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Abstract
Equations for quantifying the subsurface shear stress in dry point contact are utilized to obtain the value and location of the 
maximum subsurface shear stress. A series of experiments using a pin-on-disk tribometer is conducted on run-in specimens 
made of steel, brass, and aluminum, and the weight loss and wear rate of the specimen are measured. The results reveal a 
correlation between the depth of the maximum subsurface shear stress obtained from the model and the measured wear 
rate. It is shown that at the onset of failure, the friction coefficient suddenly increases. This increase affects the location of 
maximum subsurface shear stress by pushing it toward the surface and producing wear particles. SEM images of all three 
friction-pair tested reveal that the size of the wear particles is directly related to the applied load.
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1  Introduction

Mechanical components are susceptible to wear when sub-
jected to sliding and rolling contact. Wear manifests itself as 
a surface issue where wear particles are observed to detach 
themselves from the surface of the contacting bodies. But 
the origin of the wear lies below the surface where the 
microvoids and microcracks join and form subsurface cracks 
and travel toward the surface. Wear is affected by a multitude 
of operational and geometrical factors such as load, relative 
velocity, surface roughness, and environmental conditions 
like temperature. Therefore, numerous wear models have 
been developed to describe the material degradation dur-
ing sliding contacts such as adhesive [1], abrasive [2], and 
delamination wear [3].

Regardless, akin to problems commonly encountered in 
fatigue, repetition of sliding tends to increase the accumula-
tion of damage as a function of time. To this end, application 
of the cumulative fatigue damage model of Miner’s rule [4] 
to predict the useful life in adhesive wear was recently inves-
tigated [5]. In sliding contacts, maximum subsurface shear 
stress is known to play an important role in the initiation of 
cracks and eventual fatigue [6–8]. It is observed that failure 
occurs when subsurface shear stress reaches a critical value 
in a certain location from the contact surface [9].

Given the importance of the subject, rich volumes of ana-
lytical and numerical solutions for the distribution of stress 
and strain in the contact zone have been reported. Johnson 
[10] derived the governing equations for calculation of sub-
surface stresses at any point under the contact surface in a 
two-dimensional elastic model subjected to normal and tan-
gential loading. Vazquez et al. [11] presented a new method 
to directly and explicitly calculate the subsurface stress field 
in plane contacts. This model was based on Muskhelishvili 
complex potential [12] in which surface stress distribution 
is known for isotropic elastic contacting bodies and can be 
modeled as elastic half-planes. Using the Airy stress func-
tion, an analytical solution for calculation of subsurface 
stresses in a semi-infinite elastic model by Fourier series is 
presented by Chidlow et al. [13, 14]. Hamilton and Good-
man [15] presented the complete elastic stress field for the 
sliding bodies that are exposed to both normal and tangential 
loading. Later, Hanson and Johnson [16] modified the elastic 
field for spherical Hertzian contact of isotropic bodies and 
provided alternative expressions. Analytical and numerical 
methods are also employed to assess the subsurface stresses 
in two and three-dimensional anisotropic contact [17]. Bray 
and Tang [18] experimentally quantified the subsurface 
stresses in steel plates and bars using ultrasonic waves. Tech-
niques of high-resolution electron backscatter diffraction and 
finite element modeling are employed to calculate the sub-
surface stresses in the nickel single crystal [19]. Anoop et al. 

[20] utilized a numerical approach to evaluate the subsurface 
stress field under elastohydrodynamic line contact for bear-
ing steel with retained austenite.

The effect of friction coefficient on the location of maxi-
mum subsurface stresses has been investigated before. In this 
study, the useful wear life of a sample experiencing sliding 
contact is determined. This useful life is measured by focus-
ing on the variation of friction coefficient during the sliding 
time. The rapid rise in the friction coefficient is the sign for 
failure of the disk. The relation between this useful life and 
the maximum subsurface shear stress is studied. Pin-on-disk 
experiments are conducted under different applied loads. 
The useful life of the specimen in each case is determined 
and the evolution of maximum subsurface shear stress dur-
ing testing is studied.

2 � Theory

In general, the contact of most mechanical elements occurs 
in either cylindrical or spherical contact. Appendix presents 
the associated equations for determining their respective 
subsurface stresses. These equations correspond to the cases 
with and without shear loading.

To examine the characteristics of subsurface shear 
stresses, equations were simulated for the contact of two 
bodies made of stainless steel with an equivalent modulus 
of elasticity of E = 200 GPa and the Poisson ratio of υ = 0.28. 
Figures 1 and 2 show the variation of subsurface stresses as a 
function of depth in the case that no shear loading exists for 
the cylindrical and spherical contact, respectively. The vari-
ation of these stresses in the case that shear loading exists is 
presented in Figs. 3 and 4.

