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Abstract
Under severe conditions, solid contacts take place even when parts are lubricated. Precise mathematical conditions are needed 
to describe the interior interface between fluid lubrication and solid-contact zones. In order to distinguish the conditions for 
this interface from conventional lubrication boundary conditions, they are named lubrication–contact interface conditions 
(LCICs). In this work, mathematical LCICs are derived with local flow continuity from the continuum mechanics point of 
view and pressure inequality across the interface. Numerical implementations are developed and tested with problems having 
simple geometries and configurations, and they are integrated into a new mixed/boundary elastohydrodynamic lubrication 
solver that uses a new method to determine solid-contact pressures. This solver is capable of capturing film thickness and 
pressure behaviors involving solid contacts.
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Nomenclature
a	� Hertzian contact width (m) in 2D problems, 

or the semi-axis of the Hertzian contact 
ellipse in 3D problems in the x direction

b	� Width of the plate (m), or the semi-axis of 
the Hertzian contact ellipse in 3D problems 
in the y direction

Di,j	� Influence coefficients in elastic deformation
ep	� Error controls of pressure
E′	� Effective elastic modulus (Pa)
G	� Dimensionless material parameter, G = αE′
h, H	� Film thickness (m) and dimensionless film 

thickness, H = h/a
H0	� Dimensionless normal approach between 

two bodies
Hth	� Dimensionless threshold for judging contact 

zones
ke	� a/b
p, P	� Pressure (Pa) and dimensionless pressure, 

P = p∕ph

ph	� Maximum Hertzian pressure (Pa)
P	� m

2p

�u
 , Dimensionless pressure in Sects. 4.1 and 

4.2
l	� Length of the plate (m)
m	� Slope
q, Q	� Flows per unit length (kg/m/s)
u	� Horizontal velocity of the bottom plate along 

the x axis (m/s), or u = (u1 + u2)/2, entrain-
ment velocity (m/s)

v	� Velocity along the y axis (m/s)
U	� Dimensionless speed parameter, U = η0ue/ 

E′R
W	� Dimensionless load parameter, W = w/ E′R2

x, X, y, Y	� Coordinate (m)
α	� Pressure-viscosity coefficient (GPa−1)
αi, βi, γi, φi	� Coefficients in the discrete Reynolds 

equation
ε	� aph

12u�0

�∗H3

�∗

η, η*	� Viscosity (Pa·s) and dimensionless viscosity, 
η* = η/η0

η0	� Viscosity at atmospheric pressure (Pa·s)
k	� ΔX∕ΔY
ρ, ρ*	� Density (kg/m3) and dimensionless density, 

ρ* = ρ/ρ0
ρ0	� Density at atmospheric pressure (kg/m3)
ωp, ωw	� Relaxation factors of pressure and load
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Γ	� Interface between lubrication and solid-
contact zones

ΔX, ΔY	� Dimensionless grid size, which is the dimen-
sionless domain size divided by the grid 
number minus one

Abbreviations
1B, 2C, 2B	� Differential schemes: 1st-order backward, 

2nd-order central, and 2nd-order backward
LHS	� Left-hand side
RHS	� Right-hand side
LCICs	� Lubrication–contact interface conditions

Subscripts
i, j	� Indices for nodes
n, s, e, w	� Directions of north, south, east, and west
f, d	� Fluid pressure, and solid-contact pressure

1  Introduction

Modeling full-film lubrication problems between two solid 
bodies requires boundary conditions at the inlet, exit, and 
sides of the lubrication region, or at the interior cavitation 
boundaries if applicable, for the Reynolds equation to be 
properly solved. Some of the boundary conditions for fluid 
exit are summarized by Liu in [1]. Moreover, in real engi-
neering products, mixed/boundary lubrication can occur 
at low speeds and/or heavy loads, where fluid lubrication 
exists in some zones while solid contacts appear in other, 
co-existing in the nominal lubrication region. Solid contacts 
in this paper mean no effective hydrodynamic lubrication 
film between the two surfaces. Zapletal et al. [2] measured 
gaps, or the film thickness, using interferograms, between 
two lubricated surfaces with different levels of roughness 
under varying speeds, and quantitatively evaluated the extent 
of solid contacts. When modeling such lubrication problems 
using the Reynolds equation, it is necessary to define the 
conditions that reflect the local physical reality at the inter-
faces between solid contact on one side of the interface and 
fluid lubrication on the other. These boundary conditions 
between the liquid-lubricated and solid-contact zones in the 
space between the two solid bodies are called the lubrica-
tion–contact interface conditions (LCICs), where “contact” 
refers to solid contact.

Zhu and Wang [3] reviewed the history and progress of 
elastohydrodynamic lubrication (EHL) simulations, includ-
ing recent significant accomplishments for relatively thin-
film deterministic solutions considering real measured 
roughness. There are two types of rough-surface EHL mod-
els: stochastic [4–11] and deterministic [12–23]. Because the 
stochastic models need separate deterministic sub-models to 
determine flow factors, deterministic models play a key role 
in EHL analyses.

In deterministic EHL models, there are two approaches 
dealing with solid contacts, both using the finite-difference 
methodology: (1) lubrication and solid-contact zones are 
treated separately [12–14], in which the fluid-film pressure 
and solid-contact pressure variables are defined, respec-
tively, and they are updated in sequential steps of an iteration 
process; (2) lubrication and solid-contact zones are treated 
with a unified system of equations [15–21], where the pres-
sure variables, i.e., old and new pressure arrays, cover both 
lubrication and solid-contact zones, and they are updated 
within the same step in the iteration. In most cases, negative 
gaps encountered during the fluid pressure iteration were set 
to zero or a small positive value, as suggested in Appendix 
B of [4] by Patir.

Chang [12] studied transient line-contact mixed-EHL 
problems with a deterministic model that set the film thick-
ness to one-thousandth of the central film thickness for the 
smooth-surface case, hos, if the calculated film thickness is 
smaller than hos. Thus, the fluid-film pressure was obtained 
from the Reynolds equation for the entire simulation region, 
and the LCICs were avoided. Jiang et al. [13] presented a 
transient mixed-EHL model for point-contact problems, 
and their approach pertaining to the LCICs is that when 
the film thickness at a node is less than or equal to zero, (a) 
the film thickness is set to zero; (b) two coefficients for the 
upstream and downstream nodes need to be updated with 
zero film thickness; and (c) the fluid pressure is set to the 
solid-contact pressure. Zhao et al. [14] simulated the start 
of circular-contact EHL without explicit LCICs but used 
these constraints (a) the fluid-film lubrication zones had 
positive film thicknesses, zero solid-contact pressures, and 
non-negative fluid-film pressure and (b) the solid-contact 
zones had zero film thicknesses, positive solid-contact pres-
sures, and zero fluid-film pressures. Zhu and Hu [15, 16] 
introduced the unified equation system, which essentially 
uses the Reynolds equation for the entire simulation region. 
This approach is practical and has been successfully applied 
in their subsequent works and by others [16–20]. Holmes 
et al. [21] used the Reynolds equation and the elastic defor-
mation equation in a differential form to update unknown 
nodal values of pressure and film thickness. Once a nodal 
value of film thickness was negative, it was set to zero and 
the nodal pressure value was updated with the elastic deflec-
tion equation only. Li and Kahraman [22] utilized the uni-
fied equation system [15], but discretized it by means of 
an asymmetric integrated control volume. However, LCICs 
were ignored in these works [12, 14–22]. Deolalikar et al. 
[23] treated the lubrication and solid-contact zones sepa-
rately and explicitly applied a no-flow boundary condition to 
the places where the fluid zones were in the upstream of the 
solid-contact zones. The unified equation system [15] was 
also used by Zhang and Zhang [24] as the first step. After 
a pre-determined number of iterations, if the gap was still 
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less than a threshold, the solid-contact pressure was sepa-
rately determined by using the gap value, the pressure at the 
last iteration, and one influence coefficient of deformation. 
Then zero hydrodynamic pressures were enforced on the 
lubrication-contact boundaries in order to solve the Reyn-
olds equation for other locations having gaps larger than the 
threshold. LCICs were dealt with, to some extent, in refer-
ences [13, 23, 24]. It should be noted that references [12–24] 
have successfully used the gap values to determine whether a 
node is under fluid-film lubrication or solid contact, and thus 
temporary boundaries between fluid lubrication and solid 
contacts could be obtained before each iteration. Once the 
iteration process was completed, this partition became final.

Venner and Lubrecht [25] and Habchi [26] described 
in detail, in their monographs, how to apply the multigrid 
method and the finite element method, respectively, to 
solve EHL problems. Wang and Zhu [27] summarized the 
mixed lubrication simulation approaches rooted in the finite-
difference method. Among others, Liu et al. [28] obtained 
simulation results using the finite-difference method in good 
agreement with the experimental data. However, regarding 
the thin-film and mixed-EHL regimes, Zhu [29] stated that 
“converged and accurate numerical solutions become dif-
ficult, and effects of computational mesh density and dif-
ferential schemes appear to be more significant. Also, there 
is currently a debate on how solid contact should be defined 
and analyzed, and whether it is indeed possible to model 
solid contact through a grid-converged solution of the EHL 
equation system.” In fact, these challenges are still open, and 
most existing simulation works might have either missed or 
only partially addressed the LCICs, as mentioned above.

