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Abstract
A number of authors have experimentally assessed the influence of friction on adhesive contacts, and generally the contact 
area has been found to decrease due to tangential shear stresses at the interface. The decrease is however generally much 
smaller than that predicted already by the Savkoor and Briggs 1977 classical theory using “brittle” fracture mechanics mixed 
mode model extending the JKR (Griffith like) solution to the contact problem. The Savkoor and Briggs theory has two strong 
assumptions, namely that (i) shear tractions are also singular at the interface, whereas they have been found to follow a rather 
constant distribution, and that (ii) no dissipation occurs in the contact. While assumption (ii) has been extensively discussed 
in the Literature the role of assumption (i) remained unclear. We show that assuming entirely reversible slip at the interface 
with a constant shear stress fracture mechanics model leads to results almost indistinguishable from the Savkoor and Briggs 
model (and further in disagreement with experiments), hence it is assumption (ii) that critically affects the results. We ana‑
lyze a large set of experimental data from Literature and show that the degree of irreversibility of friction can vary by orders 
of magnitude, despite similar materials and geometries, depending on the velocity at which the tangential load is applied.

Keywords Adhesion · Friction · Soft matter · Fracture mechanics · Mixed mode · Cohesive models

1 Introduction

The application of fracture mechanics to contact problems 
starts with the Johnson Kendall & Roberts (JKR) model [1], 
which studied the contact of two adhesive elastic spheres, 
essentially extending the Griffith energy balance to the case 
where contact corresponds to the ligament of an external 
crack. This energy balance is well described by Maugis [2], 
including a full thermodynamic treatment, which essentially 
states that the contact area is defined by an equilibrium 
between the mode I “energy release rate” GI and the revers‑
ible thermodynamic work of adhesion w0 in mode I

More recently, a large interest has arisen in adhesion [3], 
particularly in the problem of the effect of frictional forces 
on adhesion [4–13]. The seminal paper of Savkoor and 
Briggs [14] extended the fracture mechanics model of con‑
tact of two adhesive elastic spheres to the case of mixed 
mode fracture (see Fig. 1ac), by considering both normal 
and tangential forces. Waters and Guduru [15] reworked 
Savkoor and Briggs analysis [14] for a sheared rigid sphere 
adhering to an elastic halfspace (see Fig. 1b) and stated the 
problem in terms of the two stress intensity factors KI and 
KII (mode I and mode II, given that mode III is eliminated 
by averaging along the periphery, see [15]), obtaining the 
following balance:

where � is Poisson’s ratio, E is the Young modulus and 
E∗ = E∕

(
1 − �2

)
 is the composite elastic modulus of the 

halfspace. Savkoor and Briggs’ axisymmetric model con‑
tains two assumptions essentially: 

(1)GI = w0.

(2)
1

2E∗

[
K2

I
+

(2 − �)

2(1 − �)
K2

II

]
= w0,
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 (i) that the stress field also in the shear direction is sin‑
gular and

 (ii) that there is no dissipation due to friction, so that 
both mode I and mode II are entirely reversible pro‑
cesses.

Savkoor and Briggs model [14] turns out to be equivalent to 
the JKR model, but with a work of adhesion that is reduced 
of a quantity proportional to the square of the tangential 
load, yet in quantitative terms the reduction appeared too 
large with respect to experimental evidence [4, 9, 14, 15].

In the light of obtaining a better agreement with 
experiments, various authors [5–7, 11, 15, 17–20] have 
adopted a practical approach which has some tradition in 
mixed mode fracture of interfaces which generally shows 
that the toughness strongly depended on the phase angle 
� = arctan

(
KII∕KI

)
, namely adopting a phenomenological 

mode‑mixity function f (�) to account for the dissipative 
effects happening at the interface, by increasing the apparent 
toughness of the interface [21–24] as:

This obviously introduces an empirical (although phe‑
nomenological) function which permits to fit experiments 
although does not clarify in detail the relative importance 
of assumptions (i) and (ii) above.