Fig. 1   Subsurface stresses corresponding to distance from surface in 
the cylindrical contact



Tribology Letters (2020) 68:9	

1 3

Page 3 of 13  9

Examination of Figs. 1 and 2 indicates that the subsur-
face stresses in the cylindrical and point contact have similar 
trends. In both configurations, the subsurface shear stress 
experiences a maximum value at a specific depth below the 
surface. In spherical contact, unlike the cylindrical case, the 
subsurface shear stress does not start from zero and has a 
nonzero value at the contacting surface.

We now turn our attention to the effect of the friction 
coefficient on the subsurface stresses. As expected, in both 
types of contact, friction coefficient has no effect on �xx 
and �zz . However, as shown in Figs. 3 and 4, the subsurface 
shear stress varies significantly with the friction coeffi-
cient. Referring to Fig. 3, it can be seen that in cylindri-
cal contact, increasing the friction coefficient causes the 

Fig. 2   Subsurface stresses corresponding to distance from surface in 
the spherical contact

Fig. 3   Comparison of Subsurface shear stresses with different friction 
coefficient in the cylindrical contact

Fig. 4   Comparison of Subsurface shear stresses with different friction 
coefficient in the spherical contact

Table 1   Effect of Friction 
coefficient on the location of 
maximum subsurface shear 
stress in cylindrical contact

Friction coefficient (μ) (Z/b)

0.0 0.79
0.1 0.69
0.2 0.58
0.3 0.44
0.4 0.27
0.5 0.01
0.6 0.00

Table 2   Effect of Friction 
coefficient on the location of 
maximum subsurface shear 
stress in spherical contact

Friction coefficient (μ) (Z/a)

0.0 0.47
0.1 0.40
0.2 0.31
0.3 0.20
0.4 0.05
0.5 0.00
0.6 0.00

Table 3   Material properties of pin and disk

Material/property Pin Disks

Steel Steel st 37 Brass Aluminum

H Hardness (BHN) 800 156 113 122
E Modulus of elasticity (GPa) 220 195 97 69
ν Poisson’s ratio 0.26 0.28 0.31 0.33
ρ Density (kg/m3) 7800 7800 8490 2810

Table 4   Pin and the disk dimensions

Pin Disk

Length Diameter Head radius Diameter Thickness

50 mm 5 mm 17 mm 50 mm 5 mm
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location of the maximum shear stress to move closer to 
the contact surface. To better illustrate this result, the ratio 
of the distance from the surface to the contact half-width 
(Z/b) for maximum subsurface shear stress is calculated for 
different coefficients of friction and is shown in Table 1. 
It can be seen that in cylindrical contact for 𝜇 > 0.50 the 
maximum shear stress occurs at the contact surface.

Figure 4 presents the influence of the friction coeffi-
cient on subsurface shear stress for spherical contact. It 
shows that in the absence of friction coefficient, the ratio 
of the distance from the surface to contact radius (Z/a) for 
the maximum subsurface shear stress is 0.47. An increase 
in the friction coefficient results in the movement of the 
location of maximum subsurface shear stress toward the 
surface. This trend is clearly shown in Table 2.

3 � Experiments

In the previous section, it was shown that the subsurface 
shear stresses are a function of friction coefficient. In this 
section, a series of wear experiments are conducted to 

experimentally study the effect of maximum subsurface 
shear stress on the wear. The experiments are conducted 
using a pin-on-disk test rig. The mechanical properties 
of the pin and the disk are shown in Table 3. The pin is 
made of hardened steel, and disks made of steel, brass, 
and aluminum are tested. According to the hardness val-
ues of pin and disks reported in Table 3, the disks which 
are softer will experience adhesive wear. Surfaces of the 
disks are ground and have an average of asperity heights 
of Ra = 0.1 µm. In each test, a new pin is used. The dimen-
sions of the pin and disks are given in Table 4. The pin is 
stationary and the disk rotates by the angular velocity of 
50 rpm and rotating radius of 19 mm. In order to remove 
the transient effects, all the disks are run-in under the light 
load for a small sliding distance before each experiment. 
The duration of running-in was determined by examin-
ing the friction coefficient, which varies with time and 
becomes steady when the surfaces are run-in [5, 21].

