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Abstract
We study the lubricated sliding of a rigid cylinder on a viscoelastic half space with a single characteristic retardation time. Besides 
the generalized inverse Hersey number � , which is the sole parameter governing elastic lubrication, the viscoelastic lubrication 
solution depends on two additional dimensionless parameters: � and f  .   � is the characteristic retardation time divided by the time 
for the rigid cylinder to move one contact width and f determines the strength of viscoelasticity. We have developed a numerical 
scheme to solve this viscoelastic lubrication problem. Our numerical results show that the total friction force can be decomposed 
into viscoelastic and hydrodynamic components. The viscoelastic component of the friction is well approximated by the dry 
limit in which the liquid layer is all squeezed out and the resistance to sliding is due entirely to viscoelastic dissipation. The 
hydrodynamic limit is well approximated by a modification of the elastic limit in which friction is due entirely to hydrodynam‑
ics. We also study the dependence of the hydrodynamic pressure, film thickness and the friction coefficient on these parameters.

Keywords Soft lubrication · Viscoelasticity · Energy dissipation · Hydrodynamic friction · Contact
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vx  Fluid velocity in the horizontal direction
Fh  Friction force due to hydrodynamics, 
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�h  Friction coefficient, �h = Fh∕N  due to 
hydrodynamic flow

Fv , Fv  Friction force due to viscoelasticity of 
substrate, Fv =

R

Na0
Fv

�v  Friction coefficient due to viscoelastic dis‑
sipation, �v = Fv∕N

x1  The position of contact leading edge in dry 
sliding

x2  The position of contact trailing edge in 
drysliding

a , a  a is the semi‑contact width in dry sliding, 
a = a∕a0

b , b  b is the x coordinate of the contact midpoint 
in dry sliding, b = b∕a0

k  k = (1 + f )�a

I0, I1  Modified Bessel function of the first kind
K0 , K1  Modified Bessel function of the second kind
c  Integration constant
Ai , Bi , Ci Di  Coefficients of the discretized Reynolds 

equation
�ik  Substrate surface deformation at xi due to a 

unit line load at xk
�p  Relaxation factor for updating p in the 

relaxation method
�h1 , �h2  Relaxation factors for updating h0 in the 

relaxation method
nh  The frequency of h0 updates in the numeri‑

cal iteration scheme
Ftot  Total friction force Ftot = Fv + Fh ; 

Ftot =
R

Na0
Ftot

�tot  Total friction coefficient; �tot = �v + �h

1 Introduction

Lubricated sliding, in which a thin liquid film separates two 
solids in relative motion, is ubiquitous, e.g., in the smooth 
operation of gears and pistons in machines and joints in our 
bodies. In the past decade or so, applications of lubricated 
sliding has expanded from stiff–stiff contact, such as in bear‑
ings [1, 2] and pistons [3, 4], to applications that involve 
stiff–soft or soft–soft contact, such as in rubber bearings and 
seals [5–8] and rubber tires to road contact [9, 10]. Many 
studies also have examined lubricated sliding of elastic con‑
tact with a sphere‑on‑fat or cylinder‑on‑fat contact geom‑
etry to investigate the effects of properties such as material 
modulus, lubricant viscosity and surface roughness [11–19].

As one of the intense research subject, elasto‑hydrody‑
namic lubrication (EHL) has been studied for a long‑time. 
In EHL, the materials are assumed to be elastic. However, 
most soft materials such as elastomers, gels or cartilage are 

viscoelastic. Viscoelasticity cause energy dissipation which 
significantly increases friction during lubricated sliding. 
Compared to EHL, viscoelastic–hydrodynamic lubrication 
(VEHL) has received much less attention, partly because of 
the difficulty of simultaneously solving the nonlinear Reyn‑
olds equation for the fluid phase and the history‑dependent 
equations of viscoelasticity for the solid. Because of this dif‑
ficulty, literature on this subject is scant, as noted by Putig‑
nano [20], who recently developed a numerical method to 
solve this class of problems.

A special case of VEHL is “dry” sliding, where the fluid 
layer is absent (or completely squeezed out) and solid–solid 
contact is itself frictionless. Thus, in “dry” sliding, the slid‑
ing resistance is due entirely to viscoelastic dissipation. 
Hunter [21] studied the sliding contact of a rigid cylinder 
with viscoelastic half space and obtained an exact formula 
for the contact pressure and contact width. Carbone and 
Putignano [22] extended Hunter’s result to address a similar 
sliding problem on a finite viscoelastic layer using a more 
realistic viscoelastic model. Additional numerical and exper‑
imental research on this topic can be found in [7, 23, 24].

The problem of a lubricated rigid cylinder sliding on a 
viscoelastic substrate have been studied by Herrebrugh [25], 
Dowson et al. [26], Hooke and Huang [27], Elsharkawy [28], 
Scaraggi and Persson [29], Putignano et al. [20, 23, 30, 31] 
and others [13, 18, 32]. These works have focused on issues 
such as the general effect of material viscoelasticity on the 
lubrication process and the analytical solution of some sim‑
plified viscoelastic lubrication geometries. However, previ‑
ous work has not addressed the relationship between the 
mechanics of viscoelastic hydrodynamic lubrication and 
simpler cases of E and the pure dry sliding contact. Hui 
et al. [33] recently showed that the full VEHL solution of 
a cylinder sliding on a thin viscoelastic foundation can be 
decomposed, to a good approximation, into a combination 
of the corresponding dry sliding and the EHL solutions. 
Whether this decomposition is obtained in the more general 
VEHL problem of lubricated sliding on a viscoelastic half 
space remains an open question, and this is the main focus 
of the work presented here.

