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Abstract
The detection of changes in surface texture characteristics is an important issue in manufacturing, contact mechanics, control 
of interactions between surfaces, machine failure analysis, and others. These changes can be detected early on when surface 
texture is quantified locally at each point. To this end, a new method called local directional fractal signature has recently 
been developed that calculates local fractal dimensions (FD = 3 − slope) at individual scales and directions. In this method, 
texture parameters are derived from the slopes of lines fitted to log–log plots of local surface profiles against scales, and FDs 
to measure local surface roughness and directionality. First, the method is tested on computer-generated isotropic fractal sur-
faces with the objective to evaluate its ability to differentiate between surfaces exhibiting an increasing local roughness. This 
follows the method application to detect the anisotropy changes in computer-generated surfaces with increasing roughness 
in two directions. Finally, the method’s detection ability in finding differences between surfaces is evaluated. Microscopic 
range-images of sandblasted and abraded titanium alloy plates are used in the evaluation. This work is a further contribution 
to the advancement in the characterization of surface textures, the numerical tools development for the design of tribological 
components and the diagnosis of worn and damaged surfaces. Practical applications of the method (e.g., classification of 
wear images, characterization of coated and uncoated surfaces) would be reported later in the future.
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1  Introduction

Fractal geometry is a foundation of the numerical methods 
used to characterize surface textures. Two fractal-based 
methods currently included in ASME [1] and ISO [2, 3] 
standards are: a patchwork and a morphological structur-
ing element method. These two methods measure a surface 
roughness by calculating a fractal dimension (FD). A higher 
value of the dimension means a rougher surface. Successful 
applications of these standard methods have been reported. 
For example, the former has been used effectively to meas-
ure a skin roughness [4] and to study the effects of a food 
surface roughness on an oil absorption [5]. The latter has 
been useful in the roughness measurement of human cor-
nea membrane [6], polymer films [7] and aluminum nitride 

epilayers [8]. The range of applications of these methods is, 
however, limited. This arises from the fact that the meth-
ods provide a single value of FD for the entire surface area, 
while currently produced surfaces exhibit topographical fea-
tures of various sizes and orientations recurring at different 
locations.

Previous studies have shown that the directionality, size 
and spatial location of surface topographical features affect 
interactions between surfaces. For example, the local surface 
roughness has been shown to influence the frictional shear 
stress and the flash temperature in fretting contacts [9], the 
quality of sheet metal forming products [10] and others. In 
other study, the stimulation to growth of trabecular bone 
on implant surfaces has been attributed to the roughness 
and directionality of local micro-texture patterns [11]. The 
strong link has been reported between the emissivity of a 
material surface and the local roughness factors [12]. There-
fore, it seems necessary to develop methods that calculate 
FDs for local surface features/patterns at individual scales 
and in different directions.
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Our earlier unified approach proposed for directional 
fractal signatures (DFSs) addresses the problem of cal-
culating local FDs to some extent [13]. It quantifies the 
surface roughness, curvature and slope over a range of 
scales in different directions. However, the limitation is 
that the surface topographical features are quantified with-
out providing the information about where these features 
are located on the surface.

Several fractal methods are able to quantify changes 
of surface roughness at single locations. For example, 
the method developed by Pentland [14] divides the sur-
face image data into non-overlapping windows and then, 
applies a Fractal Brownian function to each window to 
calculate a local FD. The method by Novianto et al. cal-
culates FDs at each pixel location by applying a blanket 
covering algorithm to moving windows [15]. Wenxue et al. 
proposed a triangular-prism method that calculates local 
FDs using a divisor step sampling algorithm [16]. The 
shortcoming of these methods is that they do not calculate 
FDs at individual scales and directions.