During each experiment, a load cell attached to the data 
acquisition board measures the friction force and the soft-
ware reports the friction coefficient as the ratio of the meas-
ured friction force to the normal load. A digital scale with 

Fig. 5   Useful life of steel disk at 40 N

Fig. 6   Useful life of steel disk at 30 N
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Fig. 7   Useful life of brass disk at 50 N

Fig. 8   Useful life of aluminum disk at 10 N

Table 5   Subsurface stresses and 
depth at which the maximum 
shear stress occurs under the 
constant speed of 0.1 m/s for the 
experiments with steel disk

Applied 
load (N)

Average of fric-
tion coefficient

a (mm) �
sp

xz (MPa) Zmax (mm) Weight loss (g) Sliding 
distance 
(m)

Wear rate
mm3/s

15 0.285 0.120 215 2.63 × 10–2 0.0006 11.5 6.6 × 10–4

20 0.266 0.132 231 3.29 × 10–2 0.0006 10 7.7 × 10–4

25 0.241 0.142 241 3.83 × 10–2 0.0007 8.5 1.0 × 10–3

30 0.197 0.151 243 4.67 × 10–2 0.0007 7 1.3 × 10–3

40 0.187 0.166 264 5.31 × 10–2 0.0005 4 1.6 × 10–3

Table 6   Subsurface stresses and 
depth at which the maximum 
shear stress occurs under the 
constant speed of 0.1 m/s for the 
experiments with brass disk

Applied 
load (N)

Average of fric-
tion coefficient

a (mm) �
sp

xz (MPa) Zmax (mm) Weight loss (g) Sliding 
distance 
(m)

Wear rate
mm3/s

20 0.170 0.151 152 5.29 × 10–2 0.0010 12 9.8 × 10–4

30 0.160 0.173 172 6.23 × 10–2 0.0011 10 1.3 × 10–3

40 0.157 0.191 189 6.86 × 10–2 0.0012 8.5 1.8 × 10–3

50 0.155 0.205 204 7.39 × 10–2 0.0011 6.5 1.9 × 10–3
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an accuracy of 10–4 g is used to measure the weight loss of 
specimens before and after each experiment and quantify 
the weight loss.

Experiments are then conducted at different loads. In each 
case, the experiment is continued until the disk reaches the 
end of its useful life according to the following criterion. 
The point at which the friction coefficient starts to unsta-
bly increase is considered to signify the failure point and 
distance from the beginning of the test to the failure point 
is the disk’s useful life [5, 21–23]. Figure 5 illustrates an 
example of the useful life for a steel disk subjected to 40 N 
load sliding at 0.1 m/s. After a continuous travel distance of 
4 m, the friction coefficient became unstable, signaling the 
end of useful life. Figure 6 shows the same experiment with 
a pristine disk and a new pin subjected to a reduced load of 
30 N. Results reveal that the useful life is inversely propor-
tional to the force applied.

Figures 7 and 8 show the variation of friction coefficient 
versus sliding distance for brass and aluminum, respectively.

The pin-on-disk geometrical configuration can be rep-
resented by a sphere (R1 = 17 mm) contacting a flat plate 

( R2 = ∞) . Tables 5, 6, and 7 report the calculated values of 
the radius of the contact patch, the Hertzian stress �sp

zz  , the 
maximum subsurface shear stress, and the depth at which 
it occurs under different normal loads for steel, brass, and 
aluminum disks. The second column in Tables 5, 6, and 7 
is the average friction coefficient obtained experimentally. 
This value is obtained by calculating the average coefficient 
of friction up to the failure point.

The third column shows the Hertzian radius of contact. 
As the applied load increases, the Hertzian radius increases. 
The fourth column is the maximum subsurface shear stress. 
As the applied load increases, the value of the maximum 
subsurface shear stress increases as well. The next col-
umn shows the location at which the maximum subsurface 
stress occurs. Figure 4 reveals that as the friction coefficient 
increases, the location of maximum subsurface shear stress 
moves closer to the surface. The weight loss which is meas-
ured from the beginning of each experiment up to the failure 
point is also reported in the tables. The sliding distance or 
the useful life is also shown for each applied load. As the 

Table 7   Subsurface stresses and 
depth at which the maximum 
shear stress occurs under the 
constant speed of 0.1 m/s for 
the experiments with aluminum 
disk

Applied 
load (N)

Average of fric-
tion coefficient

a (mm) �
sp

xz (MPa) Zmax (mm) Weight loss (g) Sliding 
distance 
(m)

Wear rate
mm3/s

4 0.251 0.096 83 2.68 × 10–2 0.0007 12 2.0 × 10–3

6 0.207 0.109 90 3.41 × 10–2 0.0006 9 2.4 × 10–3

10 0.185 0.130 104 4.41 × 10–2 0.0006 7 3.3 × 10–3

Fig. 9   Average of friction 
coefficient corresponding to the 
applied load
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applied load increases, the sliding distance to the failure 
point or the useful life decreases.