Moreover, Hansen et al. [30] proposed a new updated 
film parameter, and Mohammadpour et al. [31] investigated 
exterior boundary conditions of point EHL contacts with a 
combined numerical–experimental analysis. On other fronts, 
EHL is finding wider applications: Zhou et al. [32] applied 
EHL simulation to study lubrication between case‑hardened 
gears; AL-Mayali et al. [33] studied micropitting initiation 
with experiments and numerical simulations; and Ma et al. 
[34] implemented a mixed-EHL modeling to explore the 
formation of superlubricity using glycerol aqueous solutions.

Mixed EHL with proper LCISs becomes a key issue 
for the precise pressure/film-thickness determination in 
the mixed/boundary lubrication under the influence of 
solid contacts. Such a situation motivated recent explora-
tions on LCICs through theoretical analyses. Liu et al. [35] 
studied the flow continuity in line-contact EHL modeling 
and revealed a flow-continuity view of the discrete Reyn-
olds equation. Liu [36] derived analytical solutions to sev-
eral lubrication problems with flow blockages. Qiu et al. 
[37] investigated the flow continuity in point-contact EHL 
modeling.

This paper aims at modeling mixed/boundary elastohy-
drodynamic lubrication problems with proper equations for 
the LCICs and a new methodology for numerical imple-
mentations, together with a new method for contact-pressure 
determination. It is confined within continuum mechanics to 
ensure a correct base for understanding EHL problems. The 
theory and method are verified through solving problems 
involving simple geometries, under the no-slip and no-cav-
itation assumptions. The lubrication status of a smooth-sur-
face EHL problem is solved subjected to different entrain-
ment velocities to explore the transition from full-film EHL 
to full (inside the Hertzian zone) solid contact.

2 � Lubrication–Contact Interface Conditions

The interaction of the surfaces of two components may 
form various interfaces in a mixed or boundary lubrication, 
namely, the overall interface of these two components, the 
sub-interfaces between solids (such as asperities) in direct 
solid contacts, the sub-interface between the lubricant and 
the surfaces in lubricated zones, and a less discussed kind 
of sub-interface—the borders of solid contacts which are 
surrounded by the lubricant. The work reported in this paper 
mainly deals with the latter—the lubrication–contact inter-
face. This section elaborates the interfacial conditions in a 
mixed/boundary lubrication problem from the continuum 
point of view and describes the interface conditions explic-
itly with mathematical equations and inequalities. This set 
of LCICs should address two aspects of lubrication: pressure 
and flow.

2.1 � Pressure Conditions

Figure 1a is a typical three-dimensional (3D) representation 
of the line-contact lubrication problems, for example, in a 
cam and a follower system or in a pin-disk laboratory con-
figuration. Figure 1b illustrates a cross section perpendicular 
to the length direction, and the 3D problem becomes a two-
dimensional (2D) problem. Interfaces can occur between 
the fluid lubrication and solid contact. The non-dimensional 
coordinate of the interface is XΓ, and on the two sides of 
the interface, there are fluid pressure Pf and solid-contact 
pressure Pd . If X−

Γ
 is for the immediate left side of the inter-

face (or the minus side) and X+
Γ
 is the immediate right side 

of it (or the plus side), the non-dimensional pressures are 
P
(
X−
Γ

)
= P

f
 andP

(
X+
Γ

)
= P

d
 . According to the physics of the 

situation in Fig. 1, the solid-contact pressure to the immedi-
ate right of XΓ should be greater than or equal to the fluid 
pressure to its immediate left, i.e.,

(1)Pd

(
X+
Γ

) ≥ Pf

(
X−
Γ

)
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In other words, this pressure condition ensures that in 
order to maintain the solid contact starting at XΓ, the lubri-
cant pressure there should not surpass the pressure at the 
solid-contact side. Otherwise, the lubricant would be able 
to penetrate and open the contact junction before reaching 
equilibrium.

Figure 2b illustrates lubrication–contact interfaces in a 
three-dimensional (3D) problem, viewed from the top of the 
junction. In general, the interface, Γ, has an arbitrary shape, 
and normal nΓi is defined for the interface at location Γi. 
The interface conditions can be expressed along the normal. 
However, for the purpose of numerical modeling where the 
interfaces are specified with discrete meshes, this normal is 
either horizontal or vertical in the Cartesian coordinates. It is 
doubtful that Pf(XΓ) on all such interfaces should be zero all 
the time, as suggested in [23]. Similar to the 2D problem, the 
solid-contact pressure on the contact side of the interfaces 
should not be lower than the fluid pressure on the other side. 
Therefore, the pressure constraints can be expressed in four 
directions, namely west, east, north, and south,

where “ + ” and “−” are, respectively, for the plus and minus 
sides of the corresponding coordinates defining the interface.

2.2 � Flow Conditions

The lubrication–contact interfaces should permit no physical 
flows to pass through the interface, although the two interac-
tive surfaces are under relative motion. In other words, there 
is no net flow entering into the solid-contact zones, nor net 
flow coming out from these zones. For better understanding, 

(2)Pd

(
X+
Γw
, YΓw

) ≥ Pf

(
X−
Γw
, YΓw

)
at Γw

Pd

(
X−
Γe
, YΓe

) ≥ Pf

(
X+
Γe
, YΓe

)
at Γe

Pd

(
XΓn

, Y−
Γn

) ≥ Pf

(
XΓn

, Y+
Γn

)
at Γn

Pd

(
XΓs

, Y+
Γs

) ≥ Pf

(
XΓs

, Y−
Γs

)
at Γs

(a) (b)

H

u
Fluid lubrication

Solid contact

X

XΓ

YY

X
Z

Fig. 1   A line-contact lubrication problem. a 3D view and b cross-sectional view with lubrication–contact interfaces

(a) (b)
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Γw

Γn
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nΓi

u

Fluid lubrication Solid contact

X

Γ

Solid contact

Γi

v

Z

X

Y

Fig. 2   A point-contact lubrication problem. a 3D view b top view of the simulation region with lubrication–contact interfaces
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dimensional quantities are used in this part. The 2D case 
only has the Poiseuille and the Couette flows in the X direc-
tion, and this zero net flow constraint is expressed as

where h, u, and � are the film thickness (or gap), the entrain-
ment velocity, and the viscosity, respectively. In fact, due to 
flow continuity, zero net flow is true everywhere, and

If the gap is continuous around the interfaces of 
h
(
xΓ
)
= 0 , h(x−

Γ
) can be infinitely small, thus the pressure 

gradient in Eq. (3a) can be infinitely large. However, in 
reality, surface deformation caused by pressures should 
be included in h, and the 3D lubrication–contact interface 
allows side flows around the interface. Therefore, the pres-
sure gradient at the interface should be finite. Furthermore, 
there are other phenomena at the lubrication–contact inter-
face, such as transport of surface adsorbed layers and wall 
slip, which are not considered in this paper.

The entrainment velocity direction in 3D problems can 
be arbitrary, and in addition to the motion in the x direction, 
v is the velocity component along the y direction. The 3D 
LCICs for zero flows into and out of the solid-contact zones 
can be expressed in the following four scenarios:

In the remaining part of this work, v is assumed to be zero 
for simplicity. Note that one can apply similar treatments for 
issues related to u, to be described in the following sections, 
to handle those related to v if it is not zero.

(3)q(x−
Γ
) ≡ −

h3

12�

dpf

dx
+

uh

2

||||x−
Γ

= 0

(3a)
dpf

dx
=

6u�

h2

(4)q
(
x−
Γw
, yΓw

) ≡
(
−

h3

12�

dpf

dx
+

uh

2

)|||||x−
Γw

,yΓw

= 0 at Γw

q
(
x+
Γe
, yΓe

) ≡
(
−

h3

12�

dpf

dx
+

uh

2

)|||||x+
Γe
,yΓe

= 0 at Γe

q
(
xΓn

, y+
Γn

) ≡
(
−

h3

12�

dpf

dy
+

vh

2

)|||||xΓn ,y+Γn
= 0 at Γn

q
(
xΓs

, y−
Γs

) ≡
(
−

h3

12�

dpf

dy
+

vh

2

)|||||xΓs ,y−Γs
= 0 at Γs

3 � Numerical Implementation

In this section, the LCICs, proposed above, for lubrication 
problems involving solid contacts are implemented in a dis-
crete format so that they can be incorporated into a numeri-
cal algorithm.