In the present work, we propose a new method, called 
local directional fractal signatures (LDFS) method, that 
calculates FSs in all possible directions at each location 
point, i.e., at each pixel on a surface image. The directions 
are automatically selected using a special algorithm called 
automated circumferential direction selection (ACDS). 
The algorithm uses a small circular search region that is 
centered at pixel. Based on the border and diameters of 
the region, local surface profiles comprising image gray-
scale level values are selected in different directions. DFSs 
are then calculated for each local profile. The calculation 
is carried out at each pixel location and then, the whole 
process is repeated for larger size circular regions. The 
performance of this method was evaluated on computer-
generated isotropic fractal surfaces with increasing FD and 
anisotropic surfaces with two dominating directions and 
on confocal microscopy images of sandblasted and ground 
surfaces.

2 � Materials and Methods

2.1 � Texture Representation

Surface texture is represented as an image with Nx 
by Ny pixels and Nz (= 255) grey-scale levels in the 
horizontal and  vertical directions, respectively. The 
image can be defined as a function zij = I

(
xi, yj

)
 which 

assigns a grey-scale level value zij ∈ Lz to a pixel 
located at 

(
xi, yj

)
∈ Lx × Ly , where Lx =

{
1, 2,… ,Nx

}
 , 

Ly =
{
1, 2,… ,Ny

}
 and Lz =

{
0, 1,… ,Nz

}
 are spatial and 

grey-scale level domains.

2.2 � LDFS Method

The method calculates FSs in all possible directions and 
at each pixel location of the surface image. Directions are 
automatically selected using an ACDS algorithm. The 
algorithm generates circular search regions with radii 
ranging from 1 to Nr in steps of one pixel, i.e., r = 1,2, 
…, Nr where Nr = floor(min(Ny, Nx)/10) is the maximum 
radius. The value of 1/10 is chosen in accordance with the 
Rank Taylor Hobson criterion that the surface sampling 
length should include about 10 roughness marks [17, 18]. 
The following steps are taken to select the directions:

1.	 Let r = 1.
2.	 Centre a circular search region Lxy of radius r at pixel 

(x,y) (Fig. 1a).
3.	 Select border pixels of the region (Fig. 1b).
4.	 For each pixel selected generate a diameter line (Fig. 1c) 

and then, rasterize the line using the Bresenham’s line 
algorithm (Fig. 1d).

5.	 Store pixels of the rasterized lines into sets P
�nr

 , 
n = 1, 2,… ,Nl where Nl is the total number of lines. 
The set P

�nr
 represents a local surface profile with the 

direction of �n and the length of 2r + 1. The direction �n 
is measured with respect to the image horizontal axis.

6.	 If r < Nr then r = r + 1 and go to step 2.
7.	 For each direction �n calculate the number of radii using 

the sets P
�nr

 and then, discard directions with less than 
three radii. The number of directions obtained is equal 
to N

�
.

The LDFS method calculates local FSs in the following 
steps (Fig. 2):

1.	 Let j = 1.
2.	 Let i = 1.

2.1	For pixel (xi, yj) construct sets P
�nr

 using the ACDS 
algorithm.

2.2	Let n = 1.
	 A. Let r = 1.
	 B. �Within set P

�nr
 calculate a difference between the 

maximum and minimum values of gray-scale lev-
els, i.e., A

�nr
 = max(P

�nr
)-min(P

�nr
 ). The differ-

ence is called a local profile area.
	 C. If r < Nr then r = r + 1 and go to step B.

2.3	If n < N
𝜃
 then n = n + 1 and go to step A.

2.4	Let n = 1.
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	 A. Plot A
�nr

 against radii r in log–log coordinates.
	 B. �Divide the log–log plot of data points into over-

lapping subsets of three points shifted by one 
data point and fit a line to each subset. The radius 
associated with the middle point of each subset 
represents an individual scale s, and the slope of 
the line fitted is calculated.

	 C. �Calculate FD = 3 − slope and store FD at indi-
vidual scales ( s1, s2,… , sN

�

) in the direction �n.

