expertise have been
discussed and employed mostly in areas such as intelligent tutoring
systems and expert systems wherein computers are used to model
expert processes (e.g., Anderson et al., 1995; Feltovich et al., 1997; Co-
nati and VanLehn, 2000; Aleven and Koedinger, 2002). In the follow-
ing discussions, we adopt this theory to go beyond simply
acknowledging the distributed nature of a particular learning system
to exploring how that system develops and how we can support and
design effective learning systems. Expertise theory is discussed in terms
of the components of expertise, how they are developed, and how
expertise is defined when technology is involved in order to describe
and interpret the relationship between cognitive tools and learners.

Expertise is sometimes characterized as a standard of an expert
performance in a certain domain (Ericsson and Smith, 1991), or as a
relative degree of excellence for a given activity (Salthouse, 1991).
Most research studies have focused on expert performances in profes-
sional domains, and tried to find the relatively stable characteristics of
experts in performing outstanding behaviors (Ericsson and Smith,
1991). A broader view of expertise, more applicable to the discussion
here, contends that everybody has some degree of expertise with re-
spect to our everyday activities (e.g., Sloboda, 1991; Brown et al.,
1993; Carlson, 1997).

Assuming a mastery level of performances, conventional expertise
approaches attempt to describe the characteristics of domain-specific
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competences (Ericsson and Smith, 1991; Glaser, 1996). Researchers
examine the knowledge structure and cognitive processing of experts
during task performance and compare them to those of novices.
(See Olson and Biolsi (1991) for more detailed analysis of expert
knowledge.) More recently, researchers have recognized the impor-
tance of developmental conditions and continuous improvements of
expertise and started investigating processes of skill acquisition with
exhaustive approaches, such as analyzing the life histories of virtuo-
sos to find general patterns of development (Ericsson and Smith,
1991; Glaser, 1996). Although the theory of expertise is still incom-
plete, especially in its explanation of early phases of skill acquisition
as well as acquisition of mediating mechanisms (Ericsson, 1996), sev-
eral decades of research have pioneered a refined comprehensive
understanding about the nature of expertise: its kinds, structures,
and development.

Kinds of expertise

Experts usually use several kinds of expertise in performing tasks;
different kinds of expertise interact with each other and contribute
to the process of task performances. Most commonly, distinctions
are made between domain expertise and general expertise. Domain
expertise is more specific to the knowledge and processing strate-
gies of a certain domain (such as medicine) whereas general exper-
tise (such as creativity) can be transferred and used across
different domains. After decades of debate about which expertise
is more important in actual performances, it is concluded that
they function interdependently in close relationships (Perkins and
Salomon, 1989). Schunn and Anderson’s (1999, 2001) studies show
that expertise in scientific reasoning transferred to other scientific
domains. Certain domain expertise, such as literacy, often interacts
with other domains of expertise and affects the performance of
tasks (Holyoak, 1991; Scardamalia and Bereiter, 1991). Patel and
Groen (1991) further specified the kinds of expertise as threefold
in nature which they labeled generic expertise, specific expertise,
and domain-independent (or general) expertise. They classified
domain expertise into two categories (generic and specific) in rela-
tion to the specificity of knowledge and skills within a domain.
As there is more and more specialization within a domain of
expertise, a person may possess only generic expertise of the
domain, or both generic and specific expertise (Patel and Groen,
1991; Ericsson and Charness, 1994).
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Structure of expertise

In the performance of tasks within a domain, there seems to be some
structure that characterizes expertise. The elements of structure can be
summarized as knowledge, function, and representation, which inter-
act with each other during task performances. The nature and the
purpose of knowledge in a field affect how knowledge is organized
and processed for effective performances (Anzai, 1991). The knowl-
edge that experts process during practices ranges from more deductive
knowledge (e.g., rules and formulas) to more inductive knowledge
(e.g., information about exemplars) (Patel and Groen, 1991). When
acquired knowledge is organized in a coherent way (i.e., internal rep-
resentation of knowledge), the cognitive functions, such as recogniz-
ing structures or patterns and making inferences, are made easier
(Glaser, 1996; Winn and Snyder, 1996). Some of the functions, such
as anticipating results and evaluating performance, not only mediate
performance but also promote improvement (Ericsson and Charness,
1994; Ericsson, 1996). The ability to use external representations of
knowledge and processes also plays an important role in the perfor-
mances of many domains (e.g., Anzai, 1991). Experts generate com-
plex representations about the problems they encounter, which
provide images to support constant reflections on and improvements
in their decision making and actions (Ericsson, 1996; Glaser, 1996;
Winn and Snyder, 1996). Knowledge, function, and representation
work together with significant roles in the performance of experts and
their development of expertise.

Development of expertise

To develop expertise, one must face the problems that challenge one’s
current level of knowledge and competences. Not only to develop
expertise and become an expert but also to remain an expert, one
should extend competence levels (Scardamalia and Bereiter, 1991).
The time a person spends in a field is critical in the development of
expertise, although mere exposure should be differentiated from learn-
ing and practice (Ericsson and Smith, 1991). The results of studies
show that intensive training had much more significant effect on accu-
racy in clinical judgment than extended experience (Camerer and
Johnson, 1991). Development of expertise thus requires a long period
of active learning with deliberate practice and learning strategies
(Perkins and Salomon, 1989; Ericsson et al., 1993; Ericsson and
Charness, 1994).
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Understanding how learning activities change over the develop-
ment of expertise provides an important foundation for education
(Glaser, 1996). Research indicates that learners go through the
process of gaining knowledge structure, problem-solving strategies,
and automaticity during the development of expertise (Keating,
1990; Schneider, 1993; Winn and Snyder, 1996). In structuring
their knowledge, novices first make cognitive efforts to understand
the task and find important information, and then organize their
knowledge into a more accessible structure (Schneider, 1993). This
internal structure of knowledge is often revealed and enhanced by
their use of external representations, which is an essential skill in
many domains of expertise (Patel and Groen, 1991). They then
learn to use these representations more efficiently with relevant
information in a problem (Patel and Groen, 1991).

Novices approach problems with strategies that are based pri-
marily on concrete information, and then they use more and more
abstract reasoning as they gain more expertise. Novices rely on
the surface features of the problem, commonsense knowledge and
trial-error approaches because they do not have enough domain-
specific knowledge base and expertise (Anzai, 1991; Patel and
Groen, 1991). Gaining more expertise, the person starts to use
what is called a general or weak method. This method uses diag-
nostic reasoning, data-driven reasoning, observation, and problem
reduction instead of starting with underlying principles (Anzai,
1991; Patel and Groen, 1991). Experts approach problems with a
specific (or strong) method. They work on the problems with
working hypotheses and rely on systematic representations of the
information in the problem in relation to their domain-specific
knowledge structure (Anzai, 1991; Patel and Groen, 1991). Experts
select and focus on only important and relevant information in
the problem and often switch between general methods and spe-
cific methods depending on the problem (Anzai, 1991; Patel and
Groen, 1991; Scardamalia and Bereiter, 1991). It is almost impos-
sible to make conscious efforts to switch between different levels
of knowledge and strategies during the performance of expert level
tasks. For many experts, some of these processes are automatized
by their repeated performances on different problem-solving tasks,
enabling them to use their cognitive resources to deal with the
novel aspects of the current problem situation (Schneider, 1993;
Winn and Snyder, 1996).

