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Abstract 
The Archard equation is widely employed to predict wear in engineering practice, but its use is usually restricted to the cases 
of sufficiently long wear duration, so the transient running-in behavior can be neglected with respect to the steady-state wear. 
To address this problem, here the steady state wear equation is extended into the running-in regime based on the bearing 
ratio curve representing the initial surface topography. This approach is verified using a unidirectional dry sliding of steel 
against PTFE and the extended equation is shown to be able to predict service life or to obtain wear coefficients regardless 
of the test duration if the initial surface topography is defined. It is also found that the bearing ratio curve can be efficiently 
approximated using the logistic function calibrated by four standard surface roughness parameters. This approximation 
proves to be more accurate than the widely used Gaussian normal distribution function.
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1 Introduction

Wear of two conformal surfaces rubbing against each other 
under either dry or lubricated conditions can be conveniently 
described using the Archard equation [1] that was developed 
assuming material removal at the contact points formed by 
plastic deformation. This equation postulates that the volume 
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worn per unit sliding distance is proportional to the applied 
load and is inversely proportional to the hardness of the 
softer surface, with the coefficient of proportionality being 
interpreted as the probability to generate a wear particle at 
a given contact point, the number of loading cycles needed 
to remove a material fragment, or the parameter correlated 
with the wear particle size [2]. Although the model was for-
mulated based on an idealized depiction of adhesive wear, it 
is indifferent to the actual mechanism of material removal, 
and an identical equation can be derived for abrasive wear 
[2] and, possibly, for other types of wear [3] as well.

Due to its simplicity, the Archard equation is widely 
employed to predict material removal in engineering prac-
tice, with the applications ranging from wind turbine gear-
boxes [4] to prosthetic joints [5] to nano-electro-mechanical 
devices [6]. The predictions, however, can be considered 
accurate only if the material removal process lasts suf-
ficiently long time, so the transient running-in behavior, 
observed until the stable surface conditions are established 
[2], can be neglected with respect to the steady-state wear 
[7]. It is obvious that in some cases, when large wear is not 
tolerated, such as in the applications involving thin coatings 
[8], this condition can be difficult to satisfy.

To address the problem of the transient running-in wear, 
surface roughness should be considered, as was recognized 
already in 1965 [9] (it is obvious that surface finish is not 
the only parameter affecting running-in, but all other factors, 
such as formation of transfer layers and loose wear parti-
cles, and chemical or physical interactions, are neglected 
to a first approximation). At present, the problem is usu-
ally solved by numerical modeling (see [10–12] as a few 
recent examples) based on statistical description of rough 
surfaces suggested by Greenwood and Williamson [13]. In 
this approach, purely elastic [13] or elastoplastic [14, 15] 
asperities of certain radius and areal density are assumed to 
have some height distribution (usually – Gaussian [12], less 
often – Weibull [11]), which yields a functional relationship 
between height/separation and truncation-based contact area 
needed to model the transient wear.

However, even if all the assumptions made are correct, 
which is not necessarily true [16], obtaining the rough 
surfaces’ spectral moments required to execute the above 
models may become a challenging task due to uncertainties 
related to both measurement and computing methodologies 
[17–19]. On the other hand, without making any assump-
tion about the studied surface, the bearing ratio curves (the 
Abbott-Firestone curves [20]), which are readily obtained 
in all modern profilers, can provide the required relation-
ship between height and contact area. This ability calls to 
be explored in relation to wear studies. To this end, using 
the bearing ratio principle, we will develop here a straight-
forward analytical approach, somewhat in the spirit of the 
original “simple theory of mechanical wear”, to extend 

Archard’s famous steady-state wear equation into the tran-
sient running-in regime.

2  Analysis of Running‑in Wear

Schematic of a typical wear curve is presented in Fig. 1 [21, 
22], where all three stages of the wear evolution are shown. 
The initial running-in period is characterized by a high wear 
rate that is gradually reduced to a lower value as the system 
reaches the steady state. The steady state period lasts until 
increased friction, temperature, and/or vibration of worn 
parts induce the final stage of an accelerated wear that even-
tually leads to a failure. Here, we will focus on the analysis 
of wear during the initial running-in (breaking-in) period.

It is long known that contact between rough surfaces 
takes place at single asperities, so the real contact area is just 
a fraction of the nominal contact at any given moment, as 
defined by the applied load [13, 23]. However, in the process 
of steady state rubbing, each contact point is being formed 
and then reduced to zero as other contact points are estab-
lished elsewhere in the surface [1]. Given that the average 
wear depth increases with a constant rate after the running-
in period is finished, this means that 100% of the nominal 
contact area participate (though not simultaneously) in the 
steady state wear process.