3.1 � 2D Problems

The numerical implementations for the 2D line-contact 
problem are discussed first, mainly for the purpose of expla-
nation due to its relative simplicity. With both x and h nor-
malized by the Hertzian contact width, a, the dimensionless 
Reynolds equation can be expressed as

with � =
aph

12u�0

�∗H3

�∗
 and Pf= pf∕ph , where �0 is the viscosity 

at the atmospheric pressure, and ph is the maximum Hertzian 
pressure; X, H, �∗ , and �∗ are dimensionless variables for the 
coordinate, gap, density, and viscosity defined in the nomen-
clature. The dimensionless flow can be written as

where R is the equivalent radius of the two bodies, and �0 is 
the density at the atmospheric pressure. Q has the Couette 
flow

and the Poiseuille flow

For the derivative of the Poiseuille flow, which is the left-
hand side (LHS) term of the Reynolds equation, the second-
order central differential scheme is usually applied,

where �i−0.5 = (�i−1 + �i)∕2 and �i+0.5 = (�i+1 + �i)∕2 and 
subscripts i − 0.5 and i + 0.5 are middle locations. For the 
derivative of the Couette flow, which is the right-hand side 
(RHS) of the Reynolds equation, one can choose from three 
basic differential schemes: the 1st-order backward (1B), 
2nd-order central (2C), or 2nd-order backward (2B) [25, 
27, 35, 38]: 

(5)
d

dX

(
�
dPf

dX

)
=

d(�∗H)

dX

(6)Q ≡ qR

�0ua
2
= �∗H − �

dPf

dX
,

(6a)QC = �∗H

(6b)QP = −�
dPf

dX
.

(7)
�i−0.5Pfi−1 − (�i−0.5 + �i+0.5)Pfi + �i+0.5Pfi+1

ΔX2
,
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(a) 1B scheme	�

(b) 2B scheme	�

(c) 2C scheme	�

Moreover, the derivative of the Couette flow can also be 
expressed in a separate form [27, 38, 39],

which can be discretized with the following options (“S” in 
the notation stands for “separate”):

	 i.	 S1B scheme: If the 1B scheme is used for the deriva-
tives and �∗ and H take values at i,

 which has one more term than what is in Eq. (8). This 
scheme is used in Eq. (11) of [39].

	 ii.	 If the 1B scheme is used for the derivatives but �∗ and 
H take average values between i and i − 1, one obtains 
the same equation as Eq. (8).

	 iii.	 S2C scheme: If the 2C scheme is used for the deriva-
tives and �∗ and H take values at i,

 which has two more terms than what is in Eq. (10).
	 iv.	 If the 2C scheme is used for the derivatives with �∗ and 

H taking the averages values between i + 1 and i − 1, 
one obtains the same equation as Eq. (10).

(8)

(9)

(10)

(11)
d(�∗H)

dX
= �∗

dH

dX
+ H

d�∗

dX
,

(12)
H

i

�∗
i
− �∗

i−1

ΔX
+ �∗

i

H
i
− H

i−1

ΔX
=

�∗
i
H

i
− �∗

i−1
H

i−1

ΔX

+

(
�∗
i
− �∗

i−1

)(
H

i
− H

i−1

)
ΔX

(13)
H

i

�∗
i+1

− �∗
i−1

2ΔX
+ �∗

i

H
i+1 − H

i−1

2ΔX
=

�∗
i+1

H
i+1 − �∗

i−1
H

i−1

2ΔX

+

(
�∗
i
− �∗

i−1

)(
H

i
− H

i−1

)
2ΔX

−

(
�∗
i+1

− �∗
i

)(
H

i+1 − H
i

)
2ΔX

(14)

	 v.	 Using the 2B scheme for the derivatives with �∗ and H 
taking averages values between i + 1 and i − 1 (marked 
in bold below), one obtains

	 vi.	 Using the 2B scheme for the derivatives with �∗ and 
H take values at i (marked in bold below), one has

Liu et al. [35] presented a flow-continuity view of the dis-
crete Reynolds equation, which is extended in this work to 
handle the LCICs. Regardless of which differential scheme 
is used for the derivative of the Couette flow, the discrete 
Reynolds equation can be expressed in four flow terms as 
follows:

where the two terms of the flow leaving the node of i are

and the two terms of the flow entering the node of i, QP
i−0.5

 
and QC

i−0.5
 are obtained by replacing i with i − 1 in Eqs. 

(16) and (17), except for the subscripts of �∗
i
− �∗

i−1
 in S1B, 

marked in bold in Eq. (17). For example,

Fu r t h e r m o re ,  fo r  t h e  S 1 B  s ch e m e ,  o n e 
could use �∗

i
Hi + �∗

i
(Hi − Hi−1) in  Eq.   (17) and 

�∗
i−1

Hi−1 + �∗
i−1

(Hi − Hi−1) in Eq. (18). Unlike the equations 
for options (i)–(iv), those for options (v) and (vi) cannot be 

H
i+1 + H

i−1

2

3�∗
i
− 4�∗

i−1
+ �∗

i−2

2ΔX
+

�∗
i+1

+ �∗
i−1

2

3H
i
− 4H

i−1 + H
i−2

2ΔX

Hi

3�∗
i
− 4�∗

i−1
+ �∗

i−2

2ΔX
+ �∗

i

3Hi − 4Hi−1 + Hi−2

2ΔX

(15)QP
i−0.5

+ QC
i−0.5

= QP
i+0.5

+ QC
i+0.5

,

(16)QP
i+0.5

= −
�i+0.5(Pf ,i+1 − Pf ,i)

ΔX

(17)Q
C

i+0.5
≡

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�∗
i
H

i
, 1B

3�∗
i
H

i
−�∗

i−1
H

i−1

2
, 2B

�∗
i
H

i
+�∗

i+1
H

i+1

2
, 2C

�∗
i
H

i
+
�
�
*

i
− �

*

i−1

�
H

i
, S1B

�∗
i
H

i
+�∗

i+1
H

i+1

2
−

(�∗
i+1

−�∗
i
)(Hi+1−Hi)
2

, S2C

(18)

Q
C

i−0.5
≡

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�∗
i−1

H
i−1, 1B

3�∗
i−1

H
i−1−�

∗
i−2

H
i−2

2
, 2B

�∗
i
H

i
+�∗

i−1
H

i−1

2
, 2C

�∗
i−1

H
i−1 +

�
�
*

i
− �

*

i−1

�
H

i−1, S1B

�∗
i
H

i
+�∗

i−1
H

i−1
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further simplified, and if chosen, they should be treated as 
two terms with the 2B schemes.

Note that for the Couette flow Qc shown in Eqs. (17–18), 
the 2C and S2C schemes of Eq. (17) involve subscripts i and 
i + 1 on the RHS, and the subscript i + 0.5 on the LHS for 
QC

i+0.5
 is their center. Similarly, the 2C and S2C schemes of 

Eq. (18) contain subscripts i and i − 1 on the RHS, and the 
subscript i − 0.5 on the LHS for QC

i−0.5
 is also their center. 

However, for the other schemes, subscripts of terms on the 
RHS, except those of the bold font, are smaller than the sub-
scripts on the LHS. For example, the 1B scheme of Eq. (17) 
involves subscript i on the RHS, which is smaller than sub-
script i + 0.5 on the LHS. Therefore, because the subscript 
values increase from the left to the right in the discretization 
(Fig. 3), differential schemes 1B, 2B, or S1B use slightly 
upstream Couette flow values to approximate the Couette 
flow terms needed for the element. In Fig. 3, the thick line on 
the horizontal axis represents one element and these Couette 
flow terms are illustrated with hollow arrows.

The discrete 2D lubrication problem involving a solid-
contact zone is shown in Fig. 3. Each node represents a 
length that connects its two adjacent middle locations. One 
element is this length shown by the thick line in Fig. 3. The 
Couette flow terms are illustrated with hollow arrows, and 
the Poiseuille flows with solid arrows. Note that if the inter-
face location, XΓ, is known, one could arrange two nodes 
with XΓ right at the center. However, XΓ could be unknown 
at the beginning of the simulation and change during itera-
tions. In a discrete mesh, if XΓ is located between two neigh-
boring nodes, the center between these two nodes is used 
to approximate XΓ. Of course, a smaller interval between 
nodes of finer meshes could reduce the error of such an 
approximation. A dashed line is used in Fig. 3 to represent 
the geometry at the tip of this solid-contact wedge. iΓ is used 

to represent the fluid lubrication node closest to the discrete 
interface.

In the following, the no-flow constraint is integrated into 
the discrete Reynolds equation in order to determine the 
pressure at iΓ. If film thickness Hi+1 is the first zero value 
tracing from the inlet from left to right, the interface is 
between node i and node i + 1 . The middle location, i + 0.5, 
is chosen to be the interface, so that the no-flow interface 
condition at this location is QP

i+0.5
+ QC

i+0.5
= 0 , reducing 

Eq. (15) to,

Therefore, based on the differential schemes for the Cou-
ette flow, the following can be obtained:

Since the net flow is zero everywhere, these recursion 
formulae are also valid for other nodes in the lubrication 
zone. Once the fluid and solid-contact pressures are solved, 
the following inequality needs to be true,

Otherwise, the location of the interface has to be adjusted.