Wear rate is calculated by dividing the weight loss to the 
sliding distance. According to the simulations and experi-
mental results provided in Tables 5, 6, and 7, it is clear that 
increasing the applied load results in a decrease in the fric-
tion coefficient and an increase in the depth of maximum 
subsurface shear stress.

The reported weight loss is the loss in the weight of the 
disk from the beginning of the test up to the failure point. 
Therefore, with an increase in the applied load, the duration 

of the sliding distance to the point at which failure occurs 
decreases; hence, not much difference in the weight loss 
is seen. However, the wear rate increases with increasing 
the applied load. This can be concluded from the Archard’s 
equation:

where V is the worn volume, k is the Archard’s wear 
coefficient, F is the applied load, d is the sliding distance, 
and H is the hardness of the softer material, i.e., the disk 
in this study. The relationship between the average friction 

(1)V = k
Fd

H

Fig. 10   Wear rate correspond-
ing to the applied load

Table 8   Variation of wear depth for different loads under the constant speed of 0.1 m/s

Disk Material Applied load 
(N)

Average of friction 
coefficient

a (mm) Zmax (mm) Weight loss (g) Sliding dis-
tance (m)

Wear depth (µm)

Steel 15 0.285 0.120 2.63 × 10–2 0.0006 11.5 2.8 × 10–2

20 0.266 0.132 3.29 × 10–2 0.0006 10 2.9 × 10–2

25 0.241 0.142 3.83 × 10–2 0.0007 8.5 3.7 × 10–2

30 0.197 0.151 4.67 × 10–2 0.0007 7 4.2 × 10–2

40 0.187 0.166 5.31 × 10–2 0.0005 4 4.8 × 10–2

Brass 20 0.170 0.151 5.29 × 10–2 0.0010 12 3.2 × 10–2

30 0.160 0.173 6.23 × 10–2 0.0010 10 3.7 × 10–2

40 0.157 0.191 6.86 × 10–2 0.0012 8.5 4.3 × 10–2

50 0.155 0.205 7.39 × 10–2 0.0011 6.5 4.8 × 10–2

Aluminum 4 0.251 0.096 2.68 × 10–2 0.0007 12 10.8 × 10–2

6 0.207 0.109 3.41 × 10–2 0.0006 9 10.9 × 10–2

10 0.185 0.130 4.41 × 10–2 0.0006 7 11.7 × 10–2
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Fig. 11   SEM images for measuring wear particles of steel disk

Fig. 12   SEM images for measuring wear particles of brass disk

Fig. 13   SEM images for measuring wear particles of aluminum disk
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coefficient and the applied load for all three types of disks 
is shown in Fig. 9. In this figure, it is clearly shown that in 
each case, increasing the applied load results in a decrease 
in the friction coefficient.

The relationship between the wear rate and applied load 
for all three types of disks is shown in Fig. 10. In each case, 
increasing the applied load results in an increase in the wear 
rate. The aluminum disk, with its lower density, experiences 
a higher wear rate compared to the steel and brass disks.

Another interesting point in these tests is the comparison 
of wear depth. The worn area is calculated by dividing the 
worn volume to the sliding distance. Table 8 shows the wear 
depth calculated from the ratio of the worn area to the Hertz-
ian contact radius is reported as the wear depth. Since the 
experiments were conducted for a small duration of time, the 
wear depth has a small value.

As the applied load increases, the weight loss does not 
change significantly but the wear depth increases. Larger 
wear depth here means larger wear particles. Another way 
to translate this finding is that as the applied load increases, 
the friction coefficient decreases. Thus, the point of maxi-
mum subsurface shear stress moves further into the bulk 
of the rotating disk. At this stage, the value of the friction 
coefficient sharply increases in an unstable manner. This 
increase causes the subsurface cracks to move toward the 
disk surface. For the tests conducted under higher loads, 
these cracks travel a longer distance from inside the bulk 
toward the surface. Thus, once the location of the maximum 
subsurface shear stress reaches the surface, large particles 
of material are detached from the disk as wear particles. 
Therefore, the wear depth is larger.

