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Abstract
The objective of this study was to estimate the carbon footprint (CF) of milk production (in kg of  CO2 equivalents  (CO2e) 
per kg of fat and protein corrected milk (FPCM)) in dairy farms of the San Martín region, in the Peruvian Amazon. A cradle-
to-farm gate characterization and analysis were carried out on eight representative dairy farms. Greenhouse gas (GHG) 
emissions were estimated using equations, following the 2019 refinement of the 2006 IPCC Guidelines. The results showed 
an average milk production of 9.7 ± 0.82 L milk/cow/day, Gyr x Holstein crosses as the predominant breed, use of cultivated 
grasses such as Brachiaria brizantha, living fences (Guazuma ulmifolia Lam) as the predominant silvopastoral arrangement, 
and low level of external inputs such as feed or grain additives. In relation to CF, an average value of 2.26 ± 0.49 kg  CO2e/
kg FPCM was obtained, with enteric fermentation being the most important source (1.81 ± 0.51 kg  CO2e/kg FPCM), fol-
lowed by manure management, land use, and energy/transport (0.26 ± 0.06, 0.14 ± 0.04, and 0.05 ± 0.04 kg  CO2e/kg FPCM, 
respectively). Differences were found between farmers, obtaining lower CF values (1.76 vs 3.09 kg  CO2e/kg FPCM) on 
farms with better feed quality, higher production levels, and a higher percentage of lactating animals compared to dry cows. 
It is concluded that dairy farms in the Peruvian Amazon region can reduce their emissions if they improve their current 
feeding practices.
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Introduction

Globally, beef and milk production from cattle contributes 
41% and 29% of greenhouse gas (GHG) emissions from the 
livestock sector, respectively (Gerber et al. 2013). In Latin 
America, the main sources of GHG emissions are from land 
use, land use change, and forestry (35%) and agriculture 
(23%) (Wellenstein and Hickey 2021). In this context, one 
sustainable production alternative is the implementation and 
expansion of silvopastoral systems (SPS). GHG emissions 
can be reduced in SPS versus conventional grazing systems; 
hence, lower environmental burdens per product are gener-
ated (Rivera et al. 2016; Murgueitio et al. 2012).

Silvopastoral systems contribute to reduce deforestation, 
furnish a diversified source of income to farmers, provide 
ecosystem services (water, carbon sequestration, nutrient 

recycling, biodiversity), increase welfare and animal pro-
duction, as well as quality of pastures, and contribute to miti-
gate GHG emissions (Alonso 2011; Fernández 2008; Alegre 
et al. 2012; Fluker et al. 2016; Montagnini et al. 2013; Pérez 
et al. 2005; Pezo et al. 2019; Pizarro et al. 2019).

Livestock in Peru is characterized by small-scale produc-
tions (< 10 head of cattle), which represent 85.9% of the total 
nationally. Additionally, 39.4% of the national milk produc-
tion comes from these cattle herds (MINAGRI 2017). In the 
same way, the Peruvian Amazon is characterized by dairy 
cattle productions under SPS as “living fences” and “scat-
tered trees in pastures” (Pizarro et al. 2019). However, the 
environmental impact from this type of system is unknown.

Carbon footprint (CF) is an environmental impact indica-
tor, which estimates direct and indirect GHG emissions gen-
erated and emitted into the atmosphere during the life cycle 
of a product along the production chain (Vistoso et al. 2015). 
It is normally expressed in kg of  CO2 equivalent  (CO2e) 
per kg of product (IPCC 2019a). Some methodologies used 
for its evaluation are as follows: ISO 14040, 14044, 14067, 
PAS 2050, GHG Protocol, IDF Common Carbon Footprint 
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methodology (IDF 2015). It is crucial to know the CF value 
for the implementation of mitigation strategies (Mainar 
2019).

Therefore, the objective of this study was to estimate the 
CF of milk production (kg  CO2e/kg of FPCM) on silvopas-
toral dairy systems in the Peruvian Amazon.