Specifically, we study the problem of lubricated slid‑
ing of a rigid cylinder on a soft viscoelastic half space. As 
pressure‑sensitivity of viscosity is negligible for typical 
soft lubrication conditions [34], we assume lubricant to be 
iso‑viscous, i.e., Newtonian with constant viscosity. In our 
previous works [35, 36], we have found that with appropri‑
ate normalization the EHL problem is governed by a single 
parameter � which is a generalized version of the inverse 
Hersey number [11]. For soft contacts � is typically much 
larger than 1. Including the viscoelasticity of the substrate 
introduces two additional dimensionless parameters �, f  , 
which are the normalized loading rate and the normalized 
strength of the retardation spectrum. We study the nature of 
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the solution over large ranges of these parameters to investi‑
gate how they affect features of the solution such as hydrody‑
namic pressure, liquid film thickness, and the friction force.

The plan for the remainder of this paper is as follows: 
Sect. 2 summarizes the formulation of the VEHL problem. 
In this section, two special cases are studied in detail. One 
is the dry sliding case where the liquid layer is absent, and 
second one is the EHL problem where viscoelasticity is not 
considered. We show that these two cases approximately 
constitute two important components of the full problem. 
Section 3 presents the detailed numerical recipes to solve the 
full VEHL problem. We highlight some findings that cause 
numerical difficulties especially for the cylinder problem 
where the displacement is not well‑defined. Section 4 pre‑
sents the numerical results and comparison with the existing 
theory. Results are presented in the form of a generalized 
Stribeck surface. We conclude with a summary and discus‑
sion in Sect. 5.

2  Theoretical Methods

2.1  Problem Statement and Theoretical 
Formulation

A schematic of lubricated sliding of a rigid circular cylin‑
der on viscoelastic half space is shown in Fig. 1. The rigid 
cylinder is assumed to be infinitely long in the out‑of‑
plane direction. The radius of the cylinder is R. Between 
the rigid cylinder and the viscoelastic half space, there 
exists a thin liquid layer of constant viscosity � . The cyl‑
inder is moving with a constant velocity V to the right 
under the application of a horizontal line force F. A con‑
stant vertical line force N is imposed on the cylinder. A 
coordinate system (x, y) is attached to the moving cylin‑
der. In this moving coordinate frame, the vertical posi‑
tion of the cylinder is h(x) and at x = 0 , h0 ≡ h(0) . The 

substrate is deformed under the hydrodynamic pressure 
and the deformed surface is denoted by w(x) . The liquid 
film thickness is u(x) = h(x) − w(x).

The deformation in the half space is under plane strain, 
where the out‑of‑plane displacement is zero and the in‑
plane stress and strain fields are independent of the out‑
of‑plane coordinate. As is well‑known, in‑plane strain, the 
displacement field has a logarithmic singularity at infinity. 
As a result, the surface displacement w and h0 are only 
defined to within an arbitrary constant. Here we follow the 
standard procedure to determine this constant: we chose 
a point on the surface at distance r0 far from the cylinder 
as a datum for normal displacement w and h0 . Details are 
given below.

In steady sliding, all the fields are independent of time 
t   in the moving frame (x, y) even though the material is 
rate‑dependent. Specifically, the material time derivative 
of field quantities in a stationary frame can be converted 
to spatial derivative in the moving frame, both in the fluid 
or in the viscoelastic solid. For details, please see Sup‑
porting Information (SI). The Reynolds equation for the 
lubrication layer is [37]:

where p is the hydrodynamic pressure and a comma 
denotes differentiation. Since the “effective contact 
region” is usually much smaller than the cylinder radius, 
the circular profile of cylinder is approximated as a parab‑
ola, i.e.,

The substrate is assumed to be a standard viscoelastic 
solid where there is a single characteristic retardation time 
� . Specifically, the creep function C(t) in simple tension is

(1)

(
p,x (h − w)3

12�

)
,x = −

(
V

2

)(
h,x −w,x

)
,

(2)h = h0 +
x2

2R
.

Fig. 1  A schematic of lubri‑
cated sliding of a rigid cylinder 
on a viscoelastic half space
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where E0 is the instantaneous Young’s modulus and f  is 
the strength of retardation spectrum; f  is related to the long 
and short time Young’s modulus E∞, E0 by

For highly viscoelastic solids such as rubber, f ≈ 103 
[38]. For a purely elastic solid, f = 0. We assume that the 
Poisson ratio of the half space, � , is a constant independent 
of time, which is a good approximation for soft solids which 
are almost incompressible;� ≈ 1∕2.

The vertical surface displacement w(x) due to a normal 
pressure distribution p(x) was given by Hunter [21]:

where E∗
0
=

E0

1−v2
 is the instantaneous plane strain modu‑

lus. Note that p(x) is the hydrodynamic fluid pressure acting 
on the substrate surface. It is positive when the fluid is in 
compression. The term w|x=0  is always negative in the coor‑
dinate frame shown in Fig. 1. The first integral in Eq. (5) is 
the elastic displacement (for an elastic substrate with E0 and 
v). The double integral in Eq. (5) accounts for viscoelasticity. 
When f = 0 ( E0 = E∞ ), we recover the elastic solution. As 
noted above, the constant in Eq. 3 indicates that w cannot be 
determined uniquely. Force balance indicates that the overall 
hydrodynamic pressure should balance the normal applied 
line load, i.e.,

Finally, we note that the stress and strain must vanish at 
infinity; in particular, the material far away from the cylinder 
is elastic with relaxed modulus E∞.