In order to verify this finding, SEM images were taken 
from the disk surface to measure the average of wear par-
ticles. For different loads of 20 N, 30 N, and 40 N the 
images of debris for steel disk are shown in Fig. 11. In 
Fig. 12, the images of wear particle for brass disk for dif-
ferent loads of 30 N, 40 N, and 50 N are shown. For dif-
ferent loads of 4 N, 6 N, and 10 N, the images of debris 
for aluminum disk are shown in Fig. 13. Digital image 
processing was performed to measure the dimensions of 
the particles. A narrow film of wear particles prepared 
for scanning with an electronic microscope (Philips XL30 
SEM) and ImageJ software was utilized to measure the 
average size of the wear particles. As shown in Table 9, the 
average size of the wear particles increases as the applied 
load increases.

4 � Conclusions

In this study, the effect of the applied load and the friction 
coefficient on the location of the maximum subsurface shear 
stress is studied. The magnitude of the maximum subsurface 
shear stress and the location where it occurs are functions 
of the applied load and the friction coefficient. These two 
factors have opposite effects on the location of maximum 
subsurface shear stress. Meaning that increasing the applied 
load results in an increase in the depth of maximum subsur-
face shear stress and an increase in the friction coefficient 
reduces this stress. It should be noted that the friction coef-
ficient is a function of load, speed, properties of contacting 
materials, and surface roughness.

The useful life of a tribo-pair is evaluated using a pin-
on-disk test apparatus with specimens made of steel, brass, 
and aluminum. In order to quantify the useful life, the fric-
tion coefficient between the contacting surfaces is carefully 
observed. The onset of failure is considered to be the point 
at which the friction coefficient experiences a rapid rise. It 
is found that as a result of this rapid rise in the friction coef-
ficient, near the failure point, the location of the maximum 
subsurface shear stress moves toward the surface and results 

Table 9   Average value of wear 
particles diameter

Material/applied load (N) Steel Brass Auminum

20 30 40 30 40 50 4 6 10

Debris average diameter (μm) 3.84 3.95 4.02 12.33 13.48 13.92 13.53 14.27 15.57

Fig. 14   Cylindrical contact
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in the formation of wear particles. Results also show that an 
increase in the applied load results in a decrease in the fric-
tion coefficient, moving the location of the maximum sub-
surface shear stress deeper into the surface. Thus, the higher 
the load, the deeper the location of the maximum subsurface 
shear stress and the longer the travel distance to the surface 
becomes. As a result, the size of the wear particles becomes 
larger with increasing the normal load. Examination of the 
SEM images of the wear debris for all the tested specimens 
confirms this finding.

Appendix

Governing Equations for Substress Field 
in Cylindrical and Spherical Contacts

Cylindrical Contact

A schematic view of the contact of two elastic cylindrically 
shaped bodies is shown in Fig. 14 in Appendix. The contact 
area of two cylinders is a rectangle of length L and width of 
2b. The half-width of b is given by [24]:

where E1 and E2 are moduli of elasticity, ν1 and ν2 are the 
Poisson’s ratios for cylinders 1 and 2, respectively, and L is 
the length of the contact area.

(A1)b =
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The equations for calculation of subsurface stress in a 
half-space loaded by a normal pressure p(s) and shear load-
ing q(s) are [10]:
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Spherical Contact

A general schematic of contact of two elastic bodies is illus-
trated in Fig. 15 in Appendix. The radius of the spherical 
contact area resulting in a semi-elliptic pressure distribution 
which is formed due to the applied loading is calculated 
from the theory of elasticity as [24]:
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 where E1 and E2 are moduli of elasticity for spheres 1 and 
2 and ν1 and ν2 are the Poisson’s ratios.

For the contact with a sphere on the flat plate, the flat 
plate is considered as a sphere with an infinitely large radius 
(R1 = ∞).

On the surface where z = 0, the expression for pressure 
components reduces to the following.
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Fig. 15   Spherical contact Fig. 16   Schematic view of pressure distribution in spherical contact
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where μ is the friction coefficient, F is the applied load, 
and a is the contact radius. The maximum contact pressure 
p0 =

3F

2�a2
 occurs at the center of circular contact r = 0. Fig-

ure 16 in Appendix shows a schematic view of the pressure 
distribution.

As a result of loading, subsurface stresses are created 
inside the contacting bodies. Subsurface stresses for spheri-
cal contact of isotropic bodies for normal loading are given 
by [16]:

where parameters of J1 and J3 are denoted as:

Subsurface stresses for spherical contact of isotropic bod-
ies for shear loading are given by [16]:
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where θ is the polar angle. In the case when a normal, as 
well as shear loading, is applied, the subsurface stresses are 
calculated as:
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