These steady state surface conditions are characterized 
by a certain roughness that remains the same despite the 
surface continues to recess [24] and is defined by the rela-
tive motion, applied load, materials, and environment, while 
being different from and independent of the original topog-
raphy that can be either roughened or smoothened [21]. 
This allows us to assume that the initial surface should be 
consumed completely from the highest to the lowest point 
during running-in and, hence, the total height of initial pro-
file, Rt, may correspond to the wear depth at the end of the 
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Fig. 1  Typical wear curve. (I) Running-in stage. (II) Steady-state 
wear stage. (III) Wear-out stage



Tribology Letters (2022) 70:59 

1 3

Page 3 of 8 59

running-in stage (regardless of whether the surface obtained 
in steady state is rougher or smoother). This idea is not new; 
in slightly different terms, it was formulated in [9]. The 
question is how fast the surface can recess to this point.

To answer this question, we will need to express the 
Archard equation, which was defined for 100% of the nomi-
nal contact area, in terms of the area that changes gradually 
from 0 to 100% as the material is removed from the highest 
to the lowest point of the initial surface. Applying a simple 
truncation approach, this can be achieved using the bear-
ing ratio (material ratio) curve [20]. This curve shows the 
material ratio (fraction of truncation line lying within the 
material), Mr, which changes from 0 to 100%, as a func-
tion of height, h, at which this line is drawn, as presented 
in Fig. 2. Obviously, utilizing real measured bearing ratio 
curves would yield the most accurate results, but giving up 
on some accuracy to simplify the method significantly, we 
will approximate the bearing curve with a mathematical 
function.

Experimenting with different sigmoid functions, one can 
find that the logistic equation introduced originally to model 
population growth [25] is able to represent the bearing ratio 
curve with astonishing accuracy. Written in terms of the 
bearing ratio curve, the logistic function achieves the form

where the constants a and b describe the steepness of the 
curve and the height value of the curve’s midpoint, respec-
tively. Both constants can be found by calibrating this equa-
tion against the measured bearing ratio curve. Substituting 
the coordinates (h1, Mr1) and (h2, Mr2) that define the sur-
face core height, Rk (Fig. 2), into Eq. (1), we obtain a system 
of two equations that yields

(1)Mr =
100

1 + ea(b+h)

where Rk, Mr1, and Mr2 are the standard output parameters 
in modern profilers. To find b, which defines the curve’s 
position along the h axis, we should recall that the logis-
tic function goes from −∞ to +∞ , so it must be truncated 
to represent the real surface profile. Given that the high-
est surface point most likely comes in contact first and is 
unequivocally defined, it would be best to place the origin 
there for the wear study. Hence, bearing in mind that b is the 
distance from the origin to the height at which the material 
ratio equals 50%, we can conclude that

as shown in Fig. 2. In case the profiler cannot be configured 
to display R

�c(0%−50%) , the constant b can be computed by

as follows from Fig. 2, with Rpk
∗ and Rk also being standard 

parameters. It should be noted, though, that some simpler 
profilers may not offer the possibility to register the high-
est peak height, Rpk

∗ . In this case, the constant b can be 
approximated by

but the more the surface departs from symmetry, containing 
mainly peaks or being mainly made up of valleys, the less 
accurate the approximation is.

Having Eq. (1) calibrated, we can now proceed to modi-
fying the Archard wear equation [1]. In its classical form, 
this equation reads

(2)a =
1

Rk

ln

(
100∕Mr1 − 1

100∕Mr2 − 1

)

(3a)b = R
�c(0%−50%)

(3b)b = R∗
pk
+

Rk

2

(3c)b ≈
Rt

2
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Fig. 2  Surface profile and bearing ratio curve.  Rt, total roughness 
height.  Rk, core roughness height.  Mr1 and  Mr2, smallest and greatest 
material ratios, respectively, at the limits of the core roughness.  Rpk*, 
highest peak height.  Rpk, reduced peak height.  A1, equivalent triangle 

peak area.  Rvk*, deepest valley depth.  Rvk, reduced valley depth.  A2, 
equivalent triangle valley area.  Rδc(0%-50%), height difference matching 
material ratios of 0 and 50%
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where V is the worn volume, N is the normal load, L is the 
sliding distance, H is the hardness and K is the dimension-
less wear coefficient. Normalizing this equation by the 
nominal contact area, replacing the sliding distance with 
the product of speed and time, hiding the hardness into the 
dimensional wear coefficient, recalling that we deal with 
the decreasing height (instead of the increasing depth), and, 
finally, expressing it in terms of the wear rate, we obtain

where t is the time, k is the dimensional wear coefficient 
equal to K/H, p is the nominal contact pressure, and v is 
the sliding speed (with roughness remaining constant but 
neglected).