2.1.1  Normalization

We normalize location of material point, x , by the “Hertz 
contact length” a0 , which is the half contact width of a cyl‑
inder on an elastic solid without sliding, subjected to a line 
force N. The Young’s modulus and Poisson’s ratio of this 
reference elastic solid are denoted by E∞, v , respectively. 
The half contact length a0 and the pressure distribution of 
the classical elastic “Hertz contact” are given by Eqs. (7) 
and (8) [39].

(3)C(t) = E−1
0

[
1 + f

(
1 − e−t∕�

)]
,

(4)f =
E0

E∞

− 1.

(5)
w(x) =

2

�E∗
0

[
∫

+∞

−∞

p
(
x�
)
ln ||x − x�||dx�

+f ∫
∞

0

e−�d� ∫
+∞

−∞

p
(
x�
)
ln ||x + V�� − x�||dx�

]
+ const,

(6)∫
+∞

−∞

p(x)dx = N.

We normalize the hydrodynamic pressure p by 
max

(
pHertz

)
.The normalization of each variable is:

The normalized form of Eqs. (1), (5) and (6) are:

Note � in Eq. (10) is the inverse generalized Hersey 
number. Large �  indicates either larger normal force or 
smaller sliding velocity.  � is the ratio of the time to slide 
a Hertz contact length to the retardation time of the vis‑
coelastic substrate. When � → 0 , the viscoelastic material 
behaves elastically with modulus E0 as the material is fully 
unrelaxed, while for � → ∞ the material is fully relaxed 
and behaves as an elastic solid with Young’s modulus 
E∞ . For intermediate values of � , the substrate dissipates 
energy. Here we note that � is typically very large for soft 
material sliding. As an example, in an experiment of recent 
study [35] where R = 2mm , E∗

∞
= 105Pa , � = 5.1Pa ⋅ s , 

N = 119mN∕mm , V = 1mm∕s , 𝛽 ≈ 1.8 × 103 >> 1.

2.1.2  Substrate Deformation

For most electrohydrodynamic lubrication simulations, the 
evaluation of the substrate deformation ranks as the most 
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(
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computationally demanding part of the entire simulation pro‑
cess [40–42], followed by the process of solving of the Reyn‑
olds equation and checking the force balance condition. For 
VEHL, the evaluation of substrate deformation is even more 
difficult since the deformation depends on the loading history. 
This difficulty is reflected by the double integral in Eq. (11). 
Therefore, it is important to find an efficient way to evalu‑
ate the viscoelastic deformation of substrate. By changing the 
integration order of x (space) and � (time) in the 2nd part of 
RHS of Eq. (6b), we convert the double integral in Eq. (11) 
into a single integral Eq. (15), which can be evaluated much 
more efficiently:

where Ei(x) is the exponential integral function, 
Ei(x) = ∫ x

−∞

et

t
dt . Details on the derivation of Eq. (15) is given 

in the SI. The constant in Eq. (15) is determined by selecting 
a datum at x = r0 where w

(
r0
)
= 0 for f = 0 . Physically, it 

corresponds to the case that when the substrate is fully relaxed, 
the vertical displacement is zero at x = r0 . The constant in 
Eq. (15) is:

In our problem, r0 is selected to be large enough so it lies 
in the relaxed region. The final expression for the vertical dis‑
placement is:

2.1.3  Friction Force due to Hydrodynamics 
and Viscoelasticity

Friction during lubricated sliding results from two sources. 
The first is due to shear flow of the liquid layer while the sec‑
ond is due to viscoelastic dissipation which causes the hydro‑
dynamic pressure to be skewed.

The friction Fh due to hydrodynamics can be obtained by 
integrating the shear traction �yx in the fluid layer. For a New‑
tonian fluid, �yx is related with the strain rate �vx∕�y by:

(15)
w
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x
)
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x
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�
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w
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x
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� ∫
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s
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−∞

P
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s
)
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(
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(
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))
ds.

(18)�yx = �
�vx

�y
,

where vx(x) is the component of the fluid velocity in the 
horizontal direction. Following [36]:

Integrating the shear traction �xy
|||y=h over the entire 

domain gives

The friction coefficient �h that corresponds to Fh  is 
defined as �h ≡ Fh∕N and is given by

Next, we consider the friction force Fv  due to viscoelastic 
dissipation. When the substrate is viscoelastic, the hydrody‑
namic pressure is generally skewed. This skewed pressure 
distribution gives rise to a net horizontal force which results 
in a friction force Fv . A schematic figure illustrating this 
mechanism is in Fig. 2.

Figure 2 shows the free body diagram of the cylinder and 
the viscoelastic half space. The friction force is the integral 
of dFv = −p(x) sin �dx over the entire domain, where the 
negative sign represents the direction of Fv pointing to the 
right and sin � ≃ dw∕dx . Therefore,

The friction coefficient �v is

2.2  Two Limiting Cases: Drying Sliding and EHL

A recent study by Hui et al. [33] has shown that the friction 
force during viscoelasto‑hydrodynamic lubrication can be 
well approximated as a combination of two simpler cases: 
the dry sliding case where the liquid is absent and the lubri‑
cated sliding case where the substrate is elastic. However, 
the substrate in that work was modeled as a viscoelastic 
spring foundation in which mechanical interactions are 
purely local, in the sense that the displacement of the sub‑
strate at a point is affected by the pressure only at that point. 
This is in general not a good assumption for a substrate that 
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is large in extent compared with all relevant dimensions. 
Here we study the feasibility of a similar decomposition for 
lubricated sliding of a rigid cylinder on a viscoelastic half 
space. These two limiting cases are considered in the next 
two Sects. 2.2.1 and 2.2.2.