In McMeeking et al. [10], the general energy balance 
was recently discussed for a sliding sphere under adhesion 
and friction, considering constant shear stress in the sliding 
regions, as supported by various experiments (see [11, 25, 
26]). In McMeeking et al. [10], it was remarked that, when 
considering the effect of dissipation induced by friction slip, 
one should give up the attempts to use principles of mini‑
mum potential energy, which would be only correct if one 
had only reversible (conservative) forces, but nevertheless 
fracture mechanics principles can still be used. In short, it 
was concluded that if surface microstructures associated 

(3)wc = w0f (�).

with frictional slip (such as interface dislocations) are not 
able to store any elastic strain energy in a reversible manner 
(that is, friction is entirely irreversible), then the adhesion 
problem follows exactly the JKR framework. However, in 
intermediate cases, one should recur to phenomenological 
models to separate reversible from irreversible contributions 
to friction in fitting the data points, as we shall attempt in the 
present note in detail.

While in Literature assumption (ii) has been widely dis‑
cussed, the aim of this note is to assess the influence of 
assumption (i) in terms of a proper description of the physi‑
cal problem, also in view of a quite large set of experimental 
data from the recent Literature.

2  The Model

Let us consider a rigid sphere adhering to a linear elastic soft 
halfspace and sheared by a tangential force T (see Fig. 1b). 
A quite general fracture mechanics energy balance can be 
written as an equality between the reversible strain energy 
release rates with the reversible work of adhesion w0 [10]

where GII is the standard energy release rate of the mode I 
problem (which we assume entirely reversible as it is com‑
monly done for JKR), and the second term comes from writ‑
ing only the reversible part of GII, namely Gre

II
= �0�0

re

, using 
the equivalent of a Dugdale crack in mode II [27], where �0 
is the shear strength at the interface and �0

re

 is the reversible 
part of the slip displacement at the contact’s periphery aver‑
aged along the perimeter. From Savkoor PhD dissertation 
[28],1 the total slip averaged at the contact’s periphery �0, 

(4)
(
GI + GII

)re
= GI + �0�0

re

= w0,

Fig. 1  a Fracture mechanics 
modes: sketch. b Schematic 
representation of a rigid sphere 
adhering to an elastic halfspace 
that is sheared by a tangential 
force T. c Schematic repre‑
sentation of the combination 
of modes at the periphery of 
the contact area in presence of 
adhesion and friction. (a) from 
[16] and c from [6]

1 See also [10, 29], there was a sign error in [18].
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the remote displacement D and the tangential loads T are, 
respectively,

where a is the contact radius, b is the radius of the sticking 
region and Eqs. (5,6,7) are valid in partial slip up to full 
sliding, i.e., for D ≤

2−�

1−�

�0

E∗
a.

Figure  2 shows the shear force ratio T∕Tfull ((a), 
Tfull = �0�a

2 ) and the total slip averaged on the crack 
periphery divided by the contact radius �0∕a ((b), 
�0∕E

∗ = 0.2 as common in soft contacts [8]) as a function 
of b/a. For vanishing tangential load one has b∕a ≈ 1, then 
by increasing T slip starts to advance within the contact 
circle and for T = Tfull invades all the contact area b∕a = 0.

The calculation of mode I energy release rate for the 
standard JKR problem [2] gives

where we have split the total load P = PH − Pa into two con‑
tributions: a compressive Hertzian load PH =

4E∗a3

3R
 and a 

Boussinesq flat punch solution with total load Pa which is 
responsible of the contact edge singularity.

(5)�0 =
2

�

2 − �

1 − �

�0

E∗
a

(√
1 −

(
b

a

)2

cos−1
(
b

a

)
+

b

a
− 1

)
,

(6)D =
2 − �

1 − �

�0

E∗
a

√
1 −

(
b

a

)2

,

(7)T = 2�0a
2

(
b

a

√
1 −

(
b

a

)2

+ cos−1
(
b

a

))
,

(8)

GI =
K2

I

2E∗
=

1

2E∗

�
Pa

2a
√
�a

�2

=
1

8�E∗a3

�
4E∗a3

3R
− P

�2

,

Writing the condition (4), and moreover, assuming that 
the reversible part is a constant fraction of the total mode 
II energy release rate, one can define

which also implies that the mode II energy dissipated by 
irreversible phenomena amount to Girr

II
= (1 − �)GII. Condi‑

tion (4) gives

which however cannot be written simply in terms of tan‑
gential load.