Equation (5) is valid for the steady state rubbing, which 
(per our simplifying analysis above) starts operating 
after the height measured from the point of first contact 
is reduced by the value of Rt, so that the highest surface 
point is located at the position of the initial material ratio 
of 100%. Using the same logic, we can think about what 
happens when the wear depth is smaller than Rt. If the 
dimensional wear coefficient and the sliding speed remain 
the same, the only parameter that can affect the wear rate 
is the pressure that should be inversely proportional to the 
contact area (provided that the normal load is also kept 
constant). Assuming that the contact area should change 
in accord with the changes in the material ratio, we can 
rewrite Eq. (5) as

that should be valid for both the running-in and steady state 
rubbing. Now, substituting Eq. (1) into Eq. (6) gives

Solving Eq. (7) with an initial condition of h = 0 at t = 0 , 
we obtain an extended Archard equation that can be used 
to find wear coefficients, or to predict wear or service time 
if the wear coefficient is known, regardless of the material 
removal process duration

(4)V = K
NL

H

(5)
dh

dt
= −kpv

(6)
dh

dt
= −kpv

100

Mr

(7)
dh

dt
= −kpv

(
1 + ea(b+h)

)

(8)h = −
1

a
ln
((
1 + eab

)
eakpvt − eab

)

3  Experimental Details

A custom ring-on-block tribometer (Fig. 3) used here to 
verify the wear model in unidirectional sliding consists of 
a DC motor-driven spindle and a loading frame that can 
rotate and move radially with respect to the spindle’s axis 
of rotation. A ring sample is fixed to the spindle’s shaft and 
rotated with a constant speed, ω. Below the ring is a block 
sample bearing a protruding tooth used to provide constant 
contact area during the wear tests. The block is fixed to the 
loading frame and the tooth is pressed against the rotating 
ring under a constant normal load, N, which is applied by a 
linear actuator controlled in a closed loop using the feedback 
received from a normal force transducer.

The change in distance d measured by a proximity probe 
represents the change in a relative position between the ring 
and the block, which is equal to the wear depth. A friction 
moment, Mf, that is produced due to the sliding between 
the ring and the block, pushes the loading frame around the 
spindle’s axis (needed to keep the contact area constant), 
but its motion is stopped by a friction force transducer to 
quantify the friction force, F. The effect of friction produced 
by a rotary bearing is canceled by a proper calibration of the 
force transducer.

In this work, the ring sample was made from the mild 
steel SAE 1045 with Vickers hardness of HV 320 and had 
an outer diameter of 38 mm and the average roughness, Ra, 
of 2.6 µm. The block samples were made from PTFE with 
Vickers hardness of HV 6.2 and had the tooth cross-section 
area of 10 × 2  mm2. The steel-on-PTFE tribo-pair was cho-
sen because it has relatively high wear rate and low stable 
friction [2, 26], which allows to verify conveniently the 
Archard wear equation within a comparatively short time.

Block sample Ring sample 
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Mf

Proximity 
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d

Fric�on 
force 

transducer 

Normal force 
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Linear actuator

Linear bearing 
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Fig. 3  Schematic of the ring-on-block tribometer
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Before performing actual tests, each PTFE tooth was 
first ran-in to establish a conformal contact with the ring. 
Then, without dismounting the block sample from the rig, 
the tooth was ground using #220 or #320 grit SiC sandpa-
per wrapped around the manually and reciprocally rotated 
ring, while being pressed against it under the normal load 
of 5 N. This roughening procedure was repeated before each 
test. After roughening, the tested tooth was cleaned with a 
fresh dry residue-free wipe and profiled along its length (in 
parallel to the spindle’s axis of rotation) using a portable sty-
lus profiler Waveline W5 (Jenoptik, Jena, Germany). Then, 
the ring was cleaned with acetone and set into motion with 
a speed of approximately 250 or 500 rpm. The tooth was 
pressed against the rotating ring under the normal load of 5 
or 10 N to carry out a wear test that lasted for about 3 times 
the running-in duration, so the samples were brought well 
into the steady state wear regime. This roughen-then-test 
sequence was repeated until the tooth was completely worn 
(after 4–6 consecutive runs) before mounting the next block 
sample. Each combination of the load, speed and initial sur-
face finish was tested at least 4 times. The temperature and 
relative humidity in the lab were 23–26 °C and 30–50%, 
respectively.

To illustrate the bearing ratio curve approximation with 
logistic function, the studied surfaces were characterized 
using a 3D optical profiler ContourGT-I (Bruker, San Jose, 
CA).

4  Model Verification

Figure 4 presents the steady state coefficients of friction and 
wear obtained for PTFE blocks ground with two different 
sandpapers and pressed under two different loads against a 
steel ring rotating with two different speeds (in total, 8 com-
binations of roughness, load, and speed). The same results 
are shown as a function of each parameter, and as expected, 
both the coefficient of wear and the coefficient of friction 
are found to be independent of either the normal load, the 
sliding speed, or the initial roughness. The variances of both 
coefficients are predictably high [2] and their mean values 
( f = 0.25,K = 3.3 ∙ 10−5 ) correspond to the literature data 
[2, 26], suggesting that these results are coherent so they can 
be used to verify the model.