Materials and methods

Study location

The study was carried out on eight farms in Juan Guerra, 
San Martín, Peru. Juan Guerra is located at 230 m above 
sea level, latitude 6° 35′ West, longitude 76° 19′ South. 
San Martin region is characterized by farms dedicated to 
milk production (32,697 t/year) and beef (5443 t/year) 
(MIDAGRI 2020). The Juan Guerra district has a semi-
dry and warm climate, a tropical dry forest ecosystem, an 
average temperature of 26.2 °C, and an annual rainfall of 
1213 mm (IDERSAM 2016).

Carbon footprint analysis

The methodology used was described by the methodological 
guide of the International Dairy Federation (IDF) 479/2015, 
which uses the methodological structure of ISO 14040, 
14044, 14067 standards, PAS 2050, and GHG Protocol (IDF 
2015). This study used the life cycle analysis (LCA) meth-
odology from “cradle to farm gate” to estimate and describe 
the carbon footprint of milk production for each of the 8 
farms evaluated. The LCA steps followed for its calculation 
are detailed below.

Goal and scope

System limits Figure 1 shows the incomes and outcomes 
from the system. GHG emissions such as methane, nitrous 
oxide, and carbon dioxide produced from “cradle to farm 
gate” were estimated.

Functional unit A total of 1 kg FPCM and 1 kg of beef were 
used as functional units. For these estimates, equations pro-
vided by the IDF (2015) were used.

Allocation The economic allocation was carried out follow-
ing the equation given by Thoma et al. (2013), considering 
4% fat and 3.5% protein. The mass allocation was based on 
FPCM (kg) and beef (kg) from surplus animals produced 
per year.

Data collection and feed samples

The data collected came from surveys conducted on eight 
farms located in the Juan Guerra district. The province and 
district were selected following the Qualitative Factors 
Assessment Methodology. It was a non-probabilistic selec-
tion. Also, the principal criteria to include farms was the 
farmer’s availability to work with the researchers, with at 
least 10 to 20% trees in the grazing area, milk production 
as the leading activity (60% milking cows), similar edaphic 
and environmental characteristics, and accessibility to make 
easer the sampling.

The survey consisted of questions at the farm level: land-
owner name, farm name, area (for crops, pastures (native 

FPCM (kg∕year) = production (kg∕year)

×
[

0.1226 ×milk fat % + 0.0776 ×milk protein % + 0.2534
]

Fig. 1  Limits of milk production system for each dairy farm in a “cradle to farm gate” approach in the San Martín region
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and/or cultivated), forage bank, primary forest, secondary 
forest, and infrastructure), type of silvopastoral arrange-
ments, and predominant tree species. At the livestock level: 
herd composition (number of animals per category), pre-
dominant genotype (%), milk production (kg/cow/day), feed 
inputs, fertilizers, machinery, fuel, energy, manure manage-
ment, and hours of grazing.

Subsequently, pasture and feed samples provided to ani-
mals were taken from each farm for each period of the year 
(rainy and dry season). The grass samples consisted mainly 
of Brachiaria brizantha, using the “hand sampling” meth-
odology (Flores 1983; Austin et al. 1983).

Greenhouse gas estimation

The CF estimation was performed using the refined equa-
tions given by the Intergovernmental Panel on Climate 
Change (IPCC 2019b, c). The global warming potentials 
(GWP) used were the following: 28 for methane, 265 for 

nitrous oxide, and 1 for carbon dioxide for a time horizon 
of 100 years (IPCC 2014). Microsoft Excel 2019 was used 
for the calculations. Table 1 details emission sources and 
equations used for their estimation.

Data analysis

This study used a descriptive statistical analysis such as 
medium and standard error.

Results

Characterization of the farms

The main characteristics of the eight farms (F1–F8) are in 
Table 2. The average area was 51.5 ± 26 ha, and 30.1 ha 
of these was used for grazing. The average tree cover was 
22.5%. The total size of dairy cows was 32 ± 6.3, of which 

Table 1  Emission sources and equations used to calculate carbon footprint from each farm evaluated in the San Martín region

a GWP global warming potential

Source Equations Result GWPa

Enteric methane 10.3, 10.4, 10.6, 10.8, 10.13, 10.14, 10.15, 10.16, 10.21 
(IPCC 2019b, c)

kg  CH4/year 28 (IPCC 2014)