Equation (10) helps in clarifying the difference between 
the cohesive model presented here and that in [18]. John‑
son (see Eq. (4.4) in [18]) assumed that all mode II 
energy release rate GII is available for the external crack 
to advance and introduced a mode‑mixity function to 
account for an increased interface toughness under mode‑
mixed loading. Here a different assumption is made. It is 
not the interface toughness that is increased, rather it is the 
reversible mode II energy release rate Grev

II
, available for 

the external crack to advance, that is only a small fraction 
of the total mode II energy release rate GII. The simplest 
assumption, in the lack of further information, is to assume 
that � = Grev

II
∕GII is constant (Eq. (9)). For further details 

and in depth discussion the reader is referred to [10].
As in McMeeking et al. [10], the Linear Elastic Frac‑

ture Mechanics LEFM limit can be obtained when slip is 
limited (i.e., b∕a ≈ 1 ) as:

(9)� =
Gre

II

GII

=
�0

re

�0

,

(10)1

8�E∗a3

(
4E∗a3

3R
− P

)2

+ ��0�0 = w0,

Fig. 2  a Shear force ratio T∕Tfull 
versus b/a, with Tfull = �0�a

2 
and b total slip averaged on 
the crack periphery divided 
by the contact radius �0∕a 
( �0∕E∗ = 0.2 in Eq. (5), which 
is a typical value in soft con‑
tacts) versus b/a 
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Hence, in the LEFM limit, Eq. (10) gives

More in general the Dugdale crack cohesive model [27] 
can be elucidated with respect to the LEFM limit. From Eq. 
(5,11) the ratio �0∕�0LEFM can be written as:

where we used Eq. (7), which using Tfull = ��0a
2, can be 

written as follows:

 Hence, by varying b/a from 0 to 1, one can derive a para‑
metric corrective function h(T∕Tfull) that links the average 
slip at the contact’s periphery in the Dugdale cohesive model 
�0 with that in the LEFM limit �0LEFM (see Fig. 3)

 From Eq. (10), we could write

(11)�0LEFM =
(2 − �)

2(1 − �)

T2

8��0E
∗a3

.

(12)P =
4E∗a3

3R
−

√
8�a3E∗w0 − �

(2 − �)

2(1 − �)
T2.

(13)
�0

�0LEFM

= 8

(√
1 −

(
b

a

)2

cos−1
(

b

a

)
+

b

a
− 1

)

(
b

a

√
1 −

(
b

a

)2

+ cos−1
(

b

a

))2
,

(14)
T

Tfull
=

2

�

(
b

a

√
1 −

(
b

a

)2

+ cos−1
(
b

a

))
.

(15)�0 = �0LEFMh

(
T

Tfull

)
=

(2 − �)

2(1 − �)

T2

8��0E
∗a3

h

(
T

Tfull

)
.

Figure 3 shows that the corrective function h
(

T

Tfull

)
 starts 

from 1 at T∕Tfull = 0 as indeed for vanishing tangential load 
a ≈ b and the cohesive Dugdale model coincides with the 
LEFM model. By increasing the shearing load h

(
T

Tfull

)
 

increases monotonically, hence the average slip at the con‑
tact’s periphery in the full Dugdale cohesive model is greater 
than in the LEFM limit, which means that a fully reversible 
cohesive model leads to reduction of contact area stronger 
than the Savkoor and Briggs model.

The energy balance in Eq. (4) can be equivalently recast 
in terms of a mode‑mixity function (see Appendix 1 for the 
full derivation) as:

 where

The equilibrium condition is then written as:

which is mathematically equivalent to Eq. (16). Notice that 
for a pure LEFM model (singular shear traction distribution) 
h(T) = 1 in both Eqs. (19) and (18), and that the equilib‑
rium condition (19) corresponds to the classical model by 
Savkoor and Briggs [14] when one poses f (�) = h(T) = 1.