221



Expertise, context and technology

In the earliest research studies, expertise was regarded as a separate
property from everyday activities; it was researched in isolated labo-
ratory settings to tease out problem solving processes on a set of
standardized tasks. Realizing that individual expertise cannot be
fully understood without understanding the environment of the
individual, expertise researchers began to look at the dynamics of
interactions with environments in the development of expertise (e.g.,
Keating, 1990; Patel et al., 1996; Winn and Snyder, 1996). Today,
many domains of expertise cannot even be understood without
studying the experts’ use of external aids. These external tools often
play a significant role in the work of experts even in studies con-
ducted in isolated labs. Anzai (1991), studying physics expertise,
examined the subjects’ use of diagrams as external aids and cogni-
tive representations, and the relationship between the use of dia-
grams and the level of expertise. Physics diagrams worked as
catalyses for information recall as well as tools for computational
efficiency and inferences (Anzai, 1991). Simulated computer environ-
ments are often used in studying the performance of experts to
accommodate some real-world complexity to the experimental setting
(e.g., Dörner and Schölkopf, 1991).

Recent expertise studies have extended their research to natural
contexts (e.g., Dunbar, 1995; Patel et al., 1996). Dunbar (1995), for
example, examined complex cognitive processes in the real world in
his investigation of scientific reasoning and discovery, and recognized
the importance of using analogies in the social context of science.

Another line of research in expertise involves analyzing expert rea-
soning and building computational models to perform complex tasks
(i.e., artificial intelligence and expert systems). Studies of expert
reasoning structure to make computational models are very similar to
studies of experts’ cognitive processes (Patel and Ramoni, 1997). These
machines are programmed to recognize patterns and perform tasks
through sets of production rules (Patel and Groen, 1991). Researchers
recognize that there is a standard way of reasoning requiring deliber-
ate and precise efforts that can be completed by machines without
exhaustion or error, but insist that novel and constructive ways of
reasoning can only come from human beings (Dreyfus and Dreyfus,
1986; Hoffman et al., 1997). Researchers suggest treating machines as
having different objectives from us and imposing the roles that are
appropriate for them (Dreyfus, 1992). In this way, experts are not
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replaced by the computers, but empowered by them to make better use
of their expertise (Dreyfus and Dreyfus, 1986).

Expertise is not only shaped by the dynamic social context and
artifacts in the setting but also redefined by changes in the ways we
do things (Patel et al., 1996; Feltovich et al., 1997). The expertise of
physicians from 50 years ago looks very different from the expertise
of present day doctors with advances of medical techniques and tech-
nology as well as new specialized areas in the medical field. Experts in
our society rely on the environment and adapt to the changes of its
properties; they are ‘‘codefined by context’’ (p.182, Stein, 1997). What
we call ‘‘expertise’’ is now being redefined not as a sole property
of an expert, but as a combined whole with the environment and
artifacts that expert is dependent upon.

From the theory of expertise, we can summarize the assumptions
that we make about human performances:

1. Expertise can be classified as general, generic, and specific;
2. Structure of expertise can be examined with its components, i.e.,

knowledge, functions, representations;
3. As individuals develop expertise, their knowledge structure and

problem-solving strategies improve, and they gain automaticity on
some of their processes;

4. Expertise is defined with the external aids that individuals use for
their tasks, becoming part of their expertise.

Distributed cognition and expertise coming together as one lens

Netchine-Grynberg (1995), seeking the origin of cognitive tools, rec-
ognized three main characteristics of cognitive tools: (1) they are cul-
turally formed and transformed for the functions of real-world human
activities, (2) they enclose semiotic structures and provide the means
to construct representations that guide actions and ultimately form
and activate human cognitive structures during real-world activities,
and (3) they are goal-oriented and instrumental, forming cognitive
relationships and mediating actions between humans and the environ-
ment. Individuals, in this perspective, never directly confront reality,
but they experience and internalize it through activities using cogni-
tive tools (Netchine-Grynberg, 1995). Although the term ‘‘cognitive
tool’’ is an important construct for researchers as well as practitio-
ners, the idea not only has not been well-advanced but also somehow
has lost its origin in the course of adopting it for computers in educa-
tion. The term is sometimes used as a catchphrase and ‘‘sold’’ to
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teachers as a better way of using technology in the classroom without
clearly communicating its implications for instructional methods and
the teacher’s role.

The premise of putting distributed cognition and expertise theo-
ries together is that the assumptions of the two theories would spec-
ify the meaning of cognitive tools, which has remained too vague
for researchers and practitioners to make it useful for their prac-
tices. We will return to the above origin of cognitive tools, reinter-
pret it through the lens of the two theories, and uncover what it
means for enhanced research and practice for cognitive tools in
education.

The meaning of cognitive tools

Recent studies on expertise include the distributed cognition perspec-
tive, stressing the importance of the role of environment in the cogni-
tive activities of experts (e.g., Lebeau, 1998; Patel et al., 1996).
Research and development of expertise and distributed cognition in
terms of technology comes together to an important point at this
juncture: they both emphasize the significant role of technology in
extending human abilities instead of replacing them. Researchers sup-
porting distributed cognition, however, see technology from a very
different angle from researchers of expertise, and even look at differ-
ent kinds of technology. In the theory of distributed cognition, tech-
nology is envisioned in a more general level, existing as one of the
various resources in the distribution of cognition. Overlaying the the-
ory of expertise upon distributed cognition, individuals, environment
and tools are viewed as a system of performance, bringing their quali-
ties and expertise to the situation and interacting with each other
(Salomon, 1993a; Patel et al., 1996).

The expertise view of technology adds specificity to the distributed
notion in that the technology becomes one of the most important as-
sets of the involved activities. With the basic assumptions that cogni-
tion is physically distributed to technology and that expertise is co-
defined with experts’ tools, a cognitive tool can be regarded as having
some kind of expertise that allows cognition to be distributed to it,
forming a joint system of learning (see Table 1). We can redefine
cognitive tools for learning with this added expertise perspective:

Cognitive tools are technologies that learners interact and think
with in knowledge construction, designed to bring their expertise
to the performance as part of the joint learning system.
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Learning with technology, when considered with these two theories
together, is no longer performed solely by the learner but as a joint
learning system, comprising at least learner(s), tool(s), and activity.

Cognitive tools and expertise of joint learning system

Several conceptual constructs about cognitive tools accompany
this new definition based on the assumptions of the two theories
(Table 1), reflecting the original characteristics of cognitive tools de-
scribed by Netchine-Grynberg (1995). First, cognitive tools can be
classified with the human expertise classification because the attributes
of distributed cognition is first determined by its design and the tool
should be classified according to its purpose. In other words, if we re-
gard the kinds of expertise as representing the layers of capabilities
for human performances, the tools that extend those capabilities
should be classified in the same way.

In the same line of thought, cognitive tools form a joint learning
system when the distribution is in action with the learner(s). The way
the distribution is structured within the system as well as the way the
expertise of this joint learning system develops should be examined in
the same way we have examined human expertise (second and third
constructs in Table 1). There are two kinds of designs that have ma-
jor influence on the structure of distribution: the design of tools and
the design of activities. The distribution of cognition is structured by
implicit characteristics of the cognitive tool (e.g., determined by the
software designer) as well as by the explicit aspects of current activi-
ties (e.g., determined by the classroom teacher) (Pea, 1993).