2.2.1  Dry Sliding

In the absence of a liquid film, the cylinder slides on the 
viscoelastic half space with solid‑to‑solid contact. We call 
this case dry sliding. A schematic of dry sliding is shown in 
Fig. 3. In it, the liquid film thickness u(x) ≡ h(x) − w(x) = 0 
so h(x) = w(x) everywhere. In particular, the pressure must 
vanish at the leading and trailing contact edges, which we 
denote by x1 and x2 , respectively. That is, p

(
x1
)
= p

(
x2
)
= 0 . 

In Fig. 3, a is the semi‑contact width and b is the x coordi‑
nate of the contact midpoint. The solution of this problem 
was obtained by Bongaerts et al. [11]. Here we adopt his 
solution to study the relevant mechanics. It must be noted 
that, because by supposition physical contact between the 
surfaces bears no shear traction, the friction force in dry 
sliding is due entirely to viscoelastic dissipation [11].

The pressure distribution is given by Bongaerts et al. [11]. 
Using our normalization, it is

where:
(24)

p
�
x
�
=

⎧
⎪⎨⎪⎩
ka ⋅ e

k(x−b)
a

∫ 1

(x−b)∕a
e−k�

�√
1−�2+

(Γ2−Γ1�)√
1−�2

�
d�,

x2 ≤ x ≤ x1,

0, elsewhere,

(25)k = (1 + f )�a,

(26)

a
2 ≡

(
a

a0

)2

=
K0

(
�a

)
∕K1

(
�a

)
+ I0(k)∕I1(k)

K0

(
�a

)
∕K1

(
�a

)
+ I0(k)∕I1(k) + 2f∕k

,

(27)Γ1 = −
1

k
−

1

2

(
1

a
2
− 1

)
I0(k)

I1(k)
,

(28)Γ2 =
1

2

(
1

a
2
− 1

)
,

(29)b ≡ b

a0
= Γ1 +

1

�a
,

(30)x1 = a + b, x2 = b − a.

Fig. 2  Schematic figure show‑
ing how viscoelasticity causes a 
skewed hydrodynamic pressure, 
which leads to friction force Fv

Fig. 3  A schematic of dry 
sliding of a rigid cylinder on a 
viscoelastic half space
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In Eq. (26) I0 , I1 and K0 , K1 are the modified Bessel func‑
tion of the first and second kind, respectively. The normal‑
ized semi‑contact width a is determined by the numerical 
solution of the transcendental Eq. (26). Once a is deter‑
mined, Eqs. (27)–(29) can be used to determine Γ1, Γ2 and 
b . In the SI, we show that for the special cases where � → 0 
or � → ∞ , one recovers the classical elastic Hertz solution.

We use Eqs. (23) and (24) to determine the dry fric‑
tion force Fv. Since in dry sliding the deformed surface’s 
curvature is the same as the cylinder’s surface curvature, 
sin � ≈

dw

dx
=

x

R
 for x2 ≤ x ≤ x1 . The dry sliding friction Fv 

and the friction coefficient �v are:

2.2.2  Lubricated Sliding with an Elastic Substrate (Special 
Case, f = 0 or ̨ = ∞)

Next, we consider the special case of an elastic substrate. 
For this case, f = 0 or � = ∞ , and the solution depends on 
a single parameter � . Integrating both sides of the Reyn‑
olds equation, Eq. (10), gives:

The constant of integration c depends only on � and is 
the normalized thickness where the pressure gradient is 
exactly zero. A scaling analysis (see the SI) shows that for 
𝛽 >> 1 ,  Eq.  (13) holds when c = O

�
1∕

√
�

�
 and 

u = O
�
1∕

√
�

�
 . To validate this scaling analysis, we 

numerically solved Eq. (33) together with (Eq. 15 with 
f = 0 ) to determine c and the pressure distribution. Details 
of these calculations are given in SI. We found

Figure 4 shows that Eq. (34) agrees very well with the numer‑
ical values of c for � ≥ 50 . The error is less than 20% even at 
� = 10.

To obtain the hydrodynamic friction (see Eq. 20), we 
need both the pressure and film thickness distribution. As 
expected, the pressure distribution for large � is almost iden‑
tical to the Hertz pressure (see SI), which is

(31)

Fv = −�
x1

x2

p(x)
x

R
dx =

Na0

R

[
b −

1

�(1 + f )
− a

3
Γ1

]
≡ Na0

R
Fv,

(32)�v =
Fv

N
=

a0

R

[
b −

1

�(1 + f )
− a

3
Γ1

]
.

(33)�p,x u
3
= −u + c.

(34)c =
0.197√

�
+

0.951

�
.

The fact that normalized pressure distribution vanishes rap‑
idly outside [−1, 1] allows us to replace the integration limits in 
Eq. (20) from − 1 to 1. An approximate expression for the liquid 
film thickness u in the interval ||x|| < 1 can be obtained using 
Eqs. (33) and (34), this results in (for details, see SI):

Figure 5 shows that the numerical film thickness profiles 
for � = 1000 and � = 2000 are in excellent agreement with 
Eq. (36) for ||x|| < 1 . Note that the coefficients of the quad‑
ratic term in Eq. (36) are very small. In particular, since 
||x|| < 1 , the thickness of the liquid film is approximately 
constant inside the “contact” zone and is given by c(�) , the 
thickness where the pressure gradient is exactly zero.

3  Numerical Method of Solving Full VEHL 
Problem

In this section, we highlight a numerical method to solve the 
VEHL lubrication problem which requires simultaneously 
solving the Reynolds equation and for the surface deforma‑
tion. In the literature, the Reynolds equation for the sliding 
problem is usually solved using either relaxation [36, 37] or 

(35)p
�
x
�
=

�√
1 − x

2
, −1 < x < 1,

0, elsewhere.