3.2 � 3D Problems

For 3D problems, the X axis is set along the direction of 
motion for convenience. Figure 4 shows a simple discrete 
mixed lubrication scenario. Once a node is found in solid 
contact, the material of the rectangle element around this 
node is in solid contact, and, likewise, for the nodes in fluid 
lubrication the surrounding rectangle is in a state of fluid 
lubrication. The dashed-line rectangle around node (i, j) is 
an elemental control volume, and the solid black-line box is 
the lubrication–contact interface which connects the middle 
points between fluid and solid-contact nodes.

(19)QP
i−0.5

+ QC
i−0.5

= 0

(20)1B ∶ Pfi = Pfi−1 +
�∗
i−1

Hi−1ΔX

�i−0.5

(21)2B ∶ Pfi = Pfi−1 +

(
3�∗

i−1
Hi−1 − �∗

i−2
Hi−2

)
ΔX

2�i−0.5

(22)2C: Pfi = Pfi−1 +

(
�∗
i
Hi + �∗

i−1
Hi−1

)
ΔX

2�i−0.5

(23)S1B ∶ Pfi = Pfi−1 +
�∗
i
Hi−1ΔX

�i−0.5

(24)S2C: Pfi = Pfi−1 +

(
�∗
i
Hi−1 + �∗

i−1
Hi

)
ΔX

2�i−0.5

(25)PfiΓ
≤ PdiΓ+1

.

Hi-1
Hi

XΓ u

X, iiΓ
Hi+1Q . Q .

Hi-2

2C, S2C Qc:

1B, S1B Qc:

2B Qc:

QP:

Fig. 3   Lubrication–contact interface in a 2D case, filled circles: lubri-
cation; empty circles: solid contact, with pf and pd for the fluid and 
solid-contact pressures, respectively. The pressure is discretized at 
nodal points with integer subscripts, but flows are defined at various 
locations depending on differential schemes. The black arrows show 
the Poiseuille flows discretized right at i + 0.5 and i-0.5 middle nodes, 
while the hollow arrows illustrate the Couette flows given by Eqs. 
(17–18)
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3.2.1 � Nodes in the Normal Lubrication Zone

If x and h are normalized by the Hertzian contact semi-axis 
in the x direction, a, and y is normalized by the Hertzian 
contact semi-axis in the y direction, b, the 2D dimensionless 
Reynolds equation can be expressed as

with � =
aph

12u�0

�∗H3

�∗
 and ke = a∕b , and the dimensionless flows 

in the X and Y directions can be written as

Descriptions of the differential and finite-difference 
schemes in 2D problems can be expanded. If node (i, j) 
and its surrounding four nodes are all under fluid lubrica-
tion (Fig. 4, top-right), the discrete Reynolds equation for 
such a node has a standard form. Equation (7) is extended 

(26)
�

�X

(
�
�Pf

�X

)
+

�

�Y

(
k2
e
�
�Pf

�Y

)
=

�(�∗H)

�X

(27)QX ≡ qX

�0ua
= �∗H − �

�Pf

�X
= QC

X
+ QP

X

(28)QY ≡ qY

�0ua
= −ke�

�Pf

�Y
= QP

Y
.

accordingly with subscript j to represent the derivative of the 
Poiseuille flow in the X direction in a 3D problem,

and the derivative of the Poiseuille flow in the Y direction 
has a similar expression,

where Pfi,j is the fluid pressure at the node of (i, j). Five 
nodes are involved in these discrete equations. The Poi-
seuille flows in both directions can be expressed as

The various differential schemes for the Couette flow in 
Eqs. (8–14) can be readily applied here by adding the sub-
script j. Similar to Eqs. (17–18), the following definitions of 
the Couette flow can be made:

(a)	 Couette flow leaving the control volume

(b)	 Couette flow entering the control volume

For the S1B scheme,  one can also use 
�∗
i,j
Hi,j + �∗

i,j
(Hi,j − Hi−1,j)  i n  E q .   ( 3 1 )  a n d 

�∗
i−1,j

Hi−1,j + �∗
i−1,j

(Hi,j − Hi−1,j) in Eq. (32).

(29a)
�i−0.5,jPfi−1,j − (�i−0.5,j + �i+0.5,j)Pfi,j + �i+0.5,jPfi+1,j

ΔX2

(29b)

k2
e

�i,j−0.5Pfi,j−1 −
(
�i,j−0.5 + �i,j+0.5

)
Pfi,j + �i,j+0.5Pfi,j+1

ΔY2
,

(30)QP
Xi−0.5,j

= −
�i−0.5,j(Pfi,j − Pfi−1,j)

ΔX

QP
Yi,j−0.5

= −ke
�i,j−0.5(Pfi,j − Pfi,j−1)

ΔY

(31)Q
C
Xi+0.5,j

≡

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�∗
i,j
Hi,j, 1B

3�∗
i,j
Hi,j−�

∗
i−1,j

Hi−1,j

2
, 2B

�∗
i,j
Hi,j+�

∗
i+1,j

Hi+1,j

2
, 2C

�∗
i,j
Hi,j +

�
�
*
i,j
− �

*
i−1,j

�
Hi,j, S1B

�∗
i,j
Hi,j+�

∗
i+1,j

Hi+1,j

2
−

�
�∗
i+1,j

−�∗
i,j

�
(Hi+1,j−Hi,j)

2
, S2C

(32)

Q
C
Xi−0.5,j

≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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i−1,j

Hi−1,j, 1B

3�∗
i−1,j

Hi−1,j−�
∗
i−2,j

Hi−2,j

2
, 2B

�∗
i,j
Hi,j+�

∗
i−1,j

Hi−1,j

2
, 2C

�∗
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Hi−1,j +
�
�
*
i,j
− �

*
i−1,j

�
Hi−1,j S1B

�∗
i,j
Hi,j+�

∗
i−1,j

Hi−1,j

2
−

�
�∗
i,j
−�∗

i−1,j

�
(Hi,j−Hi−1,j)

2
S2C

(a)

(b)

Y, j

With Qc by 1B/S1B

North

With Qc by 2B

Pf i,j

Pf i-1,j

Pf i,ju

Pf i,j-1

X, i
West

East
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Pf i,j

Pf i,j+1

Pf i,j

Pf i,j-1

Pf i,j

Fig. 4   a 3D lubrication–contact interface, filled circles: lubrication 
nodes; empty circles: solid contact nodes. A fluid case and four inter-
face cases are illustrated, on the east, west, south, and north sides of 
the solid-contact zone marked by the black-line box. b flow terms by 
various schemes, with black arrows for the Poiseuille flows and hol-
low arrows for the Couette flow by the 1B, S1B, and 2B schemes. In 
b, red outlines are used to pair the Couette and the Poiseuille flows on 
the east borders of the control volumes
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Elastic deformation is a significant varying portion of Hi,j 
in an EHL problem. During iterations, negative values of 
Hi,j can occur, indicating potential solid-contact nodes. In 
most works, negative Hi,j were set equal to a small value or 
zero, even at the end of the simulation, leading to errone-
ous flows/results. Furthermore, one should be aware that 
such an enforcement is lost during the evaluation of the Poi-
seuille/Couette flow terms if Hi,j is separated into terms, or 
the unenforced version of Hi,j with negative values is used. 
In this work, the discrete Reynolds equation is not used for 
nodes with negative Hi,j , but a new method in Sect. 3.2.7 is 
applied to determine the solid-contact pressure.

Note that subscripts of the terms on the RHS of Eqs. 
(31, 32) for the 1B, 2B, and S1B schemes are also slightly 
shifted from the subscript of Qc (see Fig. 4b). In other words, 
the terms on the RHS of the expressions in Eq. (31) are as 
follows:

	 (i)	 independent of node (i + 1, j) when the 1B, 2B, or 
S1B scheme is selected. When node (i + 1, j) is in 
solid contact, these expressions indicate non-zero 
values of the Couette flow leaving the control vol-
ume. As a result, the same amounts of the Couette 
flow erroneously enter into the neighboring control 
volume with the solid-contact node. This issue is 
often overlooked in the literature about mixed lubri-
cation.

	 (ii)	 related to node (i + 1, j) when the 2C or S2C scheme 
is used. It should be noted that the conventional 2C 
scheme uses QC

Xi+0.5,j
− Q

C
Xi−0.5,j

= (�∗
i+1,j

Hi+1,j − �∗
i−1,j

Hi−1,j)∕2 without distinguishing which part is enter-
ing/leaving the control volume. When node (i + 1, j) 
is in solid contact and Hi+1,j = 0 is enforced, this 
expression gives

while with the LCICs enforced in Eq. (31), the net Couette 
flow in the X direction is

On the other hand, for the terms on the RHS of Eq. (32), 
if node (i-1, j) is in solid contact and Hi−1,j = 0 is properly 
enforced,

	 (i)	 the 1B/S1B scheme can effectively turn off the Cou-
ette flow entering the control volume since Hi−1,j is 
zero.

