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Abstract
It has been demonstrated that in Hertzian and randomly rough surface contact problems, linearity between relative contact 
area ar and reduced pressure p∗ ≡ p∕(E∗ḡc) holds if the root mean square gradient ḡc is evaluated over the actual contact area. 
In this study, using Green’s function molecular dynamics (GFMD), we show that for (1+1) dimensional contact simulations, 
the factor � = ar∕p

∗ cannot remain constant and scales linearly with the reduced thickness d̃ ≡ d∕ar in the limit of small d̃ , 
where d is the thickness of elastic body. This linearity not only exists in contacts with smooth indenter with harmonic height 
profiles, but also in contacts with randomly rough surfaces. The asymptotic curves for both large and small d̃ are presented 
and validated with numerical simulations based on GFMD.
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1 Introduction

Understanding the contact behavior of elastic body with 
finite thickness is of crucial interest in the fields of mechani-
cal engineering and material science. For example, a large 
number of experiment studies have demonstrated that the 
thickness of elastic layer can significantly affect the mechan-
ical and tribological properties in rigid substrate [1–4]. On 
the other hand, it also leads to an adjustment in adhesion 
by design if the thickness of the elastic layer is well chosen 
[5, 6].

As a fundamental and one of the most important issues 
in contact mechanics, how thickness affects the dependence 
of relative contact area ar on pressure p has been discussed 
in depth and made great progress in the last decades [7–9]. 
For contact problems of elastic half-space, many advanced 
simulation studies reported that the relative contact area ar 
increases linearly with pressure p from very small but non-
zero ar up to ar ≈ 0.1 in randomly rough surface contact 
simulations [10–14]. This linearity can be rationalized with 
Persson theory, which, not only predicts the area–pressure 

relation reasonably well [15, 16], but also finds a highly 
accurate pressure-dependence of the interfacial stiffness 
along with accurate distribution functions of the interfacial 
separation and correct spatial stress correlations [17, 18].

It has also been noticed that the linearity not only holds 
in randomly rough surfaces but also in periodic repeated 
indenter with harmonic height profiles [19–21]. Unfortu-
nately, the linearity breaks down when the thickness of the 
elastic layer is reduced from infinity to a finite value [7]. To 
solve this type of problem, especially in Hertzian contact 
model, the semi-analytical methods [8, 22] as well as the 
Green’s function method [9] were proposed in some studies 
and successfully managed to find a stable solution. However, 
considering that most of the indenters in practice are not 
of the Hertzian profile, more general indenters, such as the 
periodic repeated indenter with harmonic height profiles and 
randomly rough surfaces should be investigated.

Green’s function molecular dynamics (GFMD) is a 
boundary element method that allows us to address the lin-
ear elastic response of solids to boundary conditions [23, 
24]. Considerable studies have demonstrated that it is an 
efficient and reliable technique to study those contact prob-
lems of isotropic elastic bodies with infinite or finite thick-
ness [25–27]. On the other hand, the fast inertial relaxa-
tion engine (FIRE), which has been demonstrated several 
times to be an efficient optimization method in both particle 
based simulations and boundary value problems, can also 
be applied in this study to speedup the GFMD simulations, 
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details of the procedure have been discussed elsewhere [28, 
29]. In light of these facts, it is reasonable to expect that the 
optimized GFMD technique can contribute to determining 
the thickness effect of elastic body on the relation between 
contact area and pressure.

The main intention of this study is to identify the thick-
ness effects on the area–pressure relation for smooth 
indenter with harmonic height profiles and randomly rough 
surfaces. Towards this end, the dependence of prefactor � on 
the reduced thickness d̃ ≡ d∕ar and Poisson ratio � will be 
addressed in the framework of GFMD and the asymptotic 
behavior for small d̃ will be discussed in detail. For ran-
domly rough surface contacts, the effects of Hurst exponent 
H on the area–pressure relation will be addressed.

In the remaining part of this paper, the model and method 
are described in Sect. 2. Numerical results are presented in 
Sect. 3 and conclusions are drawn in the final Sect. 4.

2  Model and Method

In this study, we restrict our attention   on the (1 + 1) dimen-
sional elastic contact problems as the computational cost is 
much less than (2 + 1) dimensional contact simulations. On 
the other hand, the results obtained from (1 + 1) dimensional 
contact simulations still remain meaningful to practice, 
because they can give a true picture of those contact prob-
lems with strong anisotropic indenters such as the polished 
and scratched surfaces.