These constructs reflect the original cognitive tool idea of capturing
realities, having semiotic structure, and mediating human activities for
specific purposes. We also need to consider the specific purposes of
the tools and what learning activities they are mediating because,

Table 1. Theoretical assumptions and proposed conceptual constructs of cognitive

tools

Distributed cognition Expertise Cognitive tool

1. Distribution 1. Expertise kinds 1. Tool expertise kinds

2. Distribution

by design

2. Expertise structure 2. Learner-tool expertise

structure

3. Distribution

in action

3. Expertise development 3. Learner-tool expertise

development4. Expertise co-defined
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unlike real settings, activities are designed in educational contexts. In
the next two sections, we discuss these constructs (kinds of cognitive
tools and their activities, and development of joint learning system
expertise) in detail.

Expertise in the tool and the activity

The term ‘‘cognitive tools’’ is used for explaining many different
abstract as well as concrete entities (e.g., both human language and
physical calculators are considered cognitive tools). Cognitive tools
for learning have been classified based on their different characteris-
tics and purposes. After analyzing the different purposes of tools,
Jonassen and Carr (2000) suggested some classes of ‘‘mindtools’’ as
semantic organization tools (e.g., databases and concept mapping
tools), dynamic modeling tools (e.g., spreadsheets and microworlds),
visualization tools (e.g., MathLab and Geometry Tutor), knowledge
construction tools (e.g., a multimedia authoring tool), and socially
shared cognitive tools (e.g., computer conferencing and computer-
supported collaborative argumentation).

Over the two different volumes of Computers as Cognitive Tools
(Lajoie and Derry, 1993a; Lajoie, 2000), the distinctions among differ-
ent tools shifted to fit the current pattern of emerging learning para-
digms and the corresponding development trend of computer
programs. In the first volume, Lajoie and Derry (1993a) categorized
the research accounts into modelers (e.g., TAPS; Derry and Hawkes,
1993), nonmodelers (e.g., HyperAuthor; (Lehrer, 1993), and the ones
merging the two (e.g., DARN; Schauble et al., 1993). Modeling here
meant that the computer program models students’ thinking processes
and diagnoses their performances. In the second volume, Lajoie
(2000b) divided the chapters between the tools supporting knowledge-
building activities (e.g., SCI-WISE; White et al., 2000) and the tools
supporting new forms of knowledge representations (e.g., DNA;
Shute et al., 2000).

Other researchers have imposed their own theoretical framework
for categorizing cognitive tools. Salomon (1993b) suggested that there
are two kinds of cognitive tools based on the theory of distributed
cognition. The first kind represent performance-oriented tools that
learners use to jointly make products with the tools (e.g., Freehand, a
graphics program), and the other kind are pedagogic tools that sup-
port learners’ cognitive growth (e.g., Writing Partner; Salomon,
1993b). Whether empirically or theoretically oriented, the existing
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classifications do not seem to well-characterize computers specifically
as cognitive tools in ways that imply their usage in real contexts (or
of similar tools in the world). Salomon’s (1993b) suggestion that
cognitive tools should be evaluated for their potential affordances of
cognitive activities and promotion of learner abilities was reflected to
some degree in the detailed discussions presented by the aforemen-
tioned scholars, but not often in their classifications. There is an obvi-
ous need for a classification system that may offer those implications
and provide a better basis for examining the interactions between the
tool and the learner.

The remainder of this section presents a different way of and a
rationale for classifying cognitive tools for learning. Classifying cogni-
tive tools with their potential expertise and distributed structures in
carrying out activities provides insight into their detailed characteris-
tics as cognitive partners. Tools are discussed in terms of their inter-
activity with learners and specificity in their purposes. The prominent
computer tools in education are reexamined, and the ways cognitive
tools relate to learners are reconsidered through the specific lens that
theories of expertise and distributed cognition provide.

Tool interactivity

Tools vary in the interactivity they afford with users, ranging from one--
way, whereby technology is used as a mere delivery medium of informa-
tion, e.g., multimedia presentations, to reciprocal interactions, wherein
technology actually participates in the cognitive activity of individuals,
e.g., a DNA modeling program. Somewhere in the middle ground is the
cognition distributed for a division of labor to offload some tasks or to
prevent human-errors with technology, e.g., a calculator or a spell-
checker (Perkins, 1993; Salomon, 1993a). Interactivity usually depends
on the technology itself, but it is also affected by how the technology is
used by individuals and what kinds of activities it is used for.

As physical tools make us physically stronger (e.g., hammer) or
faster (e.g., bicycle), computer tools make us smarter, augmenting our
cognitive capacities (e.g., speed of processing) (Lave, 1988; Norman,
1993; Pea, 1993). In the ideal level of interaction, technology changes
the nature (i.e., process and product) of cognitive activities, allowing
individuals to think with the technology in a way that was impossible
without it (Pea, 1993). Theories of expertise and distributed cognition
converge at this higher level of interactivity, where technology plays
an essential role for cognitive activities. Tool expertise mainly
characterizes the tool itself, but at the same time implies potential
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user activities. Ideally, cognitive tools, being considered as ‘‘partners,’’
should be characterized by their reciprocity, remaining at the right
end of the interactivity continuum.

A cognitive tool, in our definition, is a cognitive partner that inter-
acts with learners to construct knowledge, bringing its expertise to
activities. As a tool, it should be flexible enough to be used for vari-
ous activities and open to the mindful and creative growth as a joint
system with learners. Scholars of distributed cognition, however, sug-
gest that there are certain properties that cannot and should not be
distributed to technology, e.g., higher-order thinking (Perkins, 1993).
The machine can process a set of rules to perform certain tasks, such
as making a representation, tracing the learner’s use of the program,
retrieving certain stored knowledge and representations, but cannot
understand the meaning of those representations and activities (Salo-
mon, 1993a). The roles of the tools should only be to help humans in
meeting cognitive challenges. As argued by many researchers (e.g.,
Perkins, 1993; Salomon, 1993a), cognitive tools should not take over,
but require higher-order thinking from learners for task completion,
thus fostering creativity in learners.

Another important property that ultimately humans should
perform is executive functions for activities (Perkins, 1993). In the
course of constructing knowledge through inquiry and problem-solv-
ing, individuals should decide what to do and where to go instead of
the machines making decisions. Adopting the view from expertise the-
ory about relationship between person and technology, technology
can only have roles that can empower and augment higher-order cog-
nitive functions. Technology for experts is an instrument that sup-
ports, but not usurps, inquiry, redefining what it means to be an
expert (Stein, 1997). Cognitive tools for learning, therefore, should as-
sume lower executive functions, such as executing rules, and let learn-
ers make the most important decisions during activities.

Tool specificity

The way cognitive tools are classified here highlights the way expertise
is classified in the literature. As introduced earlier, Patel and Groen
(1991) categorized human expertise in three levels considering its spec-
ificity: domain-independent (general) expertise, generic expertise, and
specific expertise. These kinds of expertise can be used to understand
what kind of roles tools play in their partnerships: general cognitive
tools that have qualities independent of specific domains to support
various activities; domain generic cognitive tools that bring in basic
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characteristics to support various activities in a rather broad area of a
domain; and domain specific cognitive tools that deal with more spe-
cific concepts in domains with representations and knowledge specific
to narrower topics. The more specific a cognitive tool is, the more in-
depth activities it affords covering less variety of content; the more
general it is, the more variety of activities and contents it affords.
There is no superiority among tools with different levels of specificity
because each serves different purposes. A graphics package such as
Photoshop is invaluable for the learner wishing to create artistic
visual models of cell structure, but of little utility to the learner who
desires to compute complex equations of planetary motion.