2.5	If n < N
𝜃
 then n = n + 1 and go to step A.

3.	 If i < Nx then i = i + 1 and go to step 2.1.
4.	 If j < Ny then j = j + 1 and go to step 2.

At each pixel location, the slopes calculated can be pre-
sented in the following table

A similar table can be constructed for the local FDs, 
called a local directional fractal signature (LDFS), i.e.,

Slopei,j =

⎡
⎢⎢⎢⎢⎣

Slopes1�1 Slopes2�1
Slopes1�2 Slopes2�2

⋯
SlopesN1�1
SlopesN2�2

⋮ ⋱ ⋮

Slopes1�N�
Slopes2�N�

⋯ SlopesN� �N�

⎤
⎥⎥⎥⎥⎦
i,j

LDFSi,j =

⎡
⎢⎢⎢⎢⎣

FDr1�1
FDr2�1

FDr1�2
FDr2�2

⋯
FDrN1

�1

FDrN2
�2

⋮ ⋱ ⋮

FDr1�N�
FDr2�N�

⋯ FDrN�
�N�

⎤
⎥⎥⎥⎥⎦
i,j

2.3 � Texture Parameters

Texture parameters can be derived from the local slopes of 
lines fitted to log–log plots of local surface profiles against 
scales, and FDs at individual scales, directions, and location 
points. In this study, we calculate the following three texture 
parameters:

1.	 Global mean fractal dimension (GFDMEAN): The param-
eter is defined as a mean value of all local FDs calcu-
lated. It is a measure of the global surface roughness 
across all scales, directions and locations.

2.	 Global mean fractal signature (GFSMEAN): It represents 
a set of the mean values obtained by averaging all local 
FDs separately at each scale. GFSMEAN measures the 
global surface roughness at individual scales.

3.	 Local mean fractal signature (LFSMEAN): The signature 
is a set of the mean values obtained by averaging local 
FDs calculated at a single location at individual scales. 
LFSMEAN measures the surface roughness at individual 
scales at a single location, i.e., the local surface rough-
ness at each scale.

For each location and scale, the absolute values of slopes 
abs

(
Slopei,j

)
 are plotted in polar coordinates as a function of 

direction and then, an ellipse is fitted to each plot. From each 
ellipse, the following two texture parameters are calculated:

1.	 Global mean surface texture aspect ratio signature 
(GStrSMEAN): The signature is defined as a set of mean 
values obtained by averaging all Str ratios separately 

Fig. 1   Schematic illustration of 
the ACDS algorithm
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Fig. 2   Flow chart of the LDFS 
method
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at each scale. The Str ratio is obtained by dividing the 
minor axis by the major axis of the ellipse fitted. It takes 
the value of zero for the ideal isotropic surface (i.e., 
surface with the same roughness in all directions) and 
less than one for other surfaces. GStrSMEAN measures a 
degree of the surface anisotropy at individual scales.

2.	 Local surface texture aspect ratio signature (LStrS): 
The signature differs from GStrSMEAN in using Str 
ratios from a single location instead of all locations. It 
measures a degree of the surface anisotropy at individual 
scales at a single location.

2.4 � Image Databases

Three databases of surface images were used in this study. 
Two databases comprised computer-generated images of 
isotropic and anisotropic fractal surfaces. The isotropic sur-
faces exhibited increasing roughness while the anisotropic 
surfaces had two dominating directions. The directions 
are the angles defined with respect to the image horizontal 
axis. These two databases were used to evaluate the LDFS 

method’s ability to differentiate between surfaces with 
increasing roughness and to detect changes in surface anisot-
ropy, respectively. The third database comprised 3D range-
images of real surfaces was used to evaluate the method’s 
ability to differentiate between engineering surfaces. The 
number of gray-scale level values was set to 256.

2.4.1 � Isotropic Fractal Surfaces

Isotropic surfaces with the theoretical FD (FDt) ranging 
from 2.1 to 2.9 in steps of 0.1 were generated in three image 
sizes, i.e., 64 × 64, 128 × 128 and 200 × 200 pixels, using 
Stein method [19]. For each image size 450 images were 
generated, i.e., 9 × (50 images per FDt). Example surfaces 
are shown in Fig. 3.