(36)
u ≈ c(𝛽)

�
1 + a

1
x + a

2
x
2
�
=

�
0.197√

𝛽
+

0.951

𝛽

�

�
1 + (0.197)2 ⋅ x + 3 × (0.197)4 ⋅ x

2
� ��x�� < 1.

Fig. 4  Comparison of c(�) . Numerical result are symbols (the line is 
to guide the eyes) and the scaling result of Eq. (34)
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Newton–Raphson methods [43, 44]. In this work, we used 
a forward relaxation method [25] which is easier to imple‑
ment and less memory‑demanding compared with the New‑
ton–Raphson method. The numerical method here differs from 
previous work [36] in two aspects: we consider viscoelasticity 
and using a normal force condition. Calculation of the defor‑
mation of the viscoelastic material requires extra computation 
time as the deformation depends not only the spatial distribu‑
tion of the load but also the loading history. In the previous 
section, we have shown that this difficulty can be bypassed by 
integrating the temporal integrand analytically which results 
in an expression involving only the spatial integrand. This 
allows efficient evaluation of the viscoelastic deformation. 
As mentioned previously, the absolute surface deformation is 
not well‑defined, which makes a displacement control loading 
scheme physically nonintuitive. Instead, we applied normal 
force control which requires us to find the relative position of 
the cylinder, h0 . This position is determined by the condition 
that the pressure satisfies Reynolds equation and normal force 
balance.

We use a central difference scheme to discretize the first and 
second derivatives in Eq. (10), i.e.,

Using Eq. (37), the discretized form of Eq. (10) becomes:

where:

 

Ai =

[
(ūi)

2

(Δx̄)2

(
3

4
ūi−1 + ūi −

3

4
ūi+1

)]
;Bi = −2

(ūi)
3

(Δx̄)2
;

Ci =

[
(ūi)

2

(Δx̄)2

(
−

3

4
ūi−1 + ūi +

3

4
ūi+1

)]
;Di = −

ūi+1−ūi−1

2𝛽Δx̄
.

The discretized form of film thickness is ui = hi − wi , 
where hi and wi are the position of the cylinder’s surface 
and the substrate surface’s deformation at xi . They are 
computed according to

(37)

(
�f

�x

)

i

=
fi+1 − fi−1

2Δx
;

(
�2f

�x
2

)

i

=
fi+1 − 2fi + fi−1(

Δx
)2 .

(38)Aipi−1 + Bipi + Cipi+1 = Di,

Note Eq. (40) is Eq. (17) in discretized form, where n 
is the total number of grid points. The discretized form of 
the Reynolds Eq. (10) is solved using forward relaxation 
method where pcurt

i
 in the current iteration is related to the 

previous iteration pprev
i

 by:

In Eq. (42), �p is the relaxation factor which controls 
the convergence rate of the relaxation iteration. Large �p 
usually results in faster convergence. However, it is also 
less stable and iteration is more prone to diverge. In our 
calculations, we found the values of �p which optimize 
convergence rate and stability falls in a relatively large 
range, �p = 0.01 − 0.8 . The relaxation factor also depends 
on the choice of parameters � , f  and � . Usually, small � 
and large f  , � values require smaller �p to ensure stable 
convergence.

Once the hydrodynamic pressure is found using the 
above scheme, we need to check if the normal force balance 
Eq. (12) is satisfied. The discretized form of Eq. (12) is:

If normal force balance is not satisfied, the film thickness 
is either too large or too small and the position of the cylin‑
der, h0 , should be adjusted. In our numerical scheme, h0 is 
updated every nh iterations using

(39)hi = h0 +
1

2
x
2

i
,

(40)wi =

n∑
k=1

�ik

(
xi, xk

)
pk,

(41)

�ik =

[
1

�
ln

|||||
xi − xk

r0 − xk

|||||
−

f

�(1 + f )
e�(xi−xk)Ei

(
−�

(
xi − xk

))]
⋅ Δx.

(42)p
curt

i
= p

prev

i
+ �p

(
Di − Aip

curt

i−1
− Bip

prev

i
− Cip

prev

i+1

)
∕Bi.

(43)
n∑
i=1

piΔx =
�

2
.

Fig. 5  Comparison of the film 
thickness profile with Eq. (36) 
for two different �  values: a 
� = 1000 and b � = 2000
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In Eq. (44), the adjustment of h0 includes two parts: the 
normalized normal force balance residual and the relative 
change of pressure in two iterations. Even though h0 is 
directly related to normal force balance, we found that 
including the contribution of the pressure change is very 
important for convergence when 𝛼 < 0.1 . The parameters 
�h1 , �h2 are relaxation factors associate with these two 
residuals. In our calculation,  �h1 is found to be in the range 
of 0.001 − 0.01 and �h2 = 10 − 20 for 𝛼 << 1 while �h2 = 0 
works well for � ≥ 1 . Note that smaller nh allows prompt 
adjustment of the cylinder position which potentially helps 
faster convergence. However, the iteration could become 
more unstable. We have found that an appropriate nh is in 
the range of 10 − 200.

(44)

h
curt

0
= h

prev

0
+ �h1

|||||
1 −

2

�

n∑
i=1

p
curt

i
Δx

|||||
+ �h2

‖‖‖p
curt

− p
prev‖‖‖

‖‖pprev‖‖
.