	 (ii)	 the 2B scheme has node (i − 2, j) involved, and if 
this node is in lubrication, the Couette flow entering 
the control volume cannot be effectively turned off; 

QC
Xi+0.5,j

− QC
Xi−0.5,j

= −�∗
i−1,j

Hi−1,j∕2;

QC
Xi+0.5,j

− QC
Xi−0.5,j

= −(�∗
i,j
Hi,j + �∗

i−1,j
Hi−1,j)∕2.

otherwise, this 2B scheme can automatically zero the 
Couette flow entering the control volume.

	 (iii)	 If the 2C scheme is used, similarly to case (ii) above, 
the conventional expression gives

while with the LCICs enforced in Eq. (32), the net Couette 
flow in the X direction is

Therefore, Eqs. (17–18, 31–32) are critical to the discrete 
Reynolds equation for lubrication problems involving solid 
contacts, because they properly identify the Couette flow 
terms entering and leaving the control volume, thus enabling 
appropriate treatments of the Couette flow around the lubri-
cation–contact interface.

The discrete Reynolds equation can be expressed in the 
form of flow continuity as follows:

where � = ΔX∕ΔY . After combining the Poiseuille and the 
Couette flow, the above can be concisely written with four 
flows as

When one or more of these four surrounding nodes is in 
solid contact, these equations should be adjusted one by one 
according to the LCICs mentioned in Sect. 2. In the follow-
ing subsections, different cases are discussed in detail.

3.2.2 � Control Volume with One Border at The Interface

Figure 4 depicts four cases with nodes whose control vol-
umes have one of the four borders at the interface in the 3D 
problem. For simplicity, each representative node is labeled 
as (i, j). No flow should penetrate these interface, so that the 
corresponding flow related to that border of such a control 
volume should be eliminated in the discrete Reynolds equa-
tion, which is detailed as follows:

(1)	 West: QXi+0.5,j = 0

(2)	 East: QXi−0.5,j = 0

(3)	 North: QYi,j−0.5 = 0

(4)	 South: QYi,j+0.5 = 0

3.2.3 � Control Volume with Its Two Connecting Borders 
at the Interface

Figure 5 shows four cases where the control volumes have 
their two connecting borders at the interface. No flow 

Q
C
Xi+0.5,j

− Q
C
Xi−0.5,j

= �∗
i+1,j

Hi+1,j∕2;

Q
C
Xi+0.5,j

− Q
C
Xi−0.5,j

=
(
�∗
i,j
Hi,j + �∗

i+1,j
Hi+1,j

)
∕2.

(33)
QP

Xi−0.5,j
+ QC

Xi−0.5,j
+ �keQ

P
Yi,j−0.5

= QP
Xi+0.5,j

+ QC
Xi+0.5,j

+ �keQ
P
Yi,j+0.5

,

(34)QXi−0.5,j + �keQYi,j−0.5 = QXi+0.5,j + �keQYi,j+0.5.
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penetrates these borders. Each of these cases is a combi-
nation of two cases in Sect. 3.2.2. According to their ori-
entations, these cases are labeled as northwest, northeast, 
southwest, southeast, as shown below:

(5)	 Northwest: combination of the north and west cases.
	 QXi+0.5,j = 0 and QYi,j−0.5 = 0

(6)	 Northeast: combination of the north and east cases.
	 QXi−0.5,j = 0 and QYi,j−0.5 = 0

(7)	 Southwest: combination of the south and west cases.
	 QXi+0.5,j = 0 and QYi,j+0.5 = 0

(8)	 Southeast: combination of the south and east cases.
	 QXi−0.5,j = 0 and QYi,j+0.5 = 0

3.2.4 � Control Volume with Two Parallel Borders 
at the Interface

Figure 5 also shows two cases where the control volumes 
have two parallel borders at the interface(s). Similarly, no 
flow should penetrate these borders. Each of these cases is 
also a combination of two cases in Sect. 3.2.2. According to 
their orientations, these cases are labeled as the horizontal 
and the vertical channels.

	 (9)	 Horizontal channel: QYi,j−0.5 = 0 and QYi,j+0.5 = 0

	(10)	 Vertical channel: QXi−0.5,j = 0 and QXi+0.5,j = 0.

3.2.5 � Control Volume with Three Borders at the Interface

The control volume may have three borders at the interface. 
No flow should penetrate these borders, and as a result, no 
flow can go through the free border either. These cases are 

combinations of three cases from the four in Sect. 3.2.2. 
According to their orientations, these cases are labeled as 
west open, north open, east open, and south open. If a con-
trol volume has only the following border open to the flow 
(which is, of course, also zero),

	(11)	 West open: QXi+0.5,j = 0 , QYi,j−0.5 = 0 , and QYi,j+0.5 = 0

	(12)	 East open: QXi−0.5,j = 0 , QYi,j−0.5 = 0 , and QYi,j+0.5 = 0

	(13)	 North open: Pfi,j+1 = Pfi,j due to zero Poiseuille flow 
in the Y direction.

	(14)	 South open: Similarly, Pfi,j−1 = Pfi,j

However, nodes inside control volumes of case 10, 13, 
and 14, where both west and east borders are at the interface, 
should be processed as solid-contact nodes. Numerical experi-
ments in Sect. 4.4 reveal that this can avoid numerical issues.

Note that Deolalikar et al. [23] treated QXi−0.5,j = 0 occur-
ring in cases (2, 6, 8, 10, 12) with their Eqs. (19–20); how-
ever, no treatments are mentioned for other cases listed 
above. Furthermore, Ref. [23] Eq. (20) may have a typo, i.e., 
Bs should be −��t

i,j
Ht

i,j
∕ΔX , and thus it offsets one term of 

the Couette flow inside Ref. [23] Eq. (19), which utilized the 
1B differential scheme for the Couette flow.

In summary, various flow conditions, detailed in 
Sects. 3.2.2–3.2.5, have been derived to satisfy the LCICs and 
the discrete Reynolds equation. These conditions are applied 
in the following section to obtain numerical solutions.

3.2.6 � Simplified Treatments

Sections 3.2.2–3.2.5 describe the 2D Reynolds equations 
modified by the LCICs, when at least one of the discretized 
nodes is in solid contact. There are fourteen cases in total. 
One could directly code them into a computer program. 
Alternatively, one may handle them in simplified ways. The 
discrete Reynolds equation is written as

where the definitions of the Couette flow terms, QC
Xi+0.5,j

 and 
QC

Xi−0.5,j
 , are given in Eqs. (31–32). Pfi,j is used for fluid and 

Pdi,j for solid-contact pressures.

(35)

−
�i−0.5,j

(
Pfi,j − Pfi−1,j

)
ΔX

+
�i+0.5,j

(
Pfi+1,j − Pfi,j

)
ΔX

− �k2
e

�i,j−0.5
(
Pfi,j − Pfi,j−1

)
ΔY

+ �k2
e

�i,j+0.5
(
Pfi,j+1 − Pfi,j

)
ΔY

= QC
Xi+0.5,j

− QC
Xi−0.5,j

,

u

Y, j

X, i
West

North

East

South

Vertical 
Channel

Horizontal 
Channel

Fig. 5   3D cases with two borders of the control volumes at the inter-
face. Filled circles: lubrication; empty circles: solid contact
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In a point-by-point pressure evaluation process, if all four 
surrounding nodes are in lubrication, no treatment is needed and

One could re-arrange the terms in the Couette flow related 
to Pfi,j , and increase the denominator of Eq. (36) thus mak-
ing the iteration process more stable [25, 36]. Otherwise, if 
any one of the surrounding nodes is in a solid-contact zone 
(non-positive gap), Eq. (35) needs to be modified to nullify 
the Poiseuille flow in that direction as follows:

•	 Method A: the value of � is directly adjusted. For exam-
ple, if node (i-1, j) is under a solid contact, �i−0.5,j = 0;

•	 Method B: the pressure variable(s) at those surrounding 
nodes are set to be the central pressure value at the last 
iteration. For example, if node (i-1, j) is under a solid 
contact, Pfi−1,j equals the value of Pf i,j at the last iteration.

Furthermore, the Couette flow terms in Eq. (35) have to 
be adjusted: if one of surrounding solid-contact nodes is on 
the west side, QC

Xi−0.5,j
 is set to zero, or if one of surround-

ing solid-contact nodes is on the east side, QC
Xi+0.5,j

 is set to 
zero. After these necessary treatments, Eq. (36) can then be 
used to obtain the updated pressure at the current node of 
the control volume.

If a line-by-line pressure evaluation is executed, one can 
use this format [27, 36]

where αi, βi, γi, and �i are coefficients, to be modified 
accordingly when one or more surrounding nodes are in a 
solid-contact zone to ensure both the Poiseuille and Couette 
flow terms are properly removed.