2.4.2 � Anisotropic Fractal Surfaces

Two sets of anisotropic fractal surface images were gener-
ated using an inverse Fourier transform method [20]. The 
first set (Set 1) comprised 100 images with FDt equals to 

Fig. 3   Examples of isotropic fractal images with a, d, g FDt = 2.1, b, e, h 2.5 and c, f, i 2.9 in sizes of 64 × 64, 128 × 128 and 200 × 200 pixels, 
respectively
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2.2 and 2.6 in the direction 120° and 30°, respectively. In 
the other set (Set 2) the surfaces have the direction of 0° 
and 90°, respectively. The image size was 200 × 200 pixels 
(Fig. 4).

2.4.3 � Real Engineering Surfaces

One isotropic and three anisotropic surface samples taken 
from our previous work were analyzed [13]. The isotropic 
surface, denoted as SI, was obtained by sandblasting a tita-
nium alloy (Ti–6Al–4 V) plate, while three anisotropic sur-
faces (SA1, SA2 and SA3) were produced by abrading the 
SI in different directions. Details of the experimental proce-
dure are given in [13]. Briefly, SA1 was obtained by rubbing 
lightly SI in the vertical direction using an emery paper (SiC 
P2000 grade) under dry conditions. SA2 was generated by 
rubbing moderately SA1 with the P1200 grade emery paper 
in the 45° direction. The third sample (SA3) was produced 

by abrading severely SA2 with the P800 grade paper in the 
horizontal direction.

3D topography of these surfaces was acquired using a 
chromatic confocal profilometer (AltiSurf 530, Altimet, 
France). The scanned area was 3.75 × 3.75 mm and the 
lateral sampling intervals were set to 5 µm. The arithmeti-
cal mean height (Sa) and the texture aspect ratio (StrISO) 
were calculated. Values of these two standard parameters 
were 2.39 µm and 0.756 for SI, 2.40 µm and 0.766 for 
SA1, 2.12 µm and 0.764 for SA2 and 2.18 µm and 0.757 
for SA3, respectively.

For each surface the elevation points were encoded into 
a range image of 750 × 750 pixels. The brightest and dark-
est pixels were assigned to the highest and lowest sur-
face elevation points, respectively. Each image was then 
divided into 36 non-overlapping sub-images of 125 × 125 
pixels. The total number of sub-images produced was 144. 
Example range images are shown in Fig. 5.

Fig. 4   Images of anisotropic 
fractal surfaces with FDt values 
equal to 2.2 and 2.6 in the 
direction of a 120° and 30° and 
b 0° and 90°, respectively. The 
image size is 200 × 200 pixels

Fig. 5   Examples of range-images of a SI isotropic, b SA1, c SA2 and d SA3 anisotropic engineering surfaces. The image size is 
0.625 × 0.625 mm
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2.5 � Statistical Analysis

Normality of the data was assessed with Shapiro–Wilk tests, 
while homogeneity of variances was checked with Levene’s 
tests. P < 0.01 was considered as statistically significant. Dif-
ferences in texture parameters calculated for the isotropic 
fractal surfaces were evaluated using one-way ANOVA test. 
To analyze differences between isotropic and anisotropic 
fractal surfaces unpaired t-tests were used. The same tests 
were used to check the differences between texture param-
eters for pairs of engineering surfaces: SI-SA1, SI-SA2 and 
SI-SA3. The statistical analyses were performed using SPSS 
Statistics 21 (IBM, Corporation, Somers, NY). P < 0.05 was 
considered as statistically significant.

3 � Results

3.1 � Measurement of Surface Roughness

The mean ± standard deviation (SD) values of GFDMEAN 
are listed in Table 1. A monotonic increase of GFDMEAN 
with FDt was observed for all image sizes. Example val-
ues are 2.161 ± 0.031 (FDt = 2.1), 2.349 ± 0.019 (FDt = 2.5) 
and 2.545 ± 0.006 (FDt = 2.9) for 64 × 64; 2.144 ± 0.027 
(FDt = 2.1), 2.384 ± 0.020 (FDt = 2.5) and 2.624 ± 0.006 
(FDt = 2.9) for 128 × 128; 2.168 ± 0.032 (FDt = 2.1), 
2.427 ± 0.018 (FDt = 2.5) and 2.678 ± 0.005 (FDt = 2.9) for 
200 × 200 pixel images. ANOVA tests showed that the dif-
ferences between GFDMEAN values were statistically signifi-
cant (p < 0.05). The tests were also conducted for LFSMEAN. 
At almost all location points (99.74%), the differences in 
LFSMEAN between the isotropic fractal surfaces were statisti-
cally significant.