Manure methane 10.23, 10.24 (IPCC 2019b, c) kg  CH4/year 28 (IPCC 2014)
Nitrous oxide from manure management 10.25, 10.28, 10.29, 10.31, 10.32, 10.33 (IPCC 2019b, 

c)
kg  N2O/year 265 (IPCC 2014)

Nitrous oxide from soil management 11.1, 11.9, 11.10, (IPCC 2019b, c) kg  N2O/year 265 (IPCC 2014)
Carbon dioxide from energy, fuel, and transport 3.2.1 (IPCC 2006), Ecoinvent (2010) kg  CO2/year 1 (IPCC 2014)

Table 2  Overall characteristics 
from each farm evaluated in the 
San Martín region

a Farm 1, bfarm 2, cfarm 3, dfarm 4, efarm 5, ffarm 6, gfarm 7, hfarm 8

Items Farms

F1a F2b F3c F4d F5e F6f F7g F8h

Surface, ha 54.0 44.0 88.6 22.5 22.5 29.0 90.0 53.5
Silvopastoralism (trees), % 31.4 33.2 24.3 37.2 37.2 12.9 15.2 16.3
Crops, ha 2.0 6.0 2.0 0.4 0.4 0.3 1.5 1.0
Pasture, ha 23.0 25.0 60.0 19.0 19.0 24.0 35.0 33.0
Average milk production, L/cow/day 10.1 9.3 9.5 9.8 9.8 11.3 10.0 8.6
Average production FPCM, kg/cow/day 10.6 9.7 9.9 10.2 10.2 11.8 10.5 9.0
Total, animals, # 56 54 97 96 96 79 37 56
Milking cows, # 17 14 18 22 22 32 13 15
Dry cows, # 11 11 15 20 20 14 11 4
Replacements, # 17 23 50 30 30 19 9 26
Bulls (reproductive male), # 2 1 2 1 0 2 1 1
Beef, # 9 5 12 24 24 12 3 10
Cull cows, # 3 3 3 4 4 5 2 2
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19 ± 6.2 were in the lactating stage. An average number of 
replacements and remnant animals (calves and bulls) were 
30 and 13, respectively. Each farm owned one male breeder 
since natural breeding predominates (Table 2).

The average milk production was 9.7 ± 0.82 L of milk/
cow/day (Table 2). Gyr x Holstein crosses were the predomi-
nant breed on farms evaluated. In regard to the grazing area, 
the main cultivated pasture was Brachiaria brizantha and 
living fences with Guazuma ulmifolia Lam leading was the 
main silvopastoral system arrangement. In addition, external 
inputs such as feed additives or cereals were used in negli-
gible quantity. Finally, it should be highlighted that none of 
the farms used synthetic fertilizers into the pasture.

Greenhouse gas emissions

The major source of emissions was enteric  CH4 (80%), fol-
lowed by  N2O from manure handling (10%).  CH4 emissions 
from milking cows were 312 ± 32 g  CH4/cow/day. Mean-
while,  CO2 emissions from fuel only represented 2% of total 
emissions. Only farms 2, 4, and 5 showed  CO2 emissions 
from the use of electrical energy because the remaining used 
solar panels (Table 3).

Greenhouse gas allocation

When a mass assignment was used, the average GHG emis-
sions were 2.26 kg  CO2e/kg FPCM in a range of 1.76 to 
3.09 kg  CO2e/kg FPCM (Table 3).

Regarding economic allocation, the allocation factor 
(AF) for milk was higher than the AF for meat (0.75 vs 
0.25). The results showed an average value of 1.68 ± 0.41 kg 
 CO2e kg/FPCM; enteric fermentation was the most impor-
tant source with 1.34 ± 0.34 kg  CO2e/kg FPCM, followed 
by manure management (0.19 ± 0.04 kg  CO2e/kg FPCM), 
land use (0.11 ± 0.03 kg  CO2e kg/FPCM), and energy/trans-
port (0.04 ± 0.03 kg  CO2e/kg FPCM) (Table 4). Numerical 
differences were found between farmers, obtaining lower 

CF values (1.12 vs 2.38 kg  CO2e/kg FPCM) on farms with 
improved food quality (high digestibility and protein in the 
diet), larger production levels, and a higher percentage of 
lactating animals compared to dry cows.