When a single array of Pi,j is used for both fluid and solid-
contact pressures and a point-by-point pressure evaluation 
process is executed, one may need to define four temporary 
variables Pe, Ps, Pw, Pn to replace Pf,…,j in Eqs. (35–36). 
Thus,

(36)

Pi,j =

[
Q

C
Xi−0.5,j

− Q
C
Xi+0.5,j

+
�i−0.5,jPw + �i+0.5,jPe

ΔX
+ �k2

e

�i,j−0.5Ps + �i,j+0.5Pn

ΔY

]/

[
�i−0.5,j + �i+0.5,j

ΔX
+ �k2

e

�i,j−0.5 + �i,j+0.5

ΔY

]

(37)�iPfi−1,j + �iPfi,j + �
i
Pfi+1,j − �i = 0,

(38)

Pi,j =

[
Q

C
Xi−0.5,j

− Q
C
Xi+0.5,j

+
�i−0.5,jPw + �i+0.5,jPe

ΔX

+�k2
e

�i,j−0.5Ps + �i,j+0.5Pn

ΔY

]/

[
�i−0.5,j + �i+0.5,j

ΔX
+ �k2

e

�i,j−0.5 + �i,j+0.5

ΔY

]

3.2.7 � Solid‑Contact Pressure Evaluation and Constraints

Gap values are utilized to determine whether a node is under 
fluid-film lubrication or solid contact, e.g., a node is marked 
under solid contact whenever the gap there is below a value 
corresponding to several layers of adsorbed lubricant mol-
ecules [29], or a threshold of 10 nm as selected by Deola-
likar et al. [23]. There are different methods to evaluate 
solid-contact pressures in an EHL problem, among them are 
(1) the unified Reynolds equation [15]; (2) minimization of 
complementary energy [14, 23]; and (3) direct pressure 
determination from the zero gap condition with elastic defor-
mations expressed in terms of pressure estimations (old and 
new), presented by Zhang and Zhang [24], i.e., based on 
their Eq. (11), if Hold

i,j
 ≤ 0,

where D0,0 is a pressure-deformation coefficient or an influ-
ence coefficient, and P is the solid-contact pressure in this 
section.

Wang and Zhu [27] mentioned that “to further guarantee 
the solution convergence and stability, we can introduce a 
computational control parameter φ whose value is chosen 
usually between 1 and 2, in order to enhance the leading 
diagonal elements of the coefficient matrix” of Eq. (37). 
Zhang and Zhang [24] utilized a similar parameter, but 
called it a “stability factor” and allowed its value to be 10 to 
30. Using Cc for this parameter, Eq. (39) becomes

and Pnew
i,j

 can be evaluated. Note that the negative values of 
the gap during iterations provide essential information to 
determine new estimations of pressure.

In the following, a new method is proposed involving 
pressures at multiple neighboring nodes:

(a) If a line-by-line relaxation is used, a new equation for 
the solid-contact node is constructed following the 3-node 
iteration format similar to Eq. (37)

where D1,0 is another pressure-deformation/influence coef-
ficient. This equation is suitable for a Jacobi relaxation. 
When a Gauss–Seidel relaxation is applied, one can bring 
new pressure values, obtained before relaxing the pressure 
value for the current node, into Eq. (41). One simple option 
is to bring in the three values at (i-1, j-1), (i, j-1), and (i + 1, 
j-1), i.e.,
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old
i,j
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=
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where D0,1 is also a pressure-deformation/influence 
coefficient.

(b) If a pointwise relaxation is adopted, the new equation 
for the solid-contact node can be expressed as

Involving the neighboring nodes in this method is expected 
to make the relaxation of the solid-pressure values more 
stable.

During iteration, a node can change its status between 
film lubrication and solid contact. If a node in solid contact 
has one, two, three, or even four surrounding nodes in lubri-
cation (Figs. 4 and 5, where various cases are illustrated), 
its solid-contact pressure value should be higher than or 
equal to these fluid pressure values. At the end of the itera-
tion process, these pressure constraints in Eq. (2) have to 
be satisfied.

4 � Numerical Results and Discussion

In the next two subsections, 3D steady-state lubrication 
problems with simple configurations are used to explain the 
numerical implementation and validate the proposed LCICs, 
in terms of flow constraints without evaluating solid-contact 
pressures. In Sect. 4.3, a steady-state point-contact EHL 
problem with smooth surfaces is simulated with this new 
methodology involving the LCICs and the new method to 
determine solid-contact pressure.

4.1 � A Fixed Wedge Bearing Problem

A fixed wedge bearing with a rigid pillar is shown in Fig. 6. 
It is assumed that (a) the bottom plate is flat and moving 
along the X axis with a constant velocity of u, and the top 
pad is stationary; (b) no cavitation around the rigid block; (c) 
no leakage occurs between the rigid block and the moving 
plate; and (d) no wall slip is present between lubricant and 
the plate/pad surfaces. Lubricant density ρ and viscosity η 
are constant and the solid bodies are rigid in this example. 
The lubrication zone is governed by a 2D Reynolds equation

(41a)
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)
.

where h = mX , and m is the slope of the inclined pad. Coor-
dinates of X and Y are dimensionless with 1 mm as the refer-
ence for non-dimensionalization. A dimensionless pressure 
is defined as

which makes Eq.  (43) independent of m. Because with 
coarser meshes, the central film thickness from the 1B 
scheme is closer to mesh-convergent results than those from 
the other schemes in the mixed lubrication simulation based 
on results presented in [38], the 1B scheme is adopted in this 
Section. Note that Deolalikar [24] utilized the 1B scheme 
as well, but other differential schemes can also be selected. 
With a mesh of 128 by 128 nodes (n = 128), the nodal coor-
dinates are

The first node is deliberately located outside of the plate 
so that the middle point between the first and second nodes 
in the X direction is at the edge of the plate, X0. The follow-
ing convergence criterion is applied:

and the error of pressure, ep, is 4E-5.

4.1.1 � Blockage with a Rigid Square Pillar

A rigid square pillar with side lengths of 8 mm is centered 
at (35, 0) inside the fixed wedge bearing whose four borders 
are at ambient pressure (Fig. 6). This pillar is an approxi-
mation of a large piece of debris caught in the bearing. The 
width and length of the bearing plate are 20 and 30 mm, 
respectively. The coordinates of X0 and X1 are 20 and 50 mm, 
respectively. All these dimensions are illustrations and can 
be easily altered. Note that there is no analytical solution for 
this kind of problems. With LCICs, numerical results of the 
fluid pressure are shown in Fig. 7. A high-pressure zone is 
observed on the inlet side of the pillar due to flow blockage.

4.1.2 � Blockage with a Rigid Cylindrical Pillar

This example involves a cylindrical pillar, which has a radius 
of 4 mm, and its center is at (35, 0). The fluid pressure result 
is plotted in Fig. 8 with the same color map as in Fig. 7. 
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Again, the high-pressure zone is on the inlet side of the pillar 
but the pressure magnitude is much lower than that in Fig. 6 
due to stronger side flows enabled by the cylindrical shape.

4.2 � Effects of LCICs

The fluid pressures in Figs. 7 and 8 are shown together in 
Fig. 9 along the centerline at Y = 0. The long dashed line is 
for the traditional solution to the same wedge-bearing prob-
lem without the pillar blockage. The rigid blockages result 
in much higher pressures between the inlet and the blockage, 
but much lower pressures between the blockage and the exit. 
The square pillar builds a higher maximum pressure, right 
in front of the blockage, than does the cylindrical pillar, 
as expected. When the exit side is completely blocked, an 
analytical solution has been derived by Liu [36] and the cor-
responding values at selected locations labeled by “B-Exit 
ana.” in the legend are shown in Fig. 9 with filled square 
marks. Numerical results obtained by the iteration process 
and labeled by “B-Exit num.” are plotted too, and they match 
the analytical solution very well. One can see clearly that 
in the zone close to the inlet, the pressure is greater for the 
square-pillar blockage, followed by the cylinder-pillar block-
age, the exit blockage, and the no blockage from high to low.

The comparison in Fig. 10 demonstrates the effects of the 
treatment of the Couette flow based on the proposed LCICs. 
The label “NTCF” means “no treatment of the Couette flow” 
and such simulations nullify the Poiseuille flows following 
LCICs but do not have any treatments on the Couette flows, 
in order to mimic existing simulation practices. As expected, 
these results have much higher pressures close to the exit, 
indicating some Couette flows are allowed improperly from 
the solid-contact zone to the lubrication zone (see the arrow) 
in the 1B scheme. The effect of the extra Couette flows is 
significant in these examples because the local gap values 
are large. Also as expected, the pressure profiles around the 
inlet are very close, because the Couette flows there are auto-
matically switched off by the 1B scheme.

The same conditions are simulated with a different con-
figuration in Fig. 10b, where the bearing is rotated 180 
degrees with respect to the vertical axis of the blockage. 