The three primary elements of expertise structure, i.e., knowledge,
function, and representation, then should be used to examine the
characteristics of cognitive tools. Embedded knowledge in the tools
can range from widely accepted facts to abstract rules (Anzai, 1991;
Patel and Groen, 1991). Functions can vary from simple information
search and rule execution to complex decision-support (Perkins, 1993;
Ericsson and Charness, 1994). Representations can be more concrete
(isomorphic) or more abstract (symbolic). Depending on the specific
activities carried out within a domain of study, certain levels of repre-
sentations are more beneficial than others. Geographers require pre-
cise visual representations of spatial relationships whereas
anthropologists may be satisfied with rich narrative representations.
Technology can afford various ranges of representations that can be
manipulated by learners (Salomon, 1990).

A computer chess game, for example, has specific expertise in chess
with knowledge about chess rules and the patterns of chess moves,
functions of recognizing patterns and making moves, and visual
representations of chess board and moves. The Writing Partner
(Zellermayer et al., 1991) was designed to become a cognitive partner
of children learning to write, as in physical distribution of cognition.
This program supports meta-cognition about the writing process, so
that the young writers can think with the Writing Partner during the
process. Seen from the kinds of expertise, the Writing Partner seems
to have generic expertise in writing strategies (because it is not a spe-
cific kind of writing, such as writing a scientific article) with knowl-
edge about detailed strategies of writing and the function of posing
questions to the writer. A computer-supported intentional learning
environment (CSILE) (Scardamalia et al., 1989) provides a space for
collaborative knowledge construction within an online environment.
CSILE supports physical distribution of cognition as well as
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asynchronous social distribution of cognition, dramatically changing
the nature of knowledge construction activity. CSILE can be used
across many domains of knowledge so that it seems to have domain-
independent expertise—learners bring most of the specific knowledge
to work with—with functions of storing and organizing data and rep-
resentations of concept relations.

We first classified the tools into three different categories according
to the three levels of expertise that are embodied in the tools (Gen-
eral, Generic, and Specific). Regarding the expertise embodied in
tools, we considered their weighted elements that constitute the struc-
ture of expertise as to whether the embodied knowledge is more rule-
based (deductive) or case-based (inductive) and whether the embodied
representation is more symbolic or isomorphic. We then put them
into different columns depending on where they are in their functional
properties (see Table 2). The functional properties of computer pro-
grams, especially their executive functions, determine their interactive
relationship with learners. We scaled the degree of executive functions
that computer programs provide with six different levels: lowest, low-
er, low, high, higher, and highest. The lowest is for those communi-
cating with users only with the same symbol system, such as program
languages, which requires very high analytical and logical thinking
and with which users make decisions about everything other than the
symbol system itself; the lower for those executing learner-created
rules with learner-created objects; the low for those having more
embedded rules than the lower. We scaled the high for those guiding
the decisions of learners; the higher for those interpreting learner re-
sponses and behaviors and making decisions for learners, or provid-
ing predetermined content with no particular order; and the highest
for those diagnosing individual learners and making decision without
informing learners, or providing sequenced information presentations
without learner inputs and controls.

In Table 2, examples of educational programs are presented with
various degrees of executive functions. This table demonstrates the
relative positions of educational programs that we classify as cogni-
tive tools on the continuum. The heavy lines are drawn around
boxes of those we perceive as cognitive tools. We maintain that cog-
nitive tools can vary in their expertise level, but higher-order think-
ing and executive functions should be left more for the learner,
staying at the low and lower levels. The dotted lines are used for the
boundaries in order to indicate that many educational programs of-
ten contain characteristics of different levels. A person’s expertise
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does not have clear boundaries among different levels and a person
can have multiple levels of expertise at the same time. Likewise, the
position of a particular tool could be variable depending on how
other researchers characterize certain tools or how instructional
designers and educators decide to employ them in practice. In the
next four sections, we first discuss these cognitive tools in more de-
tail using the three levels of expertise, and then we describe the
characteristics of other kinds of educational programs in comparison
to cognitive tools.

Domain-independent (or general) cognitive tools

Some cognitive tools basically have general qualities independently of
domains. The descriptors of each row in Table 2 (i.e., knowledge and
representations) are not about the learner’s gaining knowledge or
resulting artifacts, but about what the tool holds in order to interact
with the learner. Domain-independent cognitive tools typically use
certain symbol systems and symbolic representations to communicate
with learners during the process of building knowledge and making
products. When the degree to which a tool performs an executive
function is relatively low, there are more possibilities for engaging in
various forms of activities and creating different types of products.
Authoring tools are an example of cognitive tools with low executive
functions, and productivity tools are an example of one with more
embedded rules for output products.

Authoring tools are alternatives for programming languages whose
interfaces are scaffolded by symbolic metaphors, such as index cards,
stages, frames, and trees. Productivity tools, such as databases, spread-
sheets, and concept-mapping tools, are programs originally developed
to increase workplace productivity by organizing knowledge and infor-
mation in a more accessible manner. Researchers saw the values of
using these two kinds of general tools for educational purposes and
suggested using them as cognitive tools for learning whereby learners
become designers who construct ‘‘knowledge representation’’ products
with the tools (Jonassen and Reeves, 1996). Erickson and Lehrer
(2000) studied students in seventh grade using an authoring tool called
HyperCard (using the metaphor of index cards) throughout a school
year and described students’ processes of understanding the role of
links in their hypermedia products and how their understandings were
reflected in their design of HyperCard stacks. Authoring tools can be
used flexibly by users for creating various kinds of knowledge
representations such as a multimedia presentation or a website.
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Productivity tools, on the other hand, can usually afford only cer-
tain kinds of representations (e.g., concept-mapping tools afford the
creation of maps and outlines). Productivity tools are highly accessi-
ble to many classroom teachers and can be used for knowledge orga-
nization tools in many different disciplines. Concept-mapping tools
have been extensively studied by many researchers and found to be
very helpful not only for individual thinking activities, but also for
group decision-making processes or knowledge-building activities in
face-to-face classes or over the Internet (e.g., Jonassen, 1993; Hewitt
and Scardamalia, 1998).

Domain generic cognitive tools

Some cognitive tools possess basic characteristics to support various
activities across a broad area of a domain. These tools are more pre-
valent in science and mathematics where representation of complex
knowledge is very important in problem-solving processes. Generic
kinds of cognitive tools have the rules that underlie a domain, such as
physics and chemistry, and usually produce symbolic representations,
such as graphs and other visualizations of data. With some executive
function embodied, generic cognitive tools have more structure for
what is expected from the learners and for the representations. With
even lower executive functions, learners construct this structure out of
the variety range of possibilities. The example for the latter is micro-
worlds, and for the former are visual representation tools.

StarLogo is a well-known microworld that helps learners to explore
systems dynamics. StarLogo operates according to the rules created by
learners to produce a dot or collection of dots on the screen interacting in
the represented world (Resnick, 1996). Learners create representations of
real-world systems by deciding how which system elements work in what
ways within StarLogo. Other generic cognitive tools start with certain sets
of visual representations to enable students to approach problems (e.g.,
Kozma, 2000a). To learn about dynamic systems, Stella requires learners
to specify factors that stimulate the system changes so that it generates cer-
tain visual representations, such as diagrams and graphs (Resnick, 1994).