Several illustrative examples of the evolution of wear 
depth plotted as a function of time are shown in Fig. 5a. The 
experimental results are presented as they were recorded. 
The model predictions were computed using Eq. (8), with 
the constants a and b obtained from the initial surface topog-
raphy using Eqs. (2) and (3c), and the coefficient of wear k 
obtained from the steady state portion of each specific exper-
iment using Eq. (5). It is obvious that there is a good match 
between the measured and predicted results, though the wear 

depth prediction during running-in is less accurate than that 
during steady state, as can be seen in inset in Fig. 5a. In 
line with this finding, analysis of the fit quality reveals that 
the least (among all experiments) coefficients of determina-
tion,  R2, are 0.914 and 0.998 for the running-in (h ≤  Rt) and 
steady state (h >  Rt) portions of wear curves, respectively. 
Thinking about the differences between the experiment and 
the theory, we can possibly attribute them to (1) the fact that 
the representative bearing ratio curves used in calculations 
were obtained from the profile traces of 4.8 mm long so they 
could have somewhat smaller total peak-to-valley height 
than the real bearing ratio curves of the nominal contact 
area of 10 × 2  mm2, (2) the use of approximated Eq. (3c), 
(3) neglect of surface deformation and the corresponding 
increase of contact area, and (4) the assumption that such 
complex phenomenon as running-in can be reduced to the 
effect of roughness only, with all other contributors, such 
as formation of transfer layers and loose wear particles, and 
chemical or physical interactions being neglected to a first 
approximation.

A complete data set of the measured and estimated total 
wear depth values is presented in Fig. 5b. Again, we can 
see that the match between the theory and the experiment 
is good, with the correlation trendline exhibiting the slope 
of nearly 1 calculated with the coefficient of determination 
of 0.998. This finally proves that the above analysis of the 
running-in wear is correct for at least the conditions tested 
here. Considering that the original Archard wear model has 
been verified under a wide range of conditions over the last 
70 years, it is possible to assume that the extension of this 
model can be used to predict the wear depth with reasonable 
accuracy under other conditions as well. Interestingly, given 
that the real contact area is not needed to be known to find 
wear, this model indirectly suggests that the acquired (steady 
state) surface roughness can possibly be estimated without 
knowing the initial surface finish.

In addition, although it is clear from Fig. 5 that the use 
of logistic function to approximate the bearing ratio curve 
is legitimate, it would still be instructional to illustrate the 
quality of this approximation here. Figure 6 presents three 
examples of the bearing ratio curve obtained for the PTFE 
surfaces before and after the wear test. The curves are shown 
in the as measured and approximated forms, with the two 
approximations based on (1) the logistic function built using 
Eqs. (1)–(3) calibrated with the measured Rk, Mr1, Mr2, and 
Rpk* and (2) the Gaussian distribution function calibrated with 
the measured root-mean-square roughness, Rq. The compari-
son based on plotting the relative error

(9)E =
||hm − he

||
Rt

⋅ 100
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where hm and he are the measured and estimated heights, 
respectively, proves that the logistic approximation is bet-
ter than the widely employed Gaussian approximation. The 
average relative errors (for the logistic function – 0.72%, 

0.95% and 0.27% and for the Gaussian function – 0.35%, 
1.61% and 0.47% for Fig. 6a–c, respectively) demonstrate 
that the logistic approximation is about 20% more accurate 
than the Gaussian approximation. Though this improvement 
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in accuracy may be not significant considering that only a 
small deviation from the measured data is observed here 
with both approximations (see Fig. 6), the logistic descrip-
tion of rough surfaces is simpler, which can make it more 
attractive in engineering practice.

5  Conclusion

The results obtained in this work can be summarized to 
draw the following conclusions:

(1) The steady state Archard wear equation was extended 
into the running-in regime using the bearing ratio curve 
representing the initial surface topography.

(2) If the initial surface finish is defined, the extended equa-
tion can be employed (a) to evaluate the wear coeffi-
cient after measuring the wear depth only once (with-
out the need to interrupt testing for finding intermediate 
values), and (b) to predict service life under given load-
ing conditions or to determine the loading conditions 

for a required service life when the wear coefficient is 
known.

(3) The bearing ratio curve can be efficiently approximated 
using the logistic function calibrated by four standard 
surface roughness parameters, and this approxima-
tion is found to be more accurate than the widely used 
Gaussian normal distribution function.

(4) Regardless of the approximation accuracy, the logis-
tic representation of surface finish is simpler than that 
based on the normal distribution function and, given 
that the logistic function has easily calculated deriva-
tive and antiderivative, it may become useful in contact 
mechanics.
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