3.2 � Measurement of Anisotropy

The mean ± SD values of GStrSMEAN are listed in Table 2. 
For the isotropic surfaces GStrSMEAN was statistically sig-
nificantly higher at all scales as compared to the anisotropic 
surfaces.

A large amount of data was obtained from the comparison 
of LStrS since the signature was calculated at each pixel 
location. To present the data, maps of p values were con-
structed. The red color was chosen to show locations where 
the differences between isotropic and anisotropic surfaces 
were statistically significant (p < 0.05). Otherwise, the blue 
color was used. Maps obtained for the scales of 3, 6, 9, 13, 
16 and 19 pixels for anisotropic surfaces (Set 1) are shown 
in Fig. 6. Maps obtained for Set 2 are similar (not shown). 
It was found that the number of non-statistically significant 
differences varies with scale, ranging from 0.44 (scale 13) 
to 89.34% (scale 19).

3.3 � Detection of Differences Between Engineering 
Surfaces

Higher values of GFSMEAN were found for the anisotropic 
surfaces SA1, SA2, SA3 as compared to the isotropic sur-
face SI (Table 3). The differences were statistically signifi-
cant at one scale for SI-SA1 and six and seven scales for 
SI-SA2 and SI-SA3 as shown in Table 4. For example, at the 
scale of 55 µm the values obtained were 2.578 ± 0.014 (SI), 
2.587 ± 0.012 (SA1), 2.590 ± 0.015 (SA2) and 2.594 ± 0.014 

Table 1   Mean ± SD values of GFDMEAN calculated for isotropic frac-
tal surface images with increasing FDt and in different image sizes 
[pixel × pixel]

For each FDt and image size fifty images were used

FDt GFDMEAN

64 × 64 128 × 128 200 × 200

2.1 2.161 ± 0.031 2.144 ± 0.027 2.168 ± 0.032
2.2 2.206 ± 0.030 2.207 ± 0.027 2.229 ± 0.038
2.3 2.252 ± 0.026 2.261 ± 0.029 2.302 ± 0.026
2.4 2.297 ± 0.017 2.317 ± 0.023 2.361 ± 0.020
2.5 2.349 ± 0.019 2.384 ± 0.020 2.427 ± 0.018
2.6 2.398 ± 0.012 2.442 ± 0.015 2.496 ± 0.013
2.7 2.449 ± 0.012 2.505 ± 0.011 2.552 ± 0.013
2.8 2.496 ± 0.008 2.565 ± 0.007 2.616 ± 0.008
2.9 2.545 ± 0.006 2.624 ± 0.006 2.678 ± 0.005

Table 2   Mean ± SD values of GStrSMEAN calculated for isotropic and 
anisotropic fractal surface images

Scale (pixel) Isotropic Anisotropic  
(Set 1)

Anisotropic  
(Set 2)

3 0.393 ± 0.061 0.337 ± 0.005 0.369 ± 0.011
4 0.488 ± 0.043 0.450 ± 0.003 0.440 ± 0.017
5 0.298 ± 0.060 0.235 ± 0.007 0.234 ± 0.010
6 0.325 ± 0.062 0.256 ± 0.004 0.271 ± 0.004
7 0.324 ± 0.060 0.257 ± 0.004 0.257 ± 0.005
8 0.330 ± 0.063 0.257 ± 0.004 0.267 ± 0.005
9 0.325 ± 0.058 0.254 ± 0.004 0.256 ± 0.006
10 0.305 ± 0.060 0.230 ± 0.005 0.234 ± 0.006
11 0.341 ± 0.050 0.276 ± 0.005 0.270 ± 0.010
12 0.265 ± 0.065 0.188 ± 0.004 0.193 ± 0.004
13 0.279 ± 0.061 0.202 ± 0.006 0.202 ± 0.006
14 0.218 ± 0.050 0.169 ± 0.007 0.164 ± 0.006
15 0.237 ± 0.069 0.155 ± 0.005 0.165 ± 0.006
16 0.232 ± 0.057 0.168 ± 0.004 0.165 ± 0.006
17 0.234 ± 0.048 0.218 ± 0.004 0.207 ± 0.021
18 0.457 ± 0.034 0.441 ± 0.005 0.425 ± 0.021
19 0.238 ± 0.035 0.232 ± 0.006 0.229 ± 0.006
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(SA3), respectively. Maps of p values obtained for the 
parameter GFSMEAN are shown in Fig. 7 at the scales of 
15, 35 and 55 µm. It can be seen from this figure that the 
majority of surface locations (about 94%) does not show 
significant differences.