Other tools, such as Model-It and MathWorlds, combine these two
levels of functionalities. Using Model-It, learners can create various
levels of complexity within dynamic systems, such as stream ecosys-
tems and human body systems, by importing graphics to contextual-
ize their models and defining the factors and the relationships
among components of a system (Metcalf et al., 2000). Learners test
and evaluate the model using the software’s specific graphing tools.
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MathWorlds provides an environment in which learners define how
interacting animated characters’ motions are connected using graphs
that can be manipulated (Roschelle et al., 2000).

Domain specific cognitive tools

Cognitive tools that deal with concepts in specific domains use more
concrete representations and encompass more knowledge about indi-
vidual cases in addition to any rules that govern them. These tools
are similar to the domain generic cognitive tools, but they deal with
more specific content areas. Some of these tools with lower executive
functions allow learners to create their own cases with which they can
work, whereas others with more structure provide choices and/or a
database of cases. An example of the former is the manipulative tool,
GenScope, and of the latter is the simulation tool, MicroObservatory.

GenScope, specifically designed for the domain of genetics, allows
students to manipulate objects and observe their behaviors (Horwitz
and Christie, 2000). GenScope provides six different observational lev-
els (i.e., molecules, chromosomes, cells, organisms, pedigrees, and
populations) for genetic descriptions with their representation and
manipulation means, which can be flexibly devised or restrained
for use depending on the particular levels of learners and activities
(Horwitz, 1999; Horwitz and Christie, 2000). GenScope is an example
of a specific expertise cognitive tool, as each case is run by its implicit
rules. In this example, tools do not give learners any kind of correct
visualizations or models so that learners themselves have to decide
what and how to model or visualize phenomena with what values.
The cognitive function of these tools is to bridge the space between
the decisions of learners and the visual products.

Simulation tools are similar to manipulative tools in observing ob-
ject behaviors, but they do not allow learners to manipulate objects.
MicroObservatory, for example, is specifically designed for astronomi-
cal observations of the sky, which provides a network of five auto-
mated telescopes controlled over the Internet from which learners can
take images for their own scientific observations (Sadler et al., 2000).
MicroObservatory was set-up for educational purposes to simulate a
real-world scientific tool.

Tools that traverse boundaries

The tools described above cannot be said to belong to their boxes at
all times as illustrated in Table 2. Some tools encompass multiple
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levels of executive control and others include some functions outside
of the defined boundaries. Some tools are even designed to allow mul-
tiple representations with various levels of specificity in order to pro-
vide diverse channels of understanding (Kozma, 2000b). A few award-
winning multimedia programs that are primarily structured for
exploratory lessons also employ cognitive tools as part of their activi-
ties within a lesson. Exploring the Nardoo, a structured multimedia
environment wherein learners work within the specific content area of
ecology, uses metaphors of real-world problems and realistic settings
that involve cognitive tools (e.g., a note-taking facility, genre
templates, and interactive simulators) for problem solving activities
(Harper et al., 2000). Bio-World, SICUN, and RadTutor provide
simulated environments for medical informatics, giving students
opportunities to practice their problem-solving and hypothesis-testing
skills using provided cognitive tools (i.e., evidence palette, online
library, and online simulations) within the context of managing
clinical cases (Lajoie and Azevedo, 2000).

As the lowest level of providing specific functions to perform tasks,
programming languages require a heavy cognitive load for most learn-
ers to understand them before they can focus sufficiently on other
authentic activities or tasks. Logo was invented to provide an easier
programming language for children. Logo evolved into StarLogo, and
it is now scaffolded with a more visual interface (Jonassen and Reeves,
1996; Resnick, 1996). With the scaffolded visual interface, StarLogo
shares some similar characteristics with authoring tools.

In some cases, programming languages are not only the means, but
the ends for learning. Recognizing the problem of novice engineers’
over reliance on the finished product to learn the process, INCENSE
was created as a scaffolded learning interface that helps novice stu-
dents to learn the process of software engineering (Akhras and Self,
2000). Some researchers have employed expert system shells with
IF-THEN rules in classrooms, requiring learners to actually build
production rule expert systems recognizing that people who design ex-
pert systems gain considerable knowledge about expert performance
(Jonassen and Carr, 2000). With its scaffolded learning interface in
the area of programming, INCENSE has aspects of manipulative
tools we categorized as domain specific cognitive tools.

Programs that provide general expertise with high executive func-
tions mostly expect users to perform better by using them, but ulti-
mately to gain ‘‘cognitive residue’’ related to certain cognitive
skills, such as inquiry skills and meta-cognitive skills. Writing Partner
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(Salomon, 1993a, b, c) guides students’ writing process, but the pur-
pose is not for learners to use this program for every writing task, but
to master a way to think about writing by working with this pro-
gram. STAR.Legacy (Schwartz et al., 2000) and SCI-WISE (White
et al., 2000) are also structured environments that teachers may use
for different content to help students master the process of inquiry as
their meta-level expertise. These kinds of computer programs have
been introduced as cognitive tools. However, the main purpose of
these programs appears to be the learning of meta-level skills, and the
purpose of using them for cognitive activities is a secondary concern.

Programs providing more specific levels of expertise with high exec-
utive functions can include intelligent agents and expert systems. One
such program is a children’s programming environment called KidSim
that enables learners to program behaviors of objects not by writing
code as in programming languages, but by moving objects on the
screen. The intelligent agent underlying KidSim remembers and recre-
ates the movements (Smith et al., 1997). In many cases, these pro-
grams provide some flexibility for learners to be creative, but
variations in activities are relatively limited. Some researchers identify
these types of programs as cognitive tools because they unburden the
cognitive load of learners. However, we put them outside of the
boundary of cognitive tools because the primary judgments and deci-
sions are not usually made by the learners.

The more control the computer has over learners’ behavior, the
less cognitive flexibility it affords. The programs we consider having
higher executive functions interpret learner responses and behaviors
and make decisions for learners, or provide predetermined content to
learners with no particular order. The general production wizards
found in productivity tools or authoring tools guide users through the
process of producing something in a standard way by simply filling in
templates or responding to a series of questions. This provides an
easy way to produce something quickly, but this is not the way that
learning should occur. Intelligent tutoring systems diagnose students’
knowledge structures, skills, and/or styles to decide what they need to
do next and adapt instruction accordingly (Shute and Psotka, 1996).
Intelligent tutoring systems basically make dynamic decisions for
learners – often very good ones – by intelligently behaving during
their learning process (Salomon, 1990); nonetheless their purpose is
fundamentally different from cognitive tools that learners employ for
their learning activities. Multimedia environments present information
using various forms of communication, such as text, sound, graphics,
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animation, and video, in one educational program (Jonassen and Re-
eves, 1996). Multimedia environments, such as Exploring the Nardoo
(Harper et al., 2000), leave some decision-making to learners. Various
information presentations using multimedia exist within the program
but are open to learners’ activation and sequencing until learners de-
cide to watch, hear, and/or read them. Intelligent tutoring systems
and multimedia environments are good examples of the higher execu-
tive functions as most of the decisions are made by the computer pro-
grams but heavily dependant upon some learner decisions, inputs
and/or behaviors.

Computer-based tests and information presentations, on the other
hand, usually exemplify computer programs with the highest executive
functions. Computer-based tests mainly consist of multiple-choice
questions, score answers to questions while or immediately after
taking one, and instantly provide results when finished. In an adap-
tive testing, each answer is scored before the next question is selected
in order to adapt the level of difficulty based on the performance
(Educational Testing Service, 2005). Information presentations pro-
vide sequenced arrangements with little required learner inputs and
controls. The presentations can include both verbal and pictorial
information with text, sounds, and images (Mayer and Moreno,
2003). Both computer-based tests and information presentations give
little or no control over the process to the learners. Some educational
motion pictures, such as Powers of Ten (Eames and Eames, 1977), are
a form of information presentations through a different medium and
are very powerful in conveying the important messages about systems
and connections. Taking advantage of the capabilities of computers,
this particular film been modified into an interactive multimedia envi-
ronment, but only allows modest learner control such as decreasing
or increasing the view magnitude.