The elastic body is assumed to be homogeneous, isotropic 
elastic body so that the Hooke’s law can be applied. The 
thickness of the elastic body d can be either finite or infinite 
in the framework of GFMD and is considered as finite value 
in this study if not mentioned explicitly. The bottom of the 
elastic layer is fixed in space and the top is placed such that 
the normal displacement u(x) equals to zero as long as no 
external forces acting on the body.

The rigid indenter is modeled as either harmonic height 
profile or randomly rough surface. As shown in Fig. 1a, the 
harmonic height profile of the indenter is given by

where n > 0 , Rc denotes the variable of unit length and x the 
in-plane distance from a point to the center of the indenter. 
The value of n used in this study are restricted to n = 1.5 
(sharp indenter), n = 2 (Hertzian geometry) and n = 4 (blunt 
indenter).

As to the randomly rough surface, which sketched in 
Fig. 1b, the height profile h(x) is generated by assuming 
the random-phase approximation for the associated Fourier 
transform ĥ(q) , that is, ĥ(q) ∝

√
C(q) exp(i2𝜋𝜉q) , where �q is 

(1)h(x) =

(
Rc

n

)(
x

Rc

)n

,,

a (pseudo) random number generator, which produces random 
numbers uniformly distributed between [0, 1], q denotes the 
wave number. The proportional factor is chosen so that the 
root mean square height gradient equals to unity. The power 
spectrum C(q) applied in this study reads

where H is the Hurst exponent and Θ(∙) the Heaviside step 
function. qr = 2�∕�r and qs = 2�∕�s represent the wave 
numbers associated with the roll-off wavelength �r and 
short wavelength �s , respectively. The default surface used 
in this study is defined as follows: the thermodynamic limit 
�t = �r∕L is fixed to 1/8 as it has been demonstrated that any 
�t ≤ 1∕4 can provide an acceptable probability density of 
heights for randomly rough surfaces [30], where L denotes 
the length of the elastic body and is set to be unity through-
out this study. The continuum limit �c = �a∕�s is chosen 
to be 1/64 to guarantee the achievement of numerical con-
vergence, where �a denotes the discretization. The fractal 
limit �f = �s∕�r is set to be 1/512 so that small roughness 
is considered.

The hard-wall constraint, which is the oldest and most com-
monly used model, is applied here to describe the interaction 
between the indenter and the elastic layer. This can be stated 
as a non-holonomic boundary condition, namely,

where g(x) denotes the gap at the interface of indenter 
and elastic layer. The contact area therefore is defined by 
ar = N

g(x)=0
x ∕N total

x
 , where Ng(x)=0

x  represents the number of 

(2)C(q) =
C0Θ(qs − q)

[1 + (q∕qr )
2]0.5+H

,

(3)g(x) = h(x) − u(x) ≥ 0,,

Fig. 1  Schematic figure of the elastic body with finite thickness d 
and the rigid indenter with a harmonic height profile and b randomly 
rough surface. Normal pressure p is acting on the rigid indenter, the 
elastic body is confined on the rigid substrate, so that the displace-
ment of the bottom layer is fixed to zero
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discretization with g(x) = 0 and N total
x

 the total number of 
discretization. The displacement u(x) as well as the normal 
stress �(x) are not only expressed in real space, but also in 
Fourier space. Hence the following convention for the Fou-
rier transform should be applied.

The elastic energy of the layer with finite thickness can be 
formulated in Fourier space as below simply by following 
the work proposed by Carbone et al. [31],

where E∗ = E∕(1 − �
2) denotes the contact modulus of the 

elastic layer, E represents elastic modulus and � the Poisson 
ratio.

Throughout this study, the contact model mentioned 
above will be solved numerically using the Green’s func-
tion molecular dynamics simulations so that the Newton’s 
equation of motion for the displacement can be solved by 
locating the local minimum of the total potential energy. 
The central idea and corresponding equilibrium condition 
can be revisited in many related studies  [20, 23, 32–34]. 
A slightly modification in this study is that the damping 
term is replaced by the FIRE optimizer so that the minimum 
potential can be located quickly.

3  Numerical Results

For contacts of elastic half-space and periodic repeated 
indenter with harmonic height profile, the area–pressure 
relation can be given by

where the reduced pressure p∗ ≡ p∕(E∗ḡc) assumes to be 
small compared to unity. To discriminate the contacts of 
elastic half-space from the elastic layer with finite thick-
ness, the subscript notation “d” will be used in this study to 
indicate the finite thickness case and the subscript notation 
“ ∞ ” the elastic half-space case. As a result, �∞ represents 
the proportionality coefficient when the thickness of elastic 
body is infinity large.