Values of GStrSMEAN were higher for SA1 at the scales 
ranged from 35 to 45 µm and SA2 at all scales, except 15 and 
40 µm as compared to those obtained for SI, while they were 
lower for SA3 at all scales (Table 3). For example, the values 
of StrSMEAN were 0.212 ± 0.003 (SI), 0.215 ± 0.004 (SA1), 
0.214 ± 0.004 (SA2) and 0.200 ± 0.005 (SA3) at the scale of 
45 µm. LStrS was also calculated for the real surfaces. The 
maps of p values obtained for the parameter show that about 
93% of the locations are not statistically significant (Fig. 8).

Real surfaces were also analyzed using ISO roughness 
standard parameters, i.e., Sa and StrISO. Results of this analy-
sis are summarized in Table 5.

3.4 � Computational Time

The number of slopes or local FDs calculated for a single 
surface image is high and increases quadratically with image 

size. The LDFS method produced 40,960 FDs after applying 
to the 64 × 64 pixel surface image shown in Fig. 3a–c. There 
were 4 directions and the scales ranged from 1 to 4 pixels per 
direction. For the larger surface images shown in Fig. 3d–f 
(128 × 128) and Fig. 3g–i (200 × 200) the number of FDs 
increased to 786,432 and 5,360,000, and the directions and 
the range of scales increased to 16, 40 and 1–10, 1–18, 
respectively. Processing the images took 0.5, 5 and 29 min 
using a Linux Workstation with an eight-core 2.5 GHz CPU. 
The method was implemented in MATLAB and a single 
CPU core was utilized. Possible ways for reduction of the 
computational time are discussed below.

4 � Discussion

A new method, called LDFS, was developed for the char-
acterization of surface texture images. Unlike other multi-
scale methods, it measures the roughness and directional-
ity of surface texture at individual location points. At each 
image pixel location, the method calculates FDs in all pos-
sible directions and over a wide range of scales. The scales 

Fig. 6   Maps of p values of statistically significant (red) and non-significant (blue) differences in the LStrS parameter calculated between iso-
tropic and anisotropic (Set 1) fractal surfaces at scales of 3, 6, 9, 13, 16 and 19 pixels (Color figure online)



Tribology Letters (2022) 70:15	

1 3

Page 9 of 13  15

range from the instrument resolution to 1/10 of the image 
shortest size and there are at least three scales per direction. 
This is a major advancement from the directional signature 
methods developed earlier [13]. Analyses of fractal and real 
surface images show that the LDFS method is able to meas-
ure and detect minute local changes in surface roughness 
and directionality.

4.1 � Artificially Generated Fractal Surfaces

The ability in measuring local surface roughness was evalu-
ated using isotropic fractal surfaces with increasing FDt at 
three different image sizes. It was found that the values of 
GFSMEAN calculated were statistically significantly different 
at all scales and image sizes, increasing monotonically with 
FDt. This indicates that the LDFS method can be applied 

in comparisons of local surface roughness. Differences 
observed between the values of calculated and theoretical 
FDs can be explained by the fact that the fractal surface 
images are digital approximations of continuous fractals 
with a limited resolution. The lack of exact agreement with 
FDt, however, is not of concern as long as the method is 
able to differentiate between surfaces with different local 
roughness.