Expertise manifested in the design of activities

A tool’s purpose changes depending on its use, i.e., the user’s activi-
ties with the tool. The difference between the expertise of persons and
that of tools is that the former can be developed (or degraded) over
time whereas the latter is designed and remains the same as long as
the tool designer does not make modifications. Changes in the perfor-
mance of a cognitive tool happen when the partnering person changes
its use, e.g., when a graphing calculator is used to display the distri-
bution of test scores, and then used to analyze a pattern of physics
experiment results.
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The design of cognitive tools and activities for learners should be
distinguished from that of other kinds of computers and activities.
Cognitive tools are for profound thinking, similar to that required by
people engaged in real problem-solving situations. We must think
about these different purposes and meanings of tools in designing and
using them for learning activities. Activities using cognitive tools
should convey the common usage of similar tools in the world as well
as the expertise of the people using those tools. The design of a tool
becomes worthwhile only because of the meaningful activities it can
afford (Salomon, 1993a).

Going back to the Oppenheimer’s (1997) analogy of hammer
and carpentry, we should not teach hammer instead of carpentry,
but we cannot do carpentry without a hammer. The ways that cog-
nitive activities are performed in the world also cannot be de-
scribed without describing the roles of tools (Perkins, 1993). Many
domains of experts now use computers as a part of their profes-
sional activities, varying from organizing and representing their
thinking to creating actual products (Ericsson and Smith, 1991). In-
deed, for scientists, the advancement of knowledge in many scien-
tific domains is now so dependent on computers that computer
modeling has become as important as theory construction and
experimentation (Pagels, 1988). As computer tools increasingly
change the processes and outcomes of activities in the world, tools
and activities in the classroom should change to reflect the nature
of real-world practices.

How learning activities are carried out in classrooms for certain
topics can be very different depending upon the different levels of
cognitive tools adopted. To use a cognitive tool, the teacher and/or
learners usually must change or modify their learning activities. With
the same topic in a subject, you could use a general cognitive tool, a
generic cognitive tool, or a specific cognitive tool. To learn about
genetics, learners could engage in manipulation and observation of
species using Genscope. On the other hand, the teacher could design
a task with microworlds that focuses on understanding underlying
DNA rules to create a dynamic system. Using a multimedia author-
ing tool, a general level cognitive tool, may involve a completely dif-
ferent kind of activity, such as making a multimedia presentation
about genetic mutation. The biggest difference among these activities
would be their similarities to the practices of real-world experts. The
more specific the tools are, the more similar the activities would be to
that of experts, manifesting expertise in the world.
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Some researchers have developed curriculum that incorporates the
experience of real-world experts using tools. The Learning Through
Collaborative Visualization (CoVis) project promotes open-ended in-
quiry within constructivist learning environment (Edelson et al.,
1996). CoVis is based upon a technology-supported inquiry learning
design framework that includes the identification of motivational con-
text, the selection and sequencing of activities, the design of investiga-
tion tools, and the creation of process support such as scientific
visualization software (Weather Visualizer and World Watcher) and
other technological supports for learning (Collaboratory Notebook,
Internetworking Tools) (Edelson et al., 1999). One CoVis study inves-
tigated the implementation of the Global Warming Curriculum within
a 6-week period, during which middle and high school students pre-
pared briefings for a fictitious global warming conference. The study
showed that CoVis project provided learners with a coherent motivat-
ing context assuming the role of scientists, but the study also raised
the issue of the large time commitment needed to implement such
in-depth inquiry-based learning (Edelson et al., 1999).

The development of joint learning systems

Engelbart classified four basic ‘‘human augmentation means’’ (citied
in Rheingold, 1985, p. 182): artifacts (physically designed to manipu-
late other things), language (as means to think and attach meanings
to the world), methodology (as in method, procedures, and strategies
for problem-solving activities), and training (for skills in using other
means). He visualized an augmented system as a trained human being
together with a set of artifacts, language, and methodology. These
four classes manifest both ideas of distributed cognition and expertise
in that the human is dependent on the environment (artifacts and
language) (i.e., physical and symbolic distribution) and is trained to
use skills (methodology and training) (i.e., development of expertise).

Joint learning system

When the computer was first introduced into education, it was viewed
as a mere delivery medium of established cognition, not much differ-
ent from a book or an organized shelf of books (Pea, 1993). Outside
of schools, the role of computer tools has become increasingly impor-
tant in highly intellectual tasks, even as a necessary means for com-
pleting tasks (Salomon et al., 1991; Pea, 1993; Salomon, 1993b). As
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the participation of a person with a different set of skills in a task
changes the nature of an activity, computers have changed the nature
of tasks in many domains (e.g., statistical analysis). Computers as
cognitive tools beyond delivery media lead to fundamental changes in
cognitive activities, ideally to producing higher levels of thinking
(Vygotsky, 1978; Cobb et al., 1997).

The knowledge and performance that result from cognitive effort,
therefore, cannot be attributed solely to a person because they are the
product of joint participation among people and tools (Salomon,
1993a; Karasavvidis, 2002). The outcomes of distributed cognition
include not just constructed knowledge or performance, but also
resulting cognitive process and distributed structure through the joint
relationship. These implicit outcomes of joint thinking become impor-
tant parts of a person’s cognitive development. Development of
cognitive processes mediated by the affordances of the joint sys-
tem produces an even stronger structure of distributed cognition
(Salomon, 1993a).

Charness (1991) studied human chess expertise with a computer
chess game opponent. The expertise of any given chess player, ranked
as grandmaster, international master, master, expert, and so forth, ap-
pears as a stable quality of the player. The player’s use of this exper-
tise, however, depends largely on what kind of move the computer
makes (which depends on the previous move of the player) and what
kinds of patterns the player has encountered before; the player even
discovers new patterns and strategies as he or she proceeds. The play-
er’s cognition is distributed to the computer socially (as an opponent
player), symbolically (by sharing same conventions), and physically
(as an object).

In learning situations, learner(s) and tools with a meaningful task
form a joint system of learning. Figure 1 illustrates our suppositions
on how a joint learning system performs within and outside the de-
signed activity (task) and how its performance outside of the bound-
ary changes over time, as its expertise develops as a system. The
participants of the joint learning system (the learner(s) and the tool)
come to share and develop shared language and methodology.

Growing expertise of the joint learning system

Salomon et al. (1991) regarded computers as ‘‘partners in cognition’’
when learners work with them during cognitive tasks. What does it
mean to become a partner? Human partners bring their unique
expertise to a team; partners strive to know about each other’s
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strengths and weaknesses to build their relationship and work
effectively together. Cognitive partnerships with computers take
place in a similar fashion and require substantial efforts to become a
strong team. When partners of distributed cognition are continually
involved in activities together, the distributed system is likely to de-
velop into a more sophisticated relationship. The sum of isolated
cognitions cannot adequately represent the workings of the distrib-
uted cognition; thus the cognitive growth of an individual cannot be
understood without understanding the development of joint cognitive
relationships. Theories of expertise and distributed cognition shed
new light on the partnerships between humans and their cognitive
tools.