3  Fit of Experimental Results

3.1  Detailed Analysis of Experimental Observations

We discuss the proposed cohesive model in light of recent 
experimental results published by Mergel et al. [8] (see 
their Fig. 5c). Mergel and coauthors studied the contact of a 
polydimethylsiloxane (PDMS) hemispherical cap that is in 
contact with a smooth glass plate (this is equivalent to the 
model presented in Section 2) and is sheared by a tangential 
force T. The elastic and adhesive properties of the contact 
pair are: w0 = 27 mJ/m2 R = 9.42 mm, � = 1∕2, E∗ = 2.133 
MPa. To determine the parameter � that best fits the experi‑
mental data, it is convenient to use the equilibrium condition 

(16)P =
4E∗a3

3R
−

√
8�a3E∗w0 −

(2 − �)

2(1 − �)
�T2h(T).

(17)
[
GI + ��0�0

]
= w0 ⇔

[
GI + �0�0

]
= w0f (�),

(18)

f (�) =
�
1 + (� − 1) sin2 (�)

�−1
,

� = arctan

⎛⎜⎜⎝

�
�0�0

GI

⎞⎟⎟⎠
= arctan

⎛
⎜⎜⎜⎝

T

�
(2−�)

2(1−�)
h(T)

4E∗a3

3R
− P

⎞⎟⎟⎟⎠
.

(19)P =
4E∗a3

3R
−

√
8�E∗a3w0f (�) −

(2 − �)

2(1 − �)
T2h(T),

Fig. 3  Non‑dimensional corrective function h
(
T∕Tfull

)
 versus the 

ratio T∕Tfull, being Tfull = �0�a
2
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as written in Eq. (19). From Mergel et al. [8] experimental 
data, we calculated the dimensionless interfacial toughness

(20)wc

w0

=

(
4E∗a3

3R
− P

)2

+
3

2
T2h(T)

8�E∗a3w0

and then used Eq. (18) to fit the data. An example on how the 
data are fitted is shown in Fig. 4 for the experimental data 
corresponding to the normal loads2 P = [7.74, 1.59,− 0.06] 
mN, respectively, (a, b), (c, d), (e, f). In Fig. 4 we plot the 
measured wc∕w0 as a function of � (markers) and the fitted 

Fig. 4  The ratio wc∕w0 as a 
function of � as obtained from 
Mergel et al. [8] experimental 
results (markers) and fitted by 
Eq. (18) (red solid curve). The 
reported data are obtained for 
P = [7.74, 1.59,−0.06] mN, 
respectively, panels (a, b), (c, 
d), (e, f). Data are fitted on the 
left column (a, c, e) with the 
LEFM model, while on the 
right column (b, d, f) with the 
equivalent Dugdale crack cohe‑
sive model (Color figure online)

2 Notice that the normal loads in [8] are not a control experimental 
parameter, but are estimated assuming JKR behavior.
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curves (red solid curve) using both the LEFM model (a, c, 
e) and the Dugdale crack cohesive model (b, d, f). As shown 
in Fig. 4, the experimental data are very well fitted by Eq. 
(18) ( R2 > 0.999 ) for the three different normal loads and 
along all the range of variation of the phase angle � . The 
best‑fitted � are reported in Table 1 for each normal load and 
for both the models.