Discussion

Greenhouse gas emissions

The proportion of enteric  CH4 emissions was similar to 
Rivera et al. (2016), who reported that  CH4 represented 
up to 84% of the GHG for an intensive SPS (SPSi) of 
milk production in Colombia. However, it is greater than 
reported by Morais et al. (2018) in pastoral dairy farms 
in Portugal, with an emission range of 33 to 52%. Simi-
larly, it is larger than emitted by pastoral dairy systems in 
New Zealand (62%) (Flysjö et al. 2011). In the same way, 
comparing with non-pastoral systems, the results of this 
study were higher to that reported by Flysjö et al. (2011) 
in Sweden for semi-stable systems, where the enteric  CH4 
emission represented 46%.

Regarding  N2O emissions, this study estimated higher 
emissions (16%) than reported by Rivera et al. (2016) in 
Colombia, who estimated that 12% of total emissions 
inside farms with SPSi were for  N2O (related to chemical 
and organic fertilizers, N excretions via manure and urine). 
Nonetheless, they are lower than those found in a Brazil 
study, where manure emissions and excrement deposited 
into the field represented between 20 and 33% (including 
the use of fertilizers, lime, and pesticides) (Cerri et al. 2015).

Finally, regarding  CO2 emissions from energy use and 
transportation, this study obtained lower values (2%) than 
Rivera et al. (2016), who found an emission of 4% for  CO2 
in farms with SPSi, although the results observed on this 
study are inside the range observed by Cerri et al. (2015), 
who calculated those emissions from agricultural inputs, 
fossil fuels, and electricity that ranged from 1 to 11%.

Table 3  Emission sources in kg of  CO2e for each farm evaluated in the San Martín region

a Farm 1, bfarm 2, cfarm 3, dfarm 4, efarm 5, ffarm 6, gfarm 7, hfarm 8, ikg of milk corrected to 4% fat and 3.5% protein

Emission sources kg of  CO2e/farm/year Average Standard error

F1a F2b F3c F4d F5e F6f F7g F8h

Enteric methane 100,672 87,416 163,043 172,160 196,465 70,215 77,998 110,906 122,359 48.5
Manure methane 2,965 2,309 4,234 5,419 5,607 1,851 2,048 2,038 3,309 9.6
Nitrous oxide from manure handling 12,196 9,189 17,943 21,127 20,141 9,177 12,934 10,965 14,209 14.3
Nitrous oxide from soil management 7,108 5,653 11,353 12,448 13,119 5,349 8,184 10,648 9,233 11.3
Carbon dioxide from fuel 1,742 3,408 5,117 210 6,518 547 1,371 4,201 2,889 15.0
Carbon dioxide from energy 0 1,208 0 1,733 2,114 0 0 0 632 12.7
Total  CO2e emissions 124,683 109,182 201,689 213,096 243,964 87,139 102,535 138,759
kg  CO2e/kg iFPCM 1.9 2.2 3.09 2.59 1.77 1.76 2.08 2.71
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There are many factors to determine these differences 
in the proportion of emissions. Firstly, “off-farm” emis-
sions; therefore, when a study considers these emissions, 
 N2O and  CO2 quantity increases due to external inputs use; 
consequently, enteric methane emissions decrease.

Additionally, other factors are the annual milk yield and 
the number of cows (Knapp et al. 2014). This study found 
that on average 23.7% of total animals were cows in pro-
duction, a nether percentage than reported by Morais et al. 
(2018) for pastoral dairy farms in Portugal, which had a 
greater average (49.2%). Hence, if the total environmental 
burden from CF is divided exclusively on milking cow’s 
category instead of total animals, CF will be lower.

Furthermore, both animal genetics and feed digestibil-
ity are crucial factors in  CH4 emission (NRC 2001; Lassen 
and Løvendahl 2016). Other factors such as region (6.38 kg/
animal/day; FAO 2018), heat stress (Polsky and von Keyser-
lingk 2017), the type of tropical pasture, and management 
practices (Pezo 2017), feed consumption rate, type of car-
bohydrate, quality and forage species, physical processing, 

forage conservation, and feeding frequency (Knapp et al. 
2014) are important.