A flow chat of the numerical scheme is shown in Fig. 6. 
An initial guess of the pressure profile pinit and h

init

0
 has to 

be provided to start the iteration. pinit , h
init

0
 are chosen to 

be the corresponding EHL solution with the target � value. 
Note that a good initial guess is critical for the iteration to 
converge in a fast and stable pace.

4  Numerical Results of the VEHL Problem

4.1  Hydrodynamic Pressure and Substrate 
Deformation

Figure 7a–c plot the normalized hydrodynamic pressure 
distribution p

(
x
)
 for different combinations of �, � and f  . 

The colored lines are the numerical results obtained by solv‑
ing Eqs.(10–12). The black dashed lines are the dry sliding 
results from Eq. (24). Note � = 1 in both Fig. 7a, b with 

Fig. 6  A flow chat summarizing the numerical scheme for solving Eqs. (10)–(12). For detailed description, see text above and Eqs. (37) to (44)
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f changing from 10 (Fig. 7a) to 100 (Fig. 7b). Recall that 
f = E0∕E∞ − 1 so a larger f  indicates stronger viscoelas‑
ticity. Here we focus on highly viscoelastic solids such as 
rubber where f ≈ 100 or higher. Figure 7a, b show that the 
hydrodynamic pressure peaks near the leading edge since the 
strain rate is highest here. Also, as � increases, the hydro‑
dynamic pressure approaches the dry sliding contact pres‑
sure. This is reasonable, since larger � corresponds to higher 
normal loads or smaller sliding velocities; both conditions 
result in a thinner film. The main difference between the dry 
solution and the VEHL solution is near the leading edge, 
where the pressure of the dry solution drops abruptly to zero.

Figure 7c fixes � and f while varying � by 6 orders of 
magnitude. Recall that � = a0∕V� is the ratio of time to 
slide the cylinder over half Hertzian contact width over the 
characteristic retardation time of the viscoelastic material. 
This figure shows that the hydrodynamic pressure is well 
approximated by the dry sliding pressure for all � values. 

The pressure is highly skewed for � = 0.1 and 1 : pressure is 
concentrated at the leading edge. This means that if the time 
for the cylinder to slide over half the Hertzian contact width 
is comparable to the retardation time, the front half of the 
cylinder will experience much higher hydrodynamic pres‑
sure. For very large and small � , the pressure is given by the 
elastic solution (Hertz pressure) corresponding to a relaxed 
or stiff substrate with modulus E∗

∞
 and E∗

0
 , respectively.

Figure 8a, b plot the position of the trailing edge x2 which 
is defined as the location where pressure first approaches 
zero. Here it is important to note that in our numerical cal‑
culation, the Reynolds condition [36] is applied to eliminate 
regions of negative pressure. In these figures, f = 100 and 
� varies from 10 to 1000. The horizontal axis is � which 
varies from 10−3 to 103 . In the same figure, we also pre‑
sent the trailing edge of the dry sliding solution, x2 which 
is obtained from Eqs. (26), (29), and (30). Figure 8a shows 
that as � increases, x2 approaches the dry sliding limit. It is 

Fig. 7  Comparison of the hydrodynamic pressure profile with the dry 
sliding pressure Eq.  (24). a � = 1 , f = 10 , � = 100 − 500 , b � = 1 , 
f = 100 , � = 100 − 500 , and c � = 1000, f = 100 , � varies from 10−3 

to 103 . In a–c, the dry sliding pressure cases are shown by the black 
broken lines
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interesting to note that x2 > 0 for � ∈ (0.1, 1) . In this range 
of � , the material is highly dissipative and hydrodynamic 
pressure is concentrated in the front part of the cylinder (see 
also Fig. 7b, c). This skew pressure distribution can cause 
significant stress concentration at the leading edge as we 
shall see in Fig. 9.

Figure 9 shows contour plots of the normal stress com‑
ponent �yy near the leading edge. The calculation of �yy is 
given in SI. We focus on the range of � ∈ (0.1, 1) where the 
pressure field is highly skewed. The result of the two limits 
where � → 0 and � → ∞ is given in the SI. In these two 
limits, the deformation of the substrate is almost symmetric 
and contour of �yy approaches to the Hertzian results with 
elastic moduli E∗

∞
 and E∗

0
 , respectively. For � = 0.1 − 1.0 , 

this asymmetric deformation is caused by the hydrodynamic 
pressure being concentrated more locally at a smaller region. 
With the skewed substrate deformation and concentrated 
pressure, one expects much higher counterreaction force act‑
ing on the rigid cylinder as shown schematically in Fig. 2. 
This is the friction force due to the viscoelastic deformation, 
Fv.

4.2  Viscoelastic Dissipation: Loading and Unloading 
Cycles and the Viscoelastic Friction Force F

v

The expression for the friction force Fv , Eq. (22) can be 
interpreted as the viscoelastic energy dissipated as a material 
point entering the leading edge and exiting the trailing edge. 
As this point enters the leading edge, it is actively loaded 
and it unloads to zero pressure as it exits the trailing edge. 
Figure 10 shows this loading and unloading cycle for a typi‑
cal material point on the substrate surface for f = 10, 100 . 
The dry limit results calculated using Eqs. (24) and (17) 
(black dotted lines) are also plotted in the same figure for 
comparison. The area enclosed by the loading and unload‑
ing curves is the dissipated energy, Fv . In Fig. 10a, b, � = 1 , 
for which, we found numerically, the energy dissipation is 
approximately maximum. Results for a broad range of � are 
shown in Fig. 11.