For (2 + 1) dimensional elastic contacts, the expres-
sion of � is given by Müser [19]. In the case of (1 + 1) 

f̂ (q) =
1

L

∑

x

f (x) exp(iqx),

f (x) =
∑

q

f̂ (q) exp(−iqx).

(4)

Vela =
∑

q

qE∗

4
|û(q)|2

×
(3 − 4𝜈) cos h(2qd) + 2(qd)2 − 4𝜈(3 − 2𝜈) + 5

(3 − 4𝜈) sin h(2qd) − 2qd
,

(5)ar = �∞p
∗,,

dimensional elastic contacts, a similar expression for the 
proportionality coefficient can be obtained by following 
the spirit of the calculations presented in previous studies 
[19, 35], the result reads,

where � (∙) denotes the gamma function. When n = 2 , 
�∞ = 8∕(

√
3�) ≈ 1.47 , which has been reported by Dok-

kum et al. [20].
However, when the elastic half-space is replaced by 

elastic layer with finite thickness, especially the value 
of thickness d is relatively small, the linearity of the 
area–pressure relation cannot hold anymore and the thick-
ness d as well as the Poisson ratio � start to dominate the 
area–pressure relation.

According to previous studies on contact mechanics of 
elastic layer with finite thickness [8, 9, 22], the central 
quantities that matter the asymptotic behavior of small 
thickness should be the reduced thickness d̃ = d∕ar and 
Poisson ratio � . In this case, we expect that the area–pres-
sure relation can still be described by Eq. (5), while the 
coefficient should be replaced by �d and should be fully 
determined by the reduced thickness d̃ and the Poisson 
ratio � for a given indenter geometry.

Considering that the proportionality coefficient �∞ is 
only a constant for a given indenter geometry, the reduced 
coefficient �̃� ≡ 𝜅d∕𝜅∞ should yield

In the case of Hertzian contacts, the asymptotic behavior 
of area–pressure relation when the reduced thickness d̃ ≪ 1 
can be given by [8]

Furthermore, the root mean square gradient height deter-
mined over the actual contact area in Hertzian geometry 
reads ḡc = ar∕(2

√
3Rc) . It gives

where � is a dimensionless prefactor that only depends on 
the height profile of rigid indenter. For Hertzian geometry, 
it equals to 3�∕4 ≃ 2.36.

Results are shown in Fig.  2, for which we chose 
N total
x

= 218 and p∕(E∗Rc) = 2 × 10−3 while E∗ and Rc are 
fixed to unity. It reveals that the reduced coefficient �̃�d 
changes quite noticeably with decreasing reduced thick-
ness d̃ for different Poisson ratio, while it essentially 

(6)�∞ =

√
16

�(2n − 1)

� (
n

2
+ 1)

� (
n

2
+

1

2
)
,,

(7)�̃�d = �̃�d(d̃, 𝜈).

(8)
4Rcp

E∗a2
r

=
1

3

ar

d

(1 − �)2

1 − 2�
.

(9)�̃�d = 𝛼
1 − 2𝜈

(1 − 𝜈)2
d̃,
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plateaus at small d̃ . A qualitative difference at small d̃ 
between different Poisson ratio would be realized and the 
difference can be rationalized by Eq. (9).

If the Hertzian indenter is replaced by a sharp ( n = 1.5 ) or 
blunt ( n = 4.0 ) geometry, we get similar results. As shown in 
Figs. 3 and 4, for both sharp and blunt indenter, the reduced 
coefficient �̃�d converges to unity for large d̃ , which corre-
sponds to the solution of elastic half-space. On the other 
hand, the asymptotic behavior at small d̃ can also be well 
rationalized by Eq. (9), as long as the prefactor � be replaced 
by 2.20 for sharp geometry and 2.94 for blunt case.

Based on this fact, it is reasonable to expect that for all 
single asperity contacts, the linearity between �̃�d and d̃ in 

the limit of small d̃ holds as long as the Poisson ratio � is 
given and not equals to 0.5. This motivates us to investi-
gate the contact between elastic body of finite thickness 
and randomly rough surface. Basically, in the case of elas-
tic layer with finite thickness confined on a rigid substrate, 
the small value of thickness leads to large value of contact 
stiffness [36, 37]. As a result, for a given external load p, 
the thinner elastic layer leads to a smaller contact area ar , 
and if the thickness is small enough, the single asperity 
contact should be realized essentially. In this case, con-
sidering that the area–pressure relation of single asperity 
contacts at small d̃ can be well rationalized by Eq. (9), by 
adjusting the prefactor � accordingly, the relation should 
also work for randomly rough surface contacts.