Therefore, the inlet is on the LHS and velocity is from left to 
right. In this configuration, the pressure build-up peak in the 
inlet zone from the “NTCF” of the 1B scheme is much lower 
because this scheme allows some Couette flows unintention-
ally from the lubrication zone to the solid-contact zone (see 
the arrow). In summary, “NTCF” with the 1B scheme in 
fact allows the Couette flow to cross the lubrication–contact 
interface in both cases (see arrows) when the fluid lubrica-
tion zone is on the LHS of the solid-contact zone in the 
simulation. A denser mesh with 256 by 256 nodes gives very 
similar pressure values.

4.3 � Implementation to EHL and Discussion

In previous sections, blockages are configured inside the 
simulation domain to illustrate the effects of the LCICs, 
where solid-contact zones are specified before simulation, 
and the minimum gaps at the lubrication–contact interfaces 
are deliberately set non-zero values. In the situation with 
EHL, such as a smooth sphere rolling on a smooth half-
space surface, will solid contacts occur at a low speed? If so, 
what additional efforts are necessary for the neighborhood of 
the lubrication–contact interface and for ensuring grid con-
vergence whose importance has been emphasized in [40].

The smooth-surface EHL problem discussed by Hu and 
Zhu [16] is investigated in this section. Because both the 
EHL solution and the unlubricated spherical contact result 
are well known, details regarding the lubrication–contact 
interface can be quantitatively explored and discussed. 
The corresponding parameters listed in [16] are adapted: 
A load of w = 800 N is applied on a spherical steel ball with 
R1x = R1y = 12.7 mm (changed from 19.05 mm [16]) against 
a steel disk with R2x = R2y = ∞ (effective Young’s modulus 
is E’ = 219.78 GPa), so that the Hertzian contact radius, a, 
is 0.4108 mm (a = b) and the maximum Hertzian pressure 
is 2.2631 GPa. The simulation region is − 1.9 ≤ X ≤ 1.3 and 
− 1.5 ≤ Y ≤ 1.5. The corresponding dimensionless EHL 
parameters are G = 4000, W = 1E-5, and varying U.

The governing equations are re-stated below for clarity:

(i)	 The Reynolds equation, Eq. (26), is only used in the 
lubrication zone, and H = 0 in the solid-contact zone. 
A threshold of Hth is introduced to allow flexibility 
when judging the zones, and the corresponding discrete 
equations are Eq. (35) for Hi,j > Hth and Eq. (41) for 
Hi,j ≤ Hth, respectively. The choice of Hth in this work 
is 0.02 nm normalized by the Hertzian radius a. In 
addition, for nodes with Hi,j > Hth, whenever their four 
neighboring nodes have a non-positive gap, treatments 
in Sects. 3.2.2, 3.2.3, and 3.2.5 should be applied. 
Case studies in this section show that numerical results 
obtained in this way satisfy the pressure inequalities in 
Eq. (2).

O
X1

Y

x

z

b/2

u

m X1

m X0

Xo

InletExit

Solid contact

Fig. 6   Rigid blockage inside a fixed wedge bearing, and the contact is 
between the rigid pillar and the moving bottom surface. Four sides of 
the square are the interfaces
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Fig. 7   Fluid pressures over one 
half of the plate (due to symme-
try) when a square pillar (gray 
part) is in solid contact with the 
bottom moving surface of the 
fixed wedge bearing

Fig. 8   Fluid pressure result-
ing from the blockage by a 
cylindrical pillar. The white line 
in the contour plot (cylindrical 
surfaces) indicates the lubrica-
tion–contact interface
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	   In this problem, ke = 1 and reduced radii 
Rx = Ry = 12.7 mm. Although other viscosity models 
are also applicable, the exponential law [41] is used 
here for simplicity and in agreement with the published 
works, 

where η0=0.096 Pa.s, α =18.2 GPa-1. The Dowson–
Higginson pressure–density relationship is adopted:

(ii)	 Equation of the film thickness in Eq. (26) or the gap in 
Eqs. (39–42) is expressed as

where H0 is the normal approach of two surfaces, vary-
ing with the load. BX = a∕Rx∕2 and BY = a∕Ry∕2 . The 
� term is for microscale surface feature, such as rough-
ness, and is zero in this Section.

(iii)	 Elastic deformation is written as

with Ce = 2keph∕(�E
�) . This equation is valid under 

the half-space assumption and linear elasticity, and one 
can replace it with other deformation models, such as 
those for layered materials, inhomogeneous materials, 
and viscoelastic materials.

(iv)	 The load balance equation is

(v)	 The conventional boundary conditions for this EHL 
problem are zero pressure at the four sides of the simu-
lation region and pressure cannot be negative. More 
details can be found in references [27, 38].

Each integration in Eq. (49) is a convolution, and after 
discretization, the elastic deformation can be expressed as

(46)�∗ ≡ �

�0
= e�Pph

(47)�∗ ≡ �

�0
= 1 +

0.6 × 10−9phP
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(48)
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2 − �(X,Y) + V(X,Y),
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∑
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∑
j
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Inlet Exit 
Solid 
contact 

Fig. 9   Comparison of the pressures in the Y = 0 cross sections for the 
square-pillar blockage, cylinder-pillar blockage, exit blockage, and no 
blockage cases. “B-Exit ana.” and “B-Exit num.” are for the analyti-
cal and numerical solutions to the exit blockage case

Inlet 

Inlet 

Solid 
contact 

Solid 
contact Exit 

Exit 

Square 
Squ NTCF 

Cyl NTCF 
Squ NTCF 

Cyl NTCF 
Squ NTCF 

(a)

(b)

Fig. 10   Comparison of pressures. The “NTCF” with the 1B scheme 
allows the Couette flow exchange (see arrows) when the fluid lubri-
cation zone is on the left-hand side of the solid-contact zone. a the 
inlet is in the downstream of the numerical discretization, in which 
the NTCF 1B scheme results in an extra flow out from the solid-con-
tact zone. b the inlet is in the upstream of the numerical discretization 
in which the NTCF 1B scheme yields an extra flow into the solid-
contact zone
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where Di,j is the influence coefficients. The discrete convo-
lution-Fast Fourier Transform algorithm [42] can be applied 
to significantly reduce the computation burden of the double 
convolutions.

The unified equation system [15, 16, 27, 39] essentially 
uses the Reynolds equation for the entire simulation region, 
where negative film thickness was replaced with a fixed 
small value or zero in the Poiseuille-flow terms. However, 
the film thickness in the Couette flow and the squeeze term 
is often substituted with the summation, i.e., the RHS of 
Eq. (48). Therefore, the derivatives with respect to X and 
time are applied to each film contributor separately. It should 
be noted that in this way, if the summation is negative, the 
Couette flow and the squeeze terms actually use the film 
contributors whose summation is negative. Although at the 
end of calculation, the negative film-thickness values can 
be set to zero or a small value for output, the negative film-
thickness values should be minimized as close to zero as 
possible. This new modeling methodology reported in this 
work aims to obtain solutions with negligible negative film 
thickness without artificial enforcement.

One of the purposes of this Section is to observe the 
lubrication–contact interface at low speeds; therefore, the 
behavior involving two smooth surfaces in the steady state 
is calculated. The 1B scheme is used with the Jacobi relaxa-
tion. Equation (37) is applied to construct the linear equation 
in a line-by-line fashion if a nodal gap is positive; other-
wise Eq. (41) is used. A stable linear equation is critical 
for solving the low-speed problem, and dominant diagonal 
elements, βi, can improve the stability of convergence. Refer-
ence [35] discussed adjustments to these coefficients in the 
linear equations in detail by collecting certain terms from the 
elastic deformation contributor in the film thickness, which 
occurs on the RHS of the Reynolds equation. These coef-
ficients are expressed as follows:

If Pnew is the collection of new estimations of pressure 
with members evaluated from Eq. (37) at positive gaps, or 
from Eq. (41) otherwise, a relaxation process is applied to 
obtain Pnew by

(52)
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where the relaxation factor �P can have different values for 
different nodes, and one can optimize them to reduce itera-
tion steps. In this section, the lubrication nodes have a con-
stant �P of 0.01 or 0.02, of which one-third is used for the 
solid-contact nodes. With both lubrication and solid-contact 
pressure considered, the unbalanced load is used to improve 
the old estimation of the normal approach in every 2 or 4 
iterations of the pressure relaxation.

Thus, the relaxation process only has a single loop. The 
error of the load

is less than 1E-4, and the desired error of pressure, ep in 
Eq. (45) is below 1E-4 or smaller if possible. Iteration details 
are recorded in Table 1. Quantities of “ep lubr.” and “ep 
solid” are calculated for reference when lubrication pres-
sures and the solid-contact pressures are separately used in 
the definition of the error of pressure in Eq. (45).

For bodies with smooth surfaces, only the entrainment 
velocity (u) matters. This velocity is set at 0.005 mm/s 
(U = 1.15E-16) for the first simulation, which is between 
the values (10 and 0.001 mm/s) used in Fig. 1e and f of 
Hu and Zhu [16]. The number of nodes is 257 by 257 with 
ΔX = 0.0125 and ΔY = 0.0117188.