Once partners join a team with their expertise, they strive get to
know each other to perform their tasks. Similarly, when new technol-
ogy is introduced to an individual in a problem-solving situation, the
person has to deal with this new relationship with technology. Learn-
ers do not automatically think productively with cognitive tools from
the start. The cognitive load of a tool’s interface is highly evident,
making the affordances of the tool less obvious to the learner, and
thus, the partnership of the joint system remains weak for some time
(Pea, 1993). With a new cognitive tool, higher-level thinking may be
limited as long as users struggle to make the technology itself work.
Then the cognitive load devoted to the tool use per se reduces as indi-
viduals grow accustomed to its use, and they are able to engage in
higher order thinking. In Figure 1, the performance of joint learning
system outside of the designed activity is first focused more on
problem areas, such as improper tool use, misunderstanding and
troubleshooting.

Figure 1. Joint learning system and its changes in performances.
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When individuals see the value of using tools in their cognitive
activities, they are willing to engage in the process of learning the
tools so that they can adapt them for their activities (Perkins and
Grotzer, 1997; Wertsch, 1998). Expertise of the learner and the
joint system grow with each other in a synergistic way. The learn-
ers’ growing expertise in the domain and increasing familiarity
with the tool (i.e., knowledge structure, problem-solving strategies,
and automaticity) are important if the learner is able to take
advantage of the expertise of the tool. Likewise, the performed
expertise of the tool stimulates the development of the learner’s
cognition, resulting in stronger joint expertise. Learning to use a
tool, therefore, is not a process that happens only at the begin-
ning but is rather an ongoing process; learners discover more
affordances of tools and even refine their own abilities as they
master the tools and develop more effective distributed relation-
ships. In other words, the interface of the cognitive tool becomes
less visible to the learners, the affordances of it more obvious,
and the partnership of the two stronger. In this way, the new
tool, the existing environments, and the person together contribute
to the distributed cognition in activities (Pea, 1993). Eventually,
the joint system synergy enables the learner to understand the
world with more profound meanings (Falbel, 1991; Salomon and
Almog, 1998).

The development of distributed cognition might go through a
major transitioning phase when confronting novel situations. When
a unique problem-solving situation is thrown into a distributed cog-
nition structure, individuals again have to find novel uses of tools
and adjust the structure and workings of distributed cognition. At
the same time, the growth in the joint system changes the way
activities are carried out. The structure of joint expertise transforms
as elements (i.e., knowledge, function, and representation) are mod-
ified or take new forms, altering the way they interact with each
other. The strengths and weaknesses of both the learner and the
tool become clearer by finding the roles of each in relation to the
activities (Pea, 1993). The focus of their activities outside of the
boundary (Figure 1) then becomes on the explored areas, such as
discovered tool use, creative learner roles, and explored resources.
Cognitive tools should be designed to be flexible and open to this
growth, providing learners with opportunities to be mindful and
creative in their activities (Salomon et al., 1991; Jonassen and
Reeves, 1996).
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Researching the action of the joint learning system
and extended unit of analysis

In the perspective of distributed cognition, environments and their
sub-components are seen as integral parts of human cognitive activi-
ties. From this view, individual ability and distributed structure
should be considered together to understand cognitive activities
(Nickerson, 1993; Salomon, 1993a). It has been recognized that a dis-
tributed system of cognition cannot be understood by examining its
parts in isolation, and thus recent research in cognition moves away
from just seeing an individual as a unit of analysis to viewing a sys-
tem of individuals and the environment in action as a legitimate unit
of analysis (e.g., Lave, 1988; Brown et al., 1993; Pea, 1993; Perkins,
1993; Hutchins, 1995; Wertsch, 1998).

For the research on cognitive tools, the unit of analysis should be
learners together with computers, in order to encompass their intellec-
tual partnerships as they are forming and evolving. The extended unit
of analysis includes a cognitive tool as an inseparable entity for lear-
ner capabilities; at the same time, each tool should be considered as
having its own contributing qualities (Salomon, 1993a). We believe
that the distributed cognition plus expertise view suggests a way to
look at two kinds of completely different subjects (i.e., learners and
tools) as partners and interacting constituents of a compound system.
Detailed concepts of these theories (e.g., elements of expertise struc-
ture: knowledge, function and representation) becomes important
constructs for understanding the qualities of each. The performance
of the tool, therefore, should be given a similar amount of attention
given to that of learners.

Understanding the complex nature of a distributed cognitive sys-
tem requires studying it in action during the time when the interac-
tion is actually happening – not before or after (Wertsch, 1991; Pea,
1993). The learner or the tool alone without any interaction is no
longer a distributed system even though there is a potential relation-
ship between the two. Just as various kinds of designed artifacts have
intended uses for certain types of activities, educational settings usu-
ally have activities that are designed for potential relationships among
interacting units to promote opportunities to learn. The emergent
characteristics of a learner, however, cannot be understood without
taking into account his or her relationships with certain activities and
specific tools in a particular time.
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Distributed cognition can be seen from both analytic and systemic
views. From an analytic view, the distribution is a set of cognitive
functions coming together to perform a task; from a systemic view,
the distribution is a natural status of a cognitive task performance
(Nickerson, 1993). The structure of cognitive distribution can be de-
signed and studied to facilitate cognitive activities (analytically) as
well as be observed and studied as a phenomenon (systemically) (Pea,
1993; Bell and Winn, 2000). Whether by design or by nature, the
structure of distributed cognition is not a static condition, but dynam-
ically embedded in human activities; the structure evolves and chan-
ges over time, thus holding both intentional and natural
characteristics (Pea, 1993; Perkins, 1993).

Implications for research and practice of cognitive tools

The term, ‘‘cognitive tool’’ is used with different conceptual meanings
in other fields of knowledge, such as the studies of language as a cog-
nitive tool. In the field of Instructional Technology, cognitive tools
have been viewed too simplistically as tangible objects that learners
use for their learning. Rethinking cognitive tools, therefore, is impor-
tant if we are to advance the meaning of the term for design, develop-
ment, research and practice beyond its abstract conception (Table 3).
In this paper, we have recommended the theories of distributed cogni-
tion and expertise to advance ideas and research about cognitive
tools. These two theories together help us examine the expertise of ev-
ery participant of an activity, including a cognitive tool, which con-
tributes to the distributed cognition in performing the task. Using
these two theories as lenses, we re-conceptualized cognitive tools as
technologies that are designed to bring their expertise to the perfor-
mance and, in result, with which learners interact and think in knowl-
edge construction. Several principles for the research and development
of cognitive tools can be recapitulated from the discussions above.

Tool design: differentiate the capabilities of the tool
from those of the human

Some argue that we need to be aware of the potential losses in our
intellectual abilities when using any new intellectual tool (Egan, 1998).
In terms of cognitive tools for learning, we should think about these
effects even earlier, when we design them. As the cognitive tool partici-
pates in the cognitive activity of learners, it alters the way they think
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and act. Understanding how the tool may enable and constrain the pos-
sible activities within the learning environment should help us design
tools that actually empower learners in their thinking (Kozma, 2000b).
The design of tools should be centered on the things that computers can
do better than humans without taking over the most important
cognitive tasks of learners (Dreyfus and Dreyfus, 1986; Norman, 1993).