We used the fitting procedure explained above to fit the 
experimental data in Mergel et al. [8] for the normal loads2 
P = [7.74, 3.81, 2.92, 1.59, 0.95, 0.51,− 0.06,− 0.46] mN. In 
Fig. 5, the area versus tangential load curves are reported as 
obtained from experiments (markers) and as fitted by the 
LEFM model (black dashed line) and the equivalent Dugdale 
crack cohesive model (red solid line). Notice that a com‑
pletely reversible mode II energy release rate ( � = 1, gray 
dot‑dashed lines) leads clearly to a very poor comparison 
between experiments and theory. This is because, as shown 
in Table 1, the best‑fitted � are very small for this set of 
experiments, i.e., the degree of irreversibility of friction is 
extremely high and the contact shrinking cannot be cap‑
tured by assuming a full reversible slip at the interface. Fur‑
thermore, no advantage is gained in using the LEFM or the 
Dugdale model, as the differences between the two models 

cannot be appreciated (gray dot‑dashed lines). Instead, when 
using the � obtained from the best‑fit procedure applied to 
each normal load, assuming a singular shear traction distri‑
bution does not affect much the quality of the fit as both the 
LEFM (black dashed lines) and Dugdale (red solid lines) 
model quite satisfactorily fit the experimental data. In par‑
ticular, the two models are nearly identical for low shearing 
loads T and for the lighter normal loads, while small differ‑
ences between the two models can be appreciated for higher 
normal loads (say P > 1 mN) and in the proximity of the 
point of instability to full sliding.

3.2  Comparison with More Literature data

To allow a broader comparison with experimental data, we 
used the proposed model to fit a wider set of experimental 
results on the decay of contact area under shearing loads 
obtained from Literature results [4, 8, 14, 15]. A summary 
of the data source, materials used, composite elastic modu‑
lus E∗, surface energy w0, sphere radius R,  and imposed 
tangential displacement rate v (i.e., the velocity at which the 
tangential loading arm is actuated) are reported in Table 2.

All the experimental data have been obtained using simi‑
lar experimental test rigs, which consist in a hemispherical 
cap (PDMS or Rubber, see Table 2) that is pressed against a 
glass flat plate. In a usual experiment, the hemisphere is first 
loaded in the normal direction up to a specified normal load 
and then a certain constant velocity v (see Table 2) is applied 
at the tangential loading arm that transfers the shearing load 
to the interface. The mentioned procedure has two excep‑
tions. First: in Savkoor and Briggs [14] the tangential load 
was applied step‑wise, with each step approximately equal to 
∼ 2.5 mN and with 1 minute pause between one step and the 
other. We considered this procedure Quasi‑STatiC (QSTC in 

Table 1  Best‑fitted � obtained for both the Dugdale and LEFM model

P (mN) �, Dugdale �, LEFM

7.74 1.16 × 10−3 1.59 × 10−3

1.59 1.17 × 10−3 1.53 × 10−3

− 0.06 0.94 × 10−3 1.15 × 10−3

Fig. 5  Contact area as a function of the tangential load for the nor‑
mal loads P = [7.74, 3.81, 2.92, 1.59, 0.95, 0.51,−0.06,−0.46] mN 
where the gray dot‑dashed curves are obtained with � = 1 (the two 
models are indistinguishable) while the solid red lines (dashed black 
lines) are the theoretical predictions for the Dugdale crack (LEFM) 
model using the best‑fitted �. The experimental data from [8] (their 
Fig. 5(c)) are reported as colored markers. For P = [7.74, 1.59,−0.06] 
mN the best‑fitted � are reported in Table 1 (Color figure online)

Table 2  Summary of the experimental data used to populate Fig. 5

All the sources used a polymer hemisphere pressed against a glass 
plate. The material of the sphere, the composite elastic modulus E∗, 
the surface energy w0, the sphere radius R,   and the tangential dis‑
placement rate v imposed at the tangential loading stage are reported. 
Data source: (a) Fig. 2 in [14] and E∗ as estimated in [10], (b) Fig. 8 
in [15], (c) Fig.  2C in [4] and w0 obtained from a JKR fit using 
E∗ = 2.5 MPa and the data in Fig.  2c for zero tangential load, (d) 
Fig. 5c in [8]. For the set (a) the tangential load was applied step‑wise 
with 1 minute pause between one step and the other (see [14]). We 
have considered this procedure “Quasi‑STatiC” (QSTC)

Set Material E* (MPa) w0 (mJ/m2) R (mm) v (μm/s)

(a) Rubber, dow corn‑
ing dielectric gel 
on glass

0.17 108−143 20 QSTC

(b) PDMS on glass 2.3 70−100 15.5 0.5
(c) PDMS on glass 2.5 43 9.42 100
(d) PDMS on glass 2.1 27 9.42 100
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Table 2). Second: in Waters and Guduru [15] the hemisphere 
was first loaded, then unloaded up to a specified normal load 
and then sheared tangentially.