The LDFS method was evaluated in the detection of 
differences in directionality between isotropic and aniso-
tropic surfaces. Statistically significantly higher values of 
GStrSMEAN were obtained for the anisotropic surfaces at all 
scales (Table 2). This indicates that the method can detect 
changes in surface roughness with the direction.

4.2 � Real Engineering Surfaces

The performance of the LDFS method in the analysis of 
real engineering surfaces was also evaluated. One isotropic 
and three anisotropic surfaces were used for the tests. The 
anisotropic surfaces SA1 and SA2 were rougher (higher 
GFSMEAN) than the isotropic surface SI, while SA3 was 
smoother (lower GFSMEAN). The number of differences 
found increases with the anisotropy of surfaces analyzed, 
i.e., four differences for S1-SA1, fourteen for S1-SA2 and 
sixteen for S1-SA3. This agrees with the successive abrasion 
of S1 used in the production of anisotropic surfaces.

Table 3   Mean ± SD values 
of GFSMEAN and GStrSMEAN 
calculated for the engineering 
surfaces SI, A1, SA2 and SA3

Statistically significant (p < 0.05) differences were obtained for the values shown in bold font

Scale (µm) SI SA1 SA2 SA3

GFSMEAN

 15 2.106 ± 0.013 2.112 ± 0.013 2.121 ± 0.017 2.091 ± 0.017
 20 2.293 ± 0.017 2.296 ± 0.017 2.299 ± 0.029 2.276 ± 0.021
 25 2.427 ± 0.010 2.428 ± 0.009 2.430 ± 0.017 2.417 ± 0.010
 30 2.393 ± 0.011 2.391 ± 0.019 2.394 ± 0.028 2.384 ± 0.017
 35 2.436 ± 0.011 2.438 ± 0.009 2.444 ± 0.010 2.435 ± 0.010
 40 2.425 ± 0.011 2.428 ± 0.008 2.433 ± 0.011 2.426 ± 0.010
 45 2.497 ± 0.012 2.498 ± 0.014 2.505 ± 0.013 2.505 ± 0.010
 50 2.565 ± 0.012 2.567 ± 0.014 2.573 ± 0.013 2.576 ± 0.012
 55 2.578 ± 0.014 2.587 ± 0.012 2.590 ± 0.015 2.594 ± 0.014

GStrSMEAN

 15 0.384 ± 0.007 0.383 ± 0.010 0.385 ± 0.020 0.379 ± 0.012
 20 0.441 ± 0.006 0.443 ± 0.005 0.458 ± 0.008 0.436 ± 0.006
 25 0.289 ± 0.004 0.291 ± 0.003 0.292 ± 0.009 0.280 ± 0.004
 30 0.275 ± 0.004 0.276 ± 0.005 0.279 ± 0.009 0.264 ± 0.006
 35 0.262 ± 0.003 0.265 ± 0.004 0.264 ± 0.005 0.247 ± 0.005
 40 0.259 ± 0.004 0.262 ± 0.005 0.261 ± 0.006 0.246 ± 0.005
 45 0.212 ± 0.003 0.215 ± 0.004 0.214 ± 0.004 0.200 ± 0.005
 50 0.193 ± 0.002 0.193 ± 0.003 0.199 ± 0.003 0.185 ± 0.003
 55 0.426 ± 0.011 0.430 ± 0.011 0.445 ± 0.022 0.420 ± 0.011

Table 4   p values of the differences (scales in μm) in the GFSMEAN 
and GStrSMEAN parameters calculated for the isotropic and aniso-
tropic surfaces SI, SA1, SA2 and SA3

p < 0.05 was considered statistically significant

GFSMEAN GStrSMEAN

SI SA1 p < 0.04 (55) p < 0.05 (35–45)
SI SA2 p < 0.013 (15, 35–55) p < 0.035 (all, 

except 15 and 
40)

SI SA3 p < 0.017 (all, except 35, 40) p < 0.033 (all)
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Differences between the real engineering surfaces were 
also analyzed using the standard ISO parameters Sa and 
StrISO. It was found that SI is rougher than SA2 and SA3 and 
no differences were detected in surface direction. This poor 
performance can be attributed to the smoothing out of local 
details and the lack of ability to quantify at individual scales 
and directions. It is noteworthy that some of the standard 
parameters used are calculated at point topographic features 
and therefore they are able to quantify locally surface tex-
ture. These parameters are the maximum peak height (Sp) 

and the maximum valley depth (Sv). Although useful, they 
are limited in application as focusing on specific surface 
features.