Figure 5 shows the results of the ratio �̃�d∕d̃ versus the 
reduced thickness d̃ . All GFMD data points are aver-
aged over more than 32 different realizations, so that the 
random nature of the roughness can be captured. This 
figure confirms that for large d̃ , simulations results of 
�̃�d∕d̃ with different Hurst exponent and different Poisson 
ratio converge to a single curve 1∕d̃ , which means that 
�d = �∞ ≃ 1.75 [20]. This limit is nothing but the elastic 
contacts between randomly rough surface and the half-
space, which has been discussed many times. The interest-
ing part is located in the limit case where d̃ fairly small. In 
this limit, different Poisson ratio � leads to different �̃�d∕d̃ , 
while for a given Poisson ratio, the curves for different H 
converge to an identical limit, which is identical to the 
results of Eq. (9) with � ≃ 2�∕3.

The data between these two limits should also be 
noticed. As shown in Fig.  5, with decreasing of the 
reduced thickness d̃ , the Hurst exponent H and Poisson 
ratio � starts to play an important role on �̃�d∕d̃ . Hence 
the deviation of �̃�d∕d̃ with different H and � are observed. 

Fig. 2  Reduced coefficient �̃�d∕d̃ as a function of the reduced thick-
ness d̃ for different Poisson ratio � in the case of Hertzian geometry. 
Symbols represent the GFMD simulation results and the solid lines in 
the same color as the symbols indicate the asymptotic limits obtained 
from Eq. (9)

Fig. 3  Same as Fig.  2, however, this time for sharp indenter with 
n = 1.5

Fig. 4  Same as Fig.  2, however, this time for blunt indenter with 
n = 4.0
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For a given Poisson ratio, small H leads to large �̃�d at the 
beginning, and the deviation increases with the decreasing 
of d̃ . However, as d̃ even smaller, the deviation of �̃�d∕d̃ 
eventually decreases and finally the curves converge to a 
constant which can be fully determined by Poisson ratio.

The reason for this trend can be potentially linked to the 
distribution of contact patch areas and the characteristic 
contact patch size Ac , which we define to be the expected 
patch size that a randomly picked contact point belongs to. 
As mentioned in previous studies, for H < 0.5 , the charac-
teristic contact areas are fairly small, so that large contact 
patches are not possible, In contrast, for H > 0.5 , typically 
for H = 0.8 , large contact patches can be realized easily for 
a small pressure [21, 38]. Therefore, large value of �̃�d∕d̃ for 
small H can be observed at medium reduced thickness d̃ . 
As reduced thickness decreases smaller and smaller, con-
sidering that the bottom of elastic layer is fixed in space, the 
effect of applied load on the stress and contact area is fully 
confined in a fairly small range of the same order of d and 
therefore cannot have any effect to neighbor patches. In this 
case, the effect of Hurst exponent on �̃�d∕d̃ is attenuated and 
finally eliminated.

4  Conclusions

For elastic contacts of either smooth indenter with harmonic 
height profiles or randomly rough surfaces, the relative con-
tact area ar depends linearly on reduced pressure p∗ if the 
thickness of the elastic body is infinitely large, and the root 

mean square gradient height is evaluated over the actual con-
tact area. Hence the linearity coefficient �∞ ≡ ar∕p

∗ can be 
realized.

In this study, using Green’s function molecular dynamics 
simulations, we shown that for contacts of elastic layer with 
finite thickness, the linearity between relative contact area ar 
and reduced pressure p∗ cannot hold anymore. Instead, for a 
given indenter, the reduced coefficient �̃�d ≡ 𝜅d∕𝜅∞ depends 
strongly on the reduced thickness d̃ and the Poisson ratio.

For a given Poisson ratio � ≠ 0.5 , because the dependence 
of �̃�d on reduced thickness d̃ exhibits strong nonlinearity, it 
is difficult to determine the analytical expression to describe 
the area–pressure relation, especially for randomly rough 
surface contacts. Nevertheless, the limit case for both large 
and small d̃ still can be addressed. For large limit of d̃ , the 
area–pressure relation is reduced to the solution of contacts 
between elastic half-space and rigid indenter. While for the 
small limit of d̃ , the linearity between the reduced coefficient 
�̃�d and the reduced d̃ is obtained, which is given in Eq. (9). 
This linearity not only holds for Hertzian contacts, but also 
for any smooth indenter with harmonic height profiles and 
randomly rough surfaces. It also should be noticed that for 
randomly rough contacts, in the limit of small d̃ , the effect of 
Hurst exponent eventually died out as long as the root mean 
square gradient height is evaluated over the actual contact 
area, so that the linearity between �̃�d and d̃ only depends on 
the Poisson ratio and the prefactor �.
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