Following the procedure described in the previous sub‑
section, we have determined the best‑fitted � for each set 
of experimental data in Table 2 (within the same data‑set, 
experiments are performed at different normal loads) using 
both the Dugdale (filled symbols) and the LEFM (open sym‑
bols) model. The best fitted � are reported in Fig. 6 (see 
Fig. 6 caption for the markers) for a range of normal loads 
between P ≃ −10 mN and P ≃ 2500 mN. Figure 6 shows 
that the values of � obtained may vary drastically from one 
experiment to the other of various orders of magnitude, 
nevertheless � remains almost constant for a given experi‑
ment (same markers are grouped together). Furthermore, 
all the data obtained at Tribology and System Dynamics 
Laboratory (LTDS, École Centrale de Lyon) with similar 
equipment/materials/procedure [data‑set (c, d) respectively 
down‑pointing triangle and circles] gave very similar values 
of �, of the order of 10−3, with small differences between 
the Dugdale and the LEFM model that should be ascribed 
to function h(T). Waters and Guduru [15] data (set (b), 
squares) gives a larger but almost constant value of �, about 
10−1, while [14] data (set (a), triangles) are in the range 
0.3 < 𝜆 < 1. We notice here that these data sets (a, b) are 
also those with larger hemisphere radius and that Savkoor 
and Briggs data are showing more scatter compared to the 
other sets. The authors themselves provide a different value 
of work of adhesion for each normal load justifying this 
with the extreme sensitivity of the experimental results to 
the exact surface conditions.

Although it is not possible to draw general conclusions on 
the effect of all the parameters 

(
E∗,w0,R,

)
 on the amount 

of reversible tangential slip, we emphasize that for PDMS 
Waters and Guduru [15] showed a strong dependence of 
� on the rate v at which the tangential load is applied (v is 

the velocity at which the loading arm is actuated). Figure 7 
shows that the values of � obtained for the data‑set (b, c, 
d) scale very well with the velocity v and are in line with 
Literature results (stars) by Waters and Guduru [15] (data 
extracted from their Fig. 10b). Notice that the latter values 
of � (stars in Fig. 7), were obtained by Waters and Guduru 
[15] using a different mode‑mixity function with respect to 
that used here (18). Nevertheless Waters and Guduru [15] 
used only the data where circular symmetry of the contact 
patch was observed, i.e., for low phase angles ( 𝜓 ≲ 𝜋∕3, see 
their Fig. 9–10). It has been shown in [6] that all the mode‑
mixity functions introduced in [23, 24] (and used so far in 
the contact mechanics Literature) start quadratic at low � 
and, for small �, are almost indistinguishable one from the 
other (see Fig. 7 in [6]), hence it is reasonable to carry out 
the comparison in Fig. 7.

Fig. 6  Best fitted � as a function 
of the normal load extracted 
from the data‑set in Table 2 
using both the Dugdale (filled 
symbols) and the LEFM (open 
symbols) model. Data Source 
[8] circles, [15] squares, [14] 
up‑pointing triangles, [4] down‑
pointing triangle