Initially, computer tools were developed and researched specifically
to capture the expertise of experts within the field of artificial intelli-
gence or to be used in the classrooms for teaching school subjects.
The major mistake of both traditions was their focus on the design of
machines that resemble what we already have in our environment
(i.e., experts and teachers). The design of cognitive tools for learning
should be founded on the complete understanding of appropriate
learning theories and the unique processing capabilities of computers
(Kozma, 2000b). To this end, the first thing we need to remember (in
relation to the theory of distributed cognition) is that tools designed
to extend cognitive capabilities of learners should reflect what it
means to have a distribution of cognition. Many computer tools are
competitively developed nowadays for similar uses, pitching any spe-
cial features that differentiate them from their competitors. A tool’s
distinctive qualities from other tools, however, are not as important
as its affordances that are distinctive from humans for contributing to
the performance of tasks.

Activity design: regard cognitive tools as part of human expertise
and situate them in appropriate activities

Today’s real-world cognitive tools are part of the capabilities of
experts. Hence, we should think about the design of cognitive tools
for learning in relation to the theory of expertise. Tools in general are
integral parts of human activities, and the capacity to use tools is crit-
ical in judging our competence levels in many domains (Cobb et al.,
1997; Wertsch, 1998). Computerized tools nowadays are increasingly
critical parts of our cognitive activities, and in many fields, expertise
can not be accounted for without understanding experts’ use of their
tools. The design of cognitive tools should allow learners not only to
use the tools to learn specific content for planned lessons, but also to
use them in other relevant problem solving situations in ways similar
to how experts use their tools for various problems. We should not
attempt to assess the knowledge of learners without their cognitive
tools any more than we would assess the expertise of scientists
without their tools.

246



Computers as cognitive tools are essential for learners to be active
in contemporary constructivist learning environments. Ideally, the
application of cognitive tools for learning in schools or other educa-
tional contexts (e.g., online) should resemble the use of cognitive tools
in the world. This means that activities in the world, including their
processes and products, are replicated in the classroom or in the on-
line learning environment. Cognitive tools thus should be adopted to
transform the way learners interact in the classroom from the passiv-
ity of lectures to doing authentic tasks similar to the ones pursued in
the world (Herrington et al., 2003). The activities should be planned
to afford learners’ opportunities to design their own solutions to
problems, taking advantage of the capabilities of technology (Kozma,
2000b).

Research and practice for the partnership: assess learners
with their tools

By perceiving a tool as a partner of cognition working together
towards an activity such as solving a problem or accomplishing a
task, the boundaries between cognitive process and the outcomes of
cognitive process become fuzzy. The skills and strategies that learners
gain through the partnership (the effect ‘‘of’’) become learners’ capa-
bilities to perform better during the partnership (effect ‘‘with’’). Thus,
learning can only be assessed appropriately by examining a learner’s
performance with a tool. Some disappointment concerning learning
performance derived from the adoption of cognitive tools comes from
the measurement of the learner’s cognitive outcomes in a completely
different situation, i.e., without the tool (Salomon and Almog, 1998).

Research on learning with cognitive tools, therefore, should
account for the various aspects of learning situations that we have
discussed. The researchers should be able to scrutinize the effects
‘‘with’’ a cognitive tool and the resulting effects ‘‘of’’ it on the learn-
ers, which ultimately influence the effects ‘‘with’’ the tool when learn-
ers work with it again. These evolving effects and various transitions
can only be understood when we observe learners working with the
tool over a longer period time so that they actually build their rela-
tionship with the tool. The proposed integrated framework for cogni-
tive tools provides ways to examine computer tools with respect to
what affordances tools should have in what areas of expertise in what
levels with what kind of structures, and what roles we expect learners
to play in the structure of distributed cognition. Various alternative
research approaches should be adopted in order to capture this
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complex cognitive relationship within the distributed system (Kelly,
2003). As important bases of our theory, practice, and research, the
understanding of this relationship should contribute to pedagogical
and instructional design knowledge in education (Kozma, 2000b).

Research and practice for growth: study learner initiation
and the development of the distributed cognitive relationship

The mastering of nature and the mastering of behavior are mutually
linked, just as man’s alteration of nature alters man’s own nature
(Vygotsky, 1978, p. 55). ‘‘Ms. S., I don’t have a HyperCard mind,’’
blurted a child during the research conducted by Brown et al. (1993).
Despite high expectations, the researchers found that children were
not able to exploit many of the complex features of HyperCard suc-
cessfully (Brown et al., 1993); the affordances of the tool were pro-
vided, but never used. It is important to provide learners many
opportunities to initiate distributed relationships with tools and learn
how to master and work with tools in cognitive activities that require
the expertise of tools. They also need to learn how to design the
structure of distribution by exploiting the critical expertise of other
learners and certain tools among various resources. The development
of expertise with cognitive tools in collaboration with others is one of
the most important aspects of human activities and performances out-
side of school, and so should it be inside school (Pea, 1993).

To make a successful transition to the new distribution relation-
ship, teachers and instructional designers should allow more time for
the skills and knowledge development of individuals with gradually
fading degrees of external support (Glaser, 1996; Salomon, 1993a).
Learning activities should be focused on mastering various features
of the tool itself while maintaining the relevance of the real context
of problem solving situations. Teaching the tool without a meaning-
ful context is detrimental to advanced learning. As learners work
with the tools they should become confident in assessing the prob-
lem situations, developing their own strategies, and monitoring their
progress (Kozma, 2000b). Once they make this transition and gain
expertise with the tool, they will recognize when to rely on the tool
and when not to (Pea, 1993; Salomon, Salomon, 1993a). Evolving
expertise reveals more capacities and functions of the tool in the
performance of tasks, and this continuous reciprocal process that
happens during learning activities makes expertise grow even more
(Salomon, 1993a).
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Final thoughts on cognitive tools

Researchers often make analogies to physical tools to explain cogni-
tive tools. However, the analogy does not last once researchers get
into the substantive conversations about cognitive tools. In the earlier
research literature, intelligent agents, which we classified as outside
the margins of cognitive tools in Table 1, were perceived as cognitive
tools by becoming advisors or by hiding complex rules behind the
computer and letting users do the easy hands-on tasks. We believe
these tools have different purposes from cognitive tools. Consider a
physical tool, say a tennis racket, specifically for the effects ‘‘with’’
and ‘‘of’’ its use. A tennis racket extends human capabilities (e.g.,
increasing probabilities of reaching the ball and hitting it to a certain
direction) by virtue of its involvement in the game’s activities together
with the person (effects ‘‘with’’). The role of a coach, by contrast, is
giving advice, e.g., a coach’s revealing of rules and helpful tips may
help the player master the game. The physical residue of using the
racket (effects ‘‘of’’) could be a stronger arm and healthier body,
which transfers to other kinds of athletic activities, whereas the cogni-
tive residue of coaching could be more knowledge about how to grip
and swing the racket. We do not try to examine how well people play
tennis without giving them a racket, expecting them to play as good
as they could with it (Salomon et al., 1991).

Although the role of cognitive tools is similar to that of physical
tools, which is to provide an extension of our abilities, there is an
important fundamental difference. The resulting effect of using real
cognitive tools should be the better use of the tool itself for cognitive
activities as well as substantial cognitive growth that transfers to
other kinds of cognitive activities. The essential nature of a cognitive
tool cannot help someone learn without the appropriate use of a tool,
but the nature of a cognitive tools differ from that of traditional tools
in that as expertise grows we can adapt them for new creative activi-
ties. No amount of practice and coaching will enable someone to use
a tennis racket to play golf, but practice and guidance with using cog-
nitive tools may yield to innovative ways of thinking and problem
solving that educators have not even begun to imagine.
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