Concerning  CO2 emissions, Cool Effect (2021) indicates 
that the carbon footprint of the solar panel is about 20 times 
less than the carbon output of coal-fired electricity sources. 
Thereby, the use of renewable energy, as well as reduced use 
of fuel compared to intensive systems, supports the small 
emissions in the Peruvian tropical zone.

Greenhouse gas allocation

The CF found in this study (1.68 kg  CO2e/kg FPCM) is 
lower than reported by Rivera et al. (2016) for intensive sil-
vopastoral systems (SSPi) and conventional systems (2.05 
and 2.35 kg  CO2e kg/FPCM, respectively) on dairy farms in 
Colombia. Therefore, it is worth highlighting the viability 
of SPS to avoid importing balanced feed in large quantities, 
favoring self-sufficiency with protein banks (e.g., Leucaena 
leucocephala) (Pezo et al. 2019), helping to reduce CF. Like-
wise, the results of this work were within the range reported 

Table 4  Greenhouse gas emissions per unit of product (FPCM and meat) according to emission sources for each farm evaluated in the San Mar-
tín region

a Farm 1, bfarm 2, cfarm 3, dfarm 4, efarm 5, ffarm 6, gfarm 7, hfarm 8, ikg of milk corrected to 4% fat and 3.5% protein

FINCAS Enteric  CH4/kg 
 FPCMi

Manure  CH4/kg 
FPCM

N2O from 
manure 
handling/
kg FPCM

N2O from 
soil man-
agement/
kg FPCM

CO2 from fuel/kg 
FPCM

CO2 from energy/
kg FPCM

kg  CO2e/kg FPCM

F1a 1.24 0.04 0.15 0.09 0.02 0 1.54
F2b 1.08 0.03 0.11 0.07 0.04 0.01 1.35
F3c 1.93 0.05 0.21 0.13 0.06 0 2.38
F4d 1.56 0.05 0.19 0.11 0 0.02 1.93
F5e 1.29 0.04 0.13 0.09 0.04 0.01 1.6
F6f 1.2 0.03 0.16 0.09 0.01 0 1.49
F7g 0.85 0.02 0.14 0.09 0.01 0 1.12
F8h 1.6 0.03 0.16 0.17 0.06 0 2.02
Average 1.34 0.04 0.16 0.11 0.03 0.01 1.68
Standard error 0.10 0.02 0.03 0.03 0.05 0.04
FINCAS Enteric  CH4/kg 

beef
Manure  CH4/kg 

beef
N2O from 

manure 
handling/
kg beef

N2O from 
soil man-
agement/
kg beef

CO2 from fuel/kg 
beef

CO2 from energy/
kg beef

kg  CO2e/kg beef

F1a 13.17 0.39 1.6 0.93 0.23 0 16.31
F2b 20.12 0.53 2.11 1.3 0.78 0.28 25.12
F3c 33 0.86 3.63 2.3 1.04 0 40.82
F4d 20.44 0.64 2.51 1.49 0.02 0.21 25.31
F5e 15.01 0.43 1.54 1 0.5 0.16 18.64
F6f 15.66 0.41 2.05 1.19 0.12 0 19.43
F7g 21.99 0.58 3.65 2.31 0.39 0 28.9
F8h 21.88 0.4 2.16 2.32 0.83 0 27.6
Average 20.16 0.53 2.41 1.61 0.49 0.08 25.27
Standard error 0.49 0.08 0.19 0.17 0.19 0.14
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by Rivera et al. (2014) in Colombia to pastoral and intensive 
systems (1.61 and 1.76 kg  CO2e/kg FPCM, respectively).

Compared to pastoral farms, the average emission esti-
mated in this study is greater than those reported by Del 
Prado et al. (2013) in the UK on farms with 195 days of 
grazing and with extended grazing (1.07 and 1.77 kg  CO2e/
kg FPCM, respectively). In the same way, the results of this 
study were greater to those reported by Flysjö et al. (2011) 
for pastoral systems in New Zealand (0.6–1.52 kg  CO2e/kg 
FPCM), and by Laca et al. (2019) for Spain in pasture-based 
systems (0.69 kg  CO2e/kg FPCM).