4.3 � Reduction of Computational Time

Computational time required to process a single image var-
ied between 30 s and 30 min. From a practical view point 
the process takes rather a long time. Possible way to reduce 
the time is to perform calculations at locations of interest 

Fig. 7   Maps of p values of statistically significant (red) and non-significant (blue) differences in the LFSMEAN parameter calculated between iso-
tropic and anisotropic engineering surfaces: a–c SI-SA1, d–f SI-SA2 and g–i SI-SA3 at scales of 15, 35 and 55 µm (Color figure online)
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Fig. 8   Maps of p values of local statistically significant (red) and non-significant (blue) differences in the LStrS parameter calculated between 
isotropic and anisotropic engineering surfaces: a–c SI-SA1, d–f SI-SA2 and g–i SI-SA3 at scales of 15, 35 and 55 µm (Color figure online)

Table 5   Mean ± SD values of the standard parameters Sa and StrISO calculated for the engineering surfaces SI, SA1, SA2 and SA3

Statistically significant differences were shown in bold font

Parameter SI SA1 SA2 SA3

Sa 2.384 ± 0.114 2.397 ± 0.104 2.118 ± 0.075 2.180 ± 0.114
StrISO 0.769 ± 0.731 0.789 ± 0.536 0.776 ± 0.052 0.763 ± 0.617
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(LOIs), e.g., at peaks, valleys or edges. Self-avoiding walker 
algorithms [21] could be applied in the selection of LOIs. 
For example, the algorithms can generate adjustable “crawl-
ers” that follow regions of increasing intensity [22]. Other 
way is to accelerate computations by means of graphics pro-
cessing units. Future work will focus on these two and other 
possible solutions to address this challenging computational 
problem.

Results obtained suggest that the LDFS method is able 
to quantify locally surface images at individual scales and 
directions. This ability would be useful in the development 
of automated systems; for example, in the detection and clas-
sification of machine wear where images of surfaces with 
local damage are analyzed [23–25]. The method will be also 
useful in the evaluation of wear and friction properties of 
coated surfaces [26–28], the studies of evolution of two-
phase titanium alloys surfaces [29], damage and deformation 
of metal matrix composite (MMC) surfaces [30] and others. 
In medicine, the method could be applied to radiographic 
images of knees and hands, producing local bone texture 
parameters for the prediction and early detection of osteo-
arthritis [31, 32].

However, further studies would still be required before 
the method can be widely used. Most importantly, studies 
are needed which would include effects of pixel size, spa-
tial sampling intervals, scan speed, image blur and noise on 
values of local FDs [33–35]. We plan to do that but we will 
evaluate the performance of LFDS method under different 
imaging conditions and practical applications first.

5 � Conclusions

The following conclusions can be drawn from this study:

•	 The new method, called LDFS, that calculates FDs at 
each pixel location of surface image was developed. 
Unlike other methods it measures the local surface 
roughness and directionality at individual scales and 
directions. The method produces the fractal signatures 
and the aspect ratio (directionality) signatures at the 
scales ranging from the instrument resolution to 1/10 of 
the image shortest size.

•	 The method is accurate in measuring the local surface 
texture at individual scales and directions. It detects an 
increase of local surface roughness in isotropic fractal 
surfaces and the differences in local directionality in ani-
sotropic fractal surfaces.

•	 It detects changes in surface roughness between isotropic 
(sandblasted) and anisotropic (abraded) real engineering 
surfaces. The methods accuracy and sensitivity is much 
higher than the currently used standard parameters.
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