Figure 11 plots the normalized friction force due to vis‑
coelastic energy dissipation versus � for different values of 

Fig. 8  Comparison of the 
trailing edge position x2 with 
the dry sliding prediction. a 
� = 10, 50, 100, 200 and b 
� = 10 − 1000 . Results show 
that for � = 0.1 − 1 , the rear 
position of the effective contact 
is larger than 0 which indicates 
that the hydrodynamic pressure 
concentrates in the region x > 0

Fig. 9  The deformed viscoelastic substrate and the cylinder’s position 
for different � with constant f  and �, f = 100, � = 1000 . Contour 
plots of �yy in the substrate are shown
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β. The black solid line is the dry sliding friction force cal‑
culated using Eq. (31). Note that the dissipation or friction 
force Fv reaches the maximum at roughly � = 1 for different 
β. As expected, when Fv approaches 0 when � → 0 or ∞ . In 
these limits, the substrate is elastic. It is interesting to note 
that the dry sliding friction is an upper bound for Fv . This 
is because the liquid layer smooths out the skewed pressure 
distribution and hence reduces the friction force. The VEHL 
friction approaches the dry limit as β increases.

We summarize this section by emphasizing that the 
friction due to viscoelasticity of the substrate can be well 
approximated by the dry sliding solution and hence is effec‑
tively decoupled from the hydrodynamics for sufficiently 
large � . The situation is more complicated for the friction 
due to hydrodynamics since the gap size is expected to be 
sensitive to viscoelasticity. Nevertheless, the dry sliding 
solution can be exploited to determine this gap thickness, 
and this feature allows us to determine the hydrodynamic 

component of the friction force without solving the full 
lubrication problem, as we shall demonstrate below.

4.3  Liquid Film Thickness and Hydrodynamic 
Friction Force F

h

Figure 12 plots the liquid film thickness profile for dif‑
ferent � values while fixing �, f  . The liquid film thick‑
ness increases with � and varies by about an order of 
magnitude. This is not surprising since large � implies 
that the substrate underneath the cylinder is relaxed, with 
long‑time modulus. Indeed, as � decreases, the substrate 
underneath the cylinder becomes effectively stiffer, and 
this decreases the size of the “effect contact zone”. To 
support the higher normal load, the liquid film thins to 
increase the hydrodynamic pressure.

To incorporate the effect of � and f into the hydrody‑
namic friction, we note that the scaling c ≈ O

�
1∕

√
�

�
 and 

u ≈ O
�
1∕

√
�

�
 still holds for the VEHL case at large � 

Fig. 10  The loading and 
unloading cycles for a typical 
material point on the substrate’s 
surface. Dry sliding solution 
is plotted in comparison. a 
f = 10 , and b f = 100 . Differ‑
ent � values are plotted to show 
the trend of approaching the dry 
limit solution

Fig. 11  Normalized friction force Fv due to viscoelastic energy dissi‑
pation against � for different � . The dry sliding limit is the solid black 
line

Fig. 12  Film thickness profile for a large range of � values
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value except that c and u now depends not only � , but also 
on � and f  . Integrating of Eq. (6a) yields:

where c takes the form of:

From our previous calculation of EHL in Sect. 2.2.2, 
we found:

We also have �1(�, f = 0) = 0.197 , �2(�, f = 0) = 0.951 
which are the elastic limits. A plot for c versus � for f = 100 
for different � is shown in Fig. 13 where the symbols are the 

(45)�p,x u
3
= −u + c(�, �, f ),

(46)c =
�1(�, f )√

�
+

�2(�, f )

�
.

(47)�1(� → ∞, f ) = 0.197, �2(� → ∞, f ) = 0.951,

(48)�1(� → 0, f ) =
0.197√
1 + f

, �2(� → 0, f ) =
0.951

1 + f
.

numerical c values. The solid lines in Fig. 13 are calculated 
using the expression:

Figure  13 shows that Eq.  (49) captures the numeri‑
cal results well. This equation allows us to approximately 
determine the film thickness in the full viscoelastic sliding 
problem, as will be demonstrated below.

As shown in the previous section, for � ≥ 50 , the dry 
limit of p obtained from Eq. (24) is a good approximation 
for the hydrodynamic pressure. Using the dry limit of p, 
we can solve the cubic Eq. (45) with c given by Eq. (49) 
for u. This procedure allows us to determine the fluid film 
thickness in the “contact” zone for large � . The result of the 
asymptotic solution of u (for large � ) is shown as symbols 
in Fig. 14a and the full solution of u is shown as solid lines 
for comparison.

The above analysis demonstrates an important result: the 
hydrodynamic friction Eq. (18) can be determined using 
the dry sliding pressure and the gap thickness determined 
using the dry pressure and solving a cubic. The validity 
of this approximate solution is checked by comparing the 
solution of the full VEHL problem in Fig. 14b. In Fig. 14b 
we plot the normalized hydrodynamic friction force Fh for a 
large range of � .  Fh is calculated using Eq. (20). The black 
solid lines are the approximation solutions. For all practical 
purposes, the proposed approximation works. Both numeri‑
cal and approximate solutions show that Fh decreases with 
increasing � . For small � , 𝛼 < 0.1 and large � , 𝛼 > 10 , Fh 
plateaus indicating that Fh is insensitive to � as the elastic 
limits are approached. As expected, Fh  peaks at � ≈ 1 for 
different �.

(49)c =
0.197√

�∗
+

0.951

�∗
where �∗ ≡ �

�
1 + f e−1.41�

�
.