However, dairy production systems in Eastern and West-
ern European countries (19.6 kg/cow/day) or New Zealand 
(15.23 L/cow/day) have milk production levels higher than 
this study. Thereby, CF decreases while productivity per 
animal increase, and other factors (Salas 2020; FAO and 
GDP 2018).

Compared to other Latin American studies, the aver-
age CF in this study was higher to reported by Wattiaux 
et al. (2016) in Costa Rica on pastoral dairy farms, where a 
range of partial CF (methane and nitrous oxide) from 0.38 to 
1.02 kg  CO2e/kg FPCM were found. Besides, the results of 
this work were larger than those reported by Lizarralde et al. 
(2014) in Uruguay on grazing dairy farms (0.99 ± 0.10 kg 
 CO2e/kg FPCM).

Although, it should be emphasized that both milking 
cows’ numbers as average milk production were higher in 
these studies (Costa Rica and Uruguay) compared to this 
work. It highlights the importance of intensification of these 
systems.

Nevertheless, the CF calculated in this work 
(1.68 ± 0.41 kg  CO2e kg/FPCM) is lower than that reported 
by Gaitán et al. (2016) in Nicaragua on small and medium 
pastoral farms (3.1 and 2.4 kg  CO2e kg/FPCM, respectively). 
Since Nicaragua study evaluated emissions “on” and “off-
farm”; while this research only carried out emissions “on-
farm.” Moreover, it is minor then the CF on dairy farms 
in South Asia, Sub-Saharan Africa, West Asia, and North 
Africa, where emission intensities were larger (between 4.1 
and 6.7 kg of  CO2e kg/FPCM) (FAO and GDP 2018).

Compared to intensive dairy farms, the results of this 
study were larger than those reported by Del Prado et al. 
(2013) in the UK on farms in confinement (1.14 kg  CO2e 
kg/FPCM) and by Vergé et al. (2013) in Canada on intensive 
dairy production systems (0.93–1.12 kg  CO2e kg/FPCM). 
This study agrees with Wattiaux et al. (2016), who indicate 
that methane emissions were mainly reduced with the high 
up consumption of feed with respect to the amount of pas-
ture provided to the animal. Although the GHG emissions 
found in this research were smaller than those estimated by 
Mazzetto et al. (2020), in Costa Rica on intensive special-
ized dairy farms in the highlands (3.86 kg  CO2e kg/FPCM).

In Latin American (LA) and subtropical regions, the 
results of this study were higher to those reported by 
Ribeiro-Filho et al. (2020), who calculated emission of 
0.88 to 1.04 kg  CO2e/kg ECM on pastoral dairy systems in 
subtropical regions. Similarly, Zhu et al. (2016) reported 
lower values for LA (1.45 kg  CO2e/kg FPCM). Differ-
ences between studies can be partly explained by various 
assumptions (e.g., emission factors, allocation of co-prod-
ucts, estimation of methane emissions, and  CO2-C seques-
tered), in addition, by the herd productivity and manure 
management (Ribeiro-Filho et al. 2020).

Nationally, there are few studies carried out on GHG 
emissions. For example, Bartl et al. (2011) estimated a 
CF of 1.74 and 5.42 kg  CO2e/kg ECM on farms in the 
coast and highlands of Peru, respectively. In the same way, 
Alvarado-Bolovich et al. (2021) estimated enteric methane 
production by cows, during dry and rainy seasons using 
IPCC Tier 3 in the highlands.

In conclusion, farms with improved livestock manage-
ment (higher percentage of cows in production, and higher 
production levels) and better feed quality had a lower CF. 
Moreover, it was found that the principal source of emis-
sion was enteric fermentation. Consequently, dairy farms 
in the Peruvian Amazon region could reduce their emis-
sions by improving their current management and feed-
ing practices. Additionally, the CF can be decreased if 
sustainable management practices are incorporated such 
as solar panels use, and small use of chemical fertilizers. 
However, more studies are also needed that consider esti-
mating carbon sequestration from trees, soil, and crops, 
and CF from off-farm feed to determine the true carbon 
balance of these systems.
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