Under such a slow motion, solid contact dominates 
over the Hertzian contact circle with negligible lubrication 
around it. Figure 11a shows the distributions of pressure 
along the X and Y axes, which are very close to the theoreti-
cal distribution of the Hertzian pressure in the dotted line. 
The difference between them is plotted in Fig. 11b over the 
solid-contact zone to show details. Note that the nodes in the 
range of 73 ≤ i ≤ 233 on the X axis or 44 ≤ j ≤ 214 on the Y 
axis are in contact, and the pressure deviation from the Hert-
zian pressure is very small over the Hertzian contact circle, 
while a few nodes next to the lubrication–contact interface 
have slightly greater deviations than those inside the contact 
zone. This can be attributed to the large pressure gradient 
around the lubrication–contact interface. The pressures in 
the lubricated zone are plotted in Fig. 11c and d, although 
they are close to zero. Profiles of film thickness/gap along 
the X and Y axis are shown in Fig. 11e focusing details inside 
the Hertzian contact circle. In this solver, no truncation is 
enforced to the film thickness/gap, but H = 0 is solved for 
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the solid-contact nodes with Hth of 0.02 nm as the threshold 
of the gap to differentiate solid contact and lubrication. The 
new method to determine the solid-contact pressure func-
tions well since gaps in the solid-contact zone have negligi-
bly small residual values, even under such a magnification, 
i.e., H of 1E-9 is 4.7E-4 nm. Overall, results in Fig. 11 show 
several important features: (1) solid-contact pressures are 
close to the Hertzian theoretical values; (2) hydrodynamic 
pressure is built up in front of and around the contact block-
age; (3) no hydrodynamic pressure is on the exit side of the 
contact blockage; (4) negligible gap values truly indicate 
the status of solid contact; and (5) pressure constraints at 
the interface are satisfied.

In order to examine the mesh effect, the number of nodes is 
increased. The pressure-difference profiles, the zoom-in views 
of the lubrication pressure, and the film-thickness profiles are 
plotted in Fig. 12 for the mesh of 513 by 513. Nodes within 
145 ≤ i ≤ 465 in the X direction or 87 ≤ j ≤ 427 in the Y direc-
tion are in contact, see Fig. 12a. Figure 12a shows smaller 
deviations from the Hertzian theoretical pressure with a finer 
mesh. The residual gaps over the contact area in Fig. 12b are 
extremely small negative values. The five features mentioned 
above are also true in Fig. 12. Figure 13a shows a compari-
son of the lubrication pressure along Y = 0 in the upstream of 
the lubrication–contact interface, with up to 1025 by 1025 
nodes. The lubrication pressure build-up is higher for the 
finer meshes at nodes close to the interface. This behavior 
agrees with that of a blocked flow anticipated by the con-
tinuum fluid mechanics, and under small errors of lubrication 
pressure,“ep lubrication” listed in Table 1, lubrication solu-
tions in Fig. 13a–c are reasonably converged and demonstrate 
grid independency. As one can see, from Fig. 13c, the pres-
sure at the nodes under the solid contact close to the lubrica-
tion–contact interface are grid converged as well.

In the following results, 1025 by 1025 nodes are used 
to explore the transition from full-film lubrication to deep 
solid contact since numerical results from a coarser mesh 
may have undulations. If the entrainment speed is 7.5 mm/s 
(U = 1.72E-13), the central film thickness is around 12.4 nm 
(14.7 nm from Hamrock and Dowson’s formula) and the 
minimum film thickness is about 1.0 nm based on this new 
solver; therefore, from the continuum point of view and 
for smooth surfaces, a full-lubrication film is established 
through the entire lubrication junction. With smaller U val-
ues around 3.44E-14 (1.5 mm/s), the constrictions on the 
two sides of the horse-shoe-shaped film thickness start to 
make solid contacts. When the entrainment speed is further 
reduced, these solid-contact zones expand toward the center 
of the contact, as shown in Fig. 14a, where the film-thick-
ness results along the Y direction are plotted. The numerical 
configurations are summarized in Table 1. Note that some 
cases with small central film thicknesses have a numerical 
stability problem although the datum fluctuation is small, 
which made it difficult to reduce the ep values. In Fig. 14b, 
the pressure profiles on the inlet side are shown for the six 
different speeds. A contour plot of the film thickness/gap is 
depicted for the case with U values of 2.29E-15 (0.1 mm/s), 
where the black areas are solid-contact zones.

From the continuum mechanics point of view, Fig. 14, 
together with the results from the entrainment speed of 
7.5 mm/s (U = 1.72E-13) and 0.005 mm/s (U = 1.15E-
16), demonstrates the complete lubrication transition 
from full-film lubrication to full solid contact (inside the 
Hertzian zone). With the given load, materials, geom-
etry, and lubricant (G = 4000, W = 1.00E-5), two sur-
faces completely separate from each other at the velocity 
above 3.44E-14 (1.5 mm/s), and they have the full solid 

Table 1   Numerical details, 
G = 4000, W = 1E-5

u, mm/s U Mesh ωp ep total ep lubrication ep solid Iteration Fig. #

0.005 1.15E-16 257 × 257 0.04 1.0E-08 8.0E-05 1.0E-08 7076 11, 13
513 × 513 0.04 1.0E-07 3.3E-06 1.0E-07 3608 12, 13
1025 × 1025 0.01 2.0E-08 2.5E-04 2.0E-08 12,230 13

0.01 2.29E-16 1.0E-06 8.9E-04 1.0E-06 6254 14
0.05 1.15E-15 8.2E-05 7.8E-05 1.5E-04 2853
0.1 2.29E-15 3.7E-05 3.6E-05 7.6E-05 2798
0.25 5.73E-15 1.0E-05 8.8E-06 2.0E-04 2820
0.5 1.15E-14 1.0E-05 9.3E-06 5.4E-04 2868
1.5 3.44E-14 1.0E-06 1.0E-06 3.9E-05 17,556
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Fig. 11   Results with G = 4000, 
W = 1E-5, and U = 1.15E-16. 
The mesh has 257 by 257 
nodes. a pressure comparison 
and b difference between the 
current calculated pressure 
and the Hertzian theoretical 
pressure, c lubrication pressures 
along the inlet on the negative 
X axis and the negative Y axis, 
d lubrication pressure along the 
outlet on the positive X axis and 
the positive Y axis, and e detail 
of the gap in the solid-contact 
zone. (H of 1E-9 is 4.7E-4 nm)
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Fig. 12   Pressure differences 
from the Hertzian pressure, 
lubrication pressure and film-
thickness profiles at Y = 0 and 
X = 0, respectively. The mesh 
has 513 by 513 nodes, G = 4000, 
W = 1E-5, and U = 1.15E-16. 
a pressure difference between 
the current and the Hertzian 
theoretical values, b detail of 
the gap, or the film thickness 
(H of 1E-9 is 4.7E-4 nm), c 
lubrication pressure around the 
inlet on the negative X axis and 
on the negative Y axis, and d 
lubrication pressure around the 
outlet on the positive X axis and 
on the positive Y axis
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contact inside the Hertzian zone at around 0.01 mm/s 
(U = 2.29E-16).

5 � Conclusions

Lubrication–contact interface conditions (LCICs) between 
fluid film and solid contact in lubrication problems were 
investigated. Expressions for the Couette flows entering or 
leaving a control volume have been mathematically defined 
for several differential schemes. A set of LCICs, including 
nullifying flows and pressure inequalities, are presented, 
and a new method to determine solid-contact pressure is 
proposed.

Methods for numerical implementation of the LCICs have 
been developed, and solutions to several problems involv-
ing simple geometries have been obtained with the first 
backward scheme as a test example. The numerical results 
with the treatment of the Couette flows around the interface 
clearly capture the effect of a contact blockage, while those 
without such a treatment can artificially allow flows to enter 
into or exit the blockage, thus affecting the accuracy of lubri-
cation analyses. The derived LCICs and their correspond-
ing treatments can eliminate the extra-flow problems, thus 
enabling more precise mixed-EHL simulations.

The LCICs and the related contact and flow treatment 
methods have been integrated into a new mixed/boundary 
EHL solver, and a steady-state smooth-body point-contact 
EHL problem has been solved from deep solid contact to 
full-film lubrication. The interface between the fluid film and 
solid contact is captured, and the critical speeds for complete 
surface separation and complete contact are identified for the 
material and conditions studied.

Fig. 13   Comparison of the lubrication pressure build-ups around 
the lubrication–contact interface. a pressure in a linear axis, b film 
thickness or gaps, c pressure in a log vertical axis, including one node 
under solid contact for each mesh
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Fig. 14   Transition from full-
film lubrication to full solid 
contact (inside the Hertzian 
zone). a Film-thickness profiles 
along the Y direction with six 
different velocities, b pressure 
profiles on the inlet side, c con-
tour view of the film thickness/
gap for the case with U = 2.29E-
15 (0.1 mm/s)
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