Fig. 7  Best fitted � as a function of the rate at which the tangential 
displacement is applied to the loading arm for the data‑set (b–e) 
in Table  2 using the Dugdale model. Data source [15] squares, [4] 
down‑pointing triangle, [8] circles. The stars represent the results 
obtained by Waters and Guduru [15] as reported in their Fig. 10b
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The physical processes responsible for the observed increase 
in the degree of irreversibility may be of different nature. Here 
“irreversible” is associated with all phenomena which degrade 
energy, transforming it into heat. If there is a slipped region sur‑
rounded by an unslipped region, the perimeter will be a “dis‑
location line” having edge character in some places and screw 
character elsewhere around the periphery, and its Burger vector 
can be arbitrary since such interface dislocations are not true lat‑
tice dislocations. The reversibility may be associated with patches 
where the slip is different from the average slip, hence when such 
heterogeneities are relaxed some of the stored elastic energy can 
get back reversibly to contribute to the contact shrinking process. 
The scaling of � with sliding velocity may be consistent with vis‑
coelastic effects, as in classical models for normal unloading of 
viscoelastic solids [30] and as pointed out by Waters and Guduru 
in their early work [15]. Notice that for Savkoor and Briggs data 
[14] the highest values for � ( ≥ 0.3, see Fig. 6) were obtained, 
which agrees well with their quasi‑static loading procedure. It is 
noticed that this seems in contrast with the results of Vorvola‑
kos and Chaudhury [31] who showed that the contact area of a 
PDMS sphere in full sliding remained constant up to vfull ≈ 10−3 
m/s and then decreases at the Hertzian value for larger relative 
speed, which would imply a more reversible process at higher 
speed. This discrepancy calls for further investigations. Nev‑
ertheless their experiments were performed in the full‑sliding 
regime (while we have considered tests with local micro‑slip) 
with sliding velocity vfull up to ∼ 10−1 m/s which is three orders 
of magnitude larger then the highest loading velocity v we have 
considered here ( 10−4 m/s), hence different physical mechanisms 
for contact area reduction may be at play.

The model presented here is based on Liner Elastic Frac‑
ture Mechanics, as such, its validity should be restricted to 
the range of low normal loads. Indeed, recent results suggest 
that adhesion plays an important role for light normal loads 
(see Fig. 13c in Mergel et al. [13]), while for higher normal 
loads nonlinear effects should be taken into account [12, 13]. 
The relative weight of the two effects (adhesion and finite 
deformations) is still debated in Literature.

4  Conclusions

In this work, we have revisited the classical problem of an 
adhesive sphere under shearing loads, particularly with the 
aim to highlight what is the relative role of the assumptions 
which are often made in theoretical models: (i) that shear trac‑
tions are singular at the interface (LEFM model), whereas they 
have been found to follow a rather constant distribution, and 
that (ii) no dissipation occurs in the contact. We have shown 
that relaxing assumptions (i) alone does not lead to a better 
description of the physical problem. Instead, it is of outmost 
importance to provide a faithful description of the dissipa‑
tion that occurs in the tangential direction. By analyzing a 

large set of experimental data from the Literature, we found 
that generally data from the same experimental set‑up group 
together and show negligible dependence on the normal load, 
even when it is varied from the order of mN to N. By con‑
sidering all the available experimental data, we have shown 
that the reversible fraction of mode II energy release rate “ � ” 
scales very well (power law) with the velocity at which the 
tangential load is applied. In particular, we have shown that 
the process becomes almost completely irreversible (� → 0) 
at large velocity. It would be interesting to understand more 
about the dependence of � on the material and geometry of 
the contact pair, as otherwise the fracture mechanics theory 
remains rather limited by the need to perform experiments on 
the actual case study, where the need to measure the contact 
area limits the possible experiments to transparent materials 
for example.
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Appendix 1

Deriving equations (18) requires some algebra. From the equi‑
librium condition (4)

(21)
(
GI + ��0�0

)
= w0 →

(22)
(
GI + �0�0

)
= w0

(
1 +

�0�0

GI

)
(
1 + �

�0�0

GI

) →

(23)
(
GI + �0�0

)
= w0

1 +
�0�0

GI

1 +
�0�0

GI

+ (� − 1)
�0�0

GI

→

http://creativecommons.org/licenses/by/4.0/
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where we used the identity sin (arctan (x))2 = x2

1+x2
. Hence the 

mode‑mixity function f (�) is written as:

and the phase angle

where we used Eq. (8) and (15). Notice that as Eq. (211) is 
equivalent to Eq. (25) also the equilibrium equations (16) 
and (19) in the main text are exactly equivalent.
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