Fig. 13  Numerical result of c versus �  for different � values (sym‑
bols). The solid black lines are calculated using by Eq. (24)

Fig. 14  a Comparison of 
VEHL solution with asymptotic 
solution for the film thick‑
ness profile. The asymptotic 
solution is obtained by solving 
the cubic Eq. (45) with c given 
by Eq. (49) and P given by 
Eq. (24). b The normalized 
hydrodynamic friction force Fh 
versus � . Asymptotic solutions 
of Fh calculated by using the 
dry limit of p and the asymp‑
totic solution of u are shown in 
black solid lines
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4.4  Total Friction in Viscoelastic Lubrication 
and Generalized Stribeck Surface

The total friction force Ftot is the sum of the viscoelastic 
friction Fv and the hydrodynamic friction Fh . Using our 
approximation, Ftot and the corresponding friction coeffi‑
cient �tot are:

where a , b , Γ1 are defined in Eqs. (26), (29), and (27), p 
is given by Eq. (24) and u is determined from the solution of 
the cubic Eq. (45).

Figure 15 plots the total friction force Ftot (black line) 
against large range � , � = 10−3 − 103 . Also plotted are the 
viscoelastic friction Fv and the hydrodynamic friction Fh . 
For very small 𝛼 < 0.1 and very large 𝛼 > 10 (i.e., very fast 
and very small loading rate), the total friction is mainly con‑
tributed by hydrodynamics as the substrate is elastic and 
no viscoelastic energy is dissipated. For moderate loading 
rates, � = 0.1 − 10 , the viscoelastic friction Fv kicks in and 
contribute significantly to the total friction force. Comparing 
Fig. 15a, b shows that as � increases viscoelastic dissipation 
is the dominant friction mechanism. In this regime, the cal‑
culation is much simpler since Fv is completely determined 
by the dry friction solution.

In the EHL regime, it is common practice to use the 
Stribeck curve where the friction coefficient is plotted 
against the Hersey number. However, it must be noted that, 
even for an elastic substrate, the solution of the sliding 
problem cannot be expressed solely in terms of the Hersey 

(50)
Ftot =Fv + Fh =

Na0

R

[(
b −

1

�(1 + f )
− a

3
Γ1

)

+�
∞

−∞

(
p,x u

�
+

1

3��u

)
dx

]
≡ Na0

R
Ftot,

(51)
�tot =

Ftot

N
=

a0

R

[(
b −

1

�(1 + f )
− a

3
Γ1

)

+∫
∞

−∞

(
p,x u

�
+

1

3��u

)
dx

]
= �v + �h,

number. Indeed, as shown above and by others [12, 34, 45], 
friction depends on the parameter � , which can be viewed as 
a generalized inverse Hersey number. Substrate viscoelastic‑
ity complicates the analysis as friction coefficient depends 
not only on � , but also on � and f  . Thus, the generalization 
of the Stribeck curve is a Stribeck surface in the 4 dimen‑
sional space 

(
�, �, f , �tot

)
 . Here, we present a slice of this 

4 dimensional surface by fixing f = 100 . In Fig. 16, we 
present 3D slices of the generalized Stribeck surfaces in (
�, �,�tot

)
,
(
�, �,�v

)
,
(
�, �,�h

)
 . Figure 16b shows that for 

large � , viscoelasticity controls the total friction force. The 
friction calculated using the dry sliding limit is shown in the 
same plot for comparison. However, for small � , 𝛼 < 0.01 
and large � regions, 𝛼 > 100 , the hydrodynamic friction 
force contributes significantly to the total friction as shown 
in Fig. 16c. The elastic lubrication limit is shown in the same 
plot for comparison.

5  Discussion and Summary

In this work, we studied the lubricated sliding of a rigid 
cylinder on a viscoelastic substrate with an emphasis on 
how substrate viscoelasticity affects sliding friction. We 
developed a robust numerical algorithm and used it to 
solve the full viscoelastic lubrication problem. Our theo‑
retical formulation shows that whereas EHL is governed 
solely by the generalized inverse Hersey number � , the 
full viscoelastic lubrication solution depends on two extra 
dimensionless parameters: � and f  . The parameter � rep‑
resents ratio of time taken to traverse the contact region to 
the characteristic viscoelastic relaxation time; f  is the ratio 
of short and long‑time moduli (− 1) denoting the strength 
of viscoelasticity.

Our analysis suggests an approach that can further sim‑
plify the problem. We find that many results of the full vis‑
coelastic lubrication problem can be obtained by the com‑
bination of two simper limiting cases. The first of these is 
the dry sliding limit in which the liquid layer is absent—the 
cylinder and viscoelastic substrate are in direct contact. The 

Fig. 15  Total friction force Ftot 
versus � for f = 100 , a � = 10 , 
and b � = 500 . The components 
of Fh and Fv are also shown for 
comparison
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second one is the elastic lubrication limit in which the vis‑
coelastic substrate is replaced by an elastic material. We 
have examined these two limits in detail. Our results show 
that the dry sliding contact pressure distribution is usually 
a good approximation of the hydrodynamic pressure in the 
lubricated case, especially in the large � regime. The liquid 
film thickness can be calculated approximately using per‑
turbation theory together with the dry contact pressure. The 
viscoelastic friction force due to viscoelastic energy dissipa‑
tion dominates the total friction in this large � regime. For 
small � regime, 𝛼 < 0.01 , and large � regime, 𝛼 > 100 , the 
hydrodynamic friction is the main source for the total fric‑
tion. The dry limit solution summarized in this work, the 
scaling analysis for the elastic lubrication and the numerical 
scheme proposed for the full viscoelastic lubrication prob‑
lem could be useful in other similar work. Also, the substrate 
is assumed to be standard viscoelastic solid in current work. 
One can linearly combine more characteristic retardation 
time into the model to fully approximate more realistic creep 
behavior of soft matter using similar methodology shown in 
this work.
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