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Abstract
The current work considers the multi-scale nature of roughness in a new model that predicts the static friction coefficient. 
This work is based upon a previous rough surface contact model, which used stacked elastic–plastic 3-D sinusoids to model 
the asperities at multiple scales of roughness. A deterministic model of a three-dimensional deformable rough surface pressed 
against a rigid flat surface is also carried out using the finite element method (FEM). The accuracy of the deterministic FEM 
model is also considered. At the beginning of contact, which is surface-point contact, the asperities or peaks are isolated, 
sharp, and the contact areas consist of an inadequate number of elements and sources of error. In this range of contact, the 
results are not presented as real or accurate. As the normal load increases, the number of the contact elements become larger, 
and thus, the results become more accurate. That is, the deterministic FEM results are most accurate at high loads. Spectral 
interpolation is used to smooth the geometry in between the original measured nodes. The effects of normal load and plasticity 
index on static friction are then analyzed. The results predicted by the theoretical model are also compared to other existing 
rough surface friction contact models and the FEM results. They are in a good qualitative agreement, especially for higher 
loads and higher plasticity indices. The FEM model also has significant error, but it is more accurate at higher loads where 
the proposed multi-scale static friction model and FEM model are in better agreement.
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Abbreviations

Nomenclature
A	� Area of contact
A0	� Contact area under normal preload only
An	� Nominal contact area of the surface
Ar	� Real contact area
As	� Contact area at sliding inception
C	� Critical yield stress coefficient
E	� Elastic modulus
E′	� E

/(
1 − v2

)
f	� Spatial frequency (reciprocal of wavelength)
F	� Contact force for single asperity

Ff	� Friction force
Fn	� Normal preload
F∗
n
	� Dimensionless normal preload

Ft	� Tangential load
L	� Scan length
N	� Number of nodes
Ne	� Number of elements
p*	� Average pressure to cause complete contact 

(Elastic)
p∗
ep

	� Average pressure to cause complete contact 
(Elastic–plastic)

p̄	� Average pressure over the entire surface
Sy	� Yield strength
ux	� Displacement in the x direction

Greek symbols
�	� Asperity wavelength
Δ	� Asperity amplitude
Δc	� Critical asperity amplitude
�	� Sinusoidal asperity parameter
Ψ	� Plasticity index
�	� Standard derivation on the surface heights
�s	� Standard derivation on the asperity heights
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�	� Poisson’s ratio
�c	� Critical interfacial shear strength
�0	� Interference under normal preload
�c	� Critical interference (full stick condition)
�cs	� Critical interference (perfect slip condition)
�s	� Static friction coefficient
�s	� Static friction coefficient

Subscripts
c	� Critical value at the onset of plastic deformation 

(full stick condition)
ave	� Average value
max	� Maximum value
ep	� Elastic–plastic
JGH	� From model by Johnson, Greenwood, and Higgson 

[1]
x	� In the x direction

1 � Background

Friction plays an important role in everyday life, especially 
for engineering components. Friction is the force resist-
ing the relative motion of solid surfaces in contact sliding 
against each other. There are several types of friction; one 
of the most common type is dry friction. Dry friction arises 
from a combination of interface adhesion, surface rough-
ness, surface deformation, and so on. The friction force 
required to start sliding is usually greater than the force 
required to maintain sliding, and this has given rise to the 
notion that there are two coefficients of friction: static (for 
the surfaces at rest) and kinetic (for surfaces in motion) fric-
tion coefficients.

The so-called laws of friction were provided by Amonton, 
although DaVinci may have also been responsible. Amon-
ton’s first law: the friction force, Ff , is directly proportional 
to the applied normal force, Fn . Amonton’s second law: the 
friction force, Ff , is independent of the apparent area, Fn . 
Coulomb’s law: kinetic friction is independent of sliding 
velocity.

Then, Euler summarized these laws and provided an 
equation:

where μ is the coefficient of friction.
However, none of these ‘laws’ hold universally. While these 

laws provide a general guideline of the sensitivity of the coef-
ficient of friction to the materials in contact, they may not 
necessarily be representative of friction that results between 
actual contact pairs [1]. From the second of Amonton’s fric-
tion laws, friction is independent of apparent area of contact. 
Bowden and Tabor may have been the first to state that this 
was due to surface roughness. Although some surfaces look 

(1)Ff = �Fn

very smooth, they are rough to some degree at the micro- or 
nanoscale. When two rough surfaces are pressed together, a 
contact is made by the asperities or peaks on either surface. 
These small asperity contacts make up the real contact area. 
For rough surfaces, the friction force becomes nearly inde-
pendent of the nominal contact area, but proportional merely 
to the real contact area. Bowden and Tabor [2] later made 
a critical insight into the cause of friction and the physical 
reason behind the laws. They presented a different approach, 
which considered the sliding inception and static friction as a 
failure mechanism related to the material properties. They then 
assumed that when the sliding occurs the average shear stress 
over the real contact area of contact has the value of, �ave The 
expression for the total friction force, Ff , then can be given as:

To understand the friction, it is important to understand the 
effect of surface morphology and load on the tribological per-
formance of different rough surfaces. Hence, numerous models 
that predict the asperity-scale static friction were developed by 
many researchers [3–7]. This includes asperity contact under 
combined normal and tangential loads. For the rough surface 
contact, numerous studies were carried out on the pre-sliding 
static friction [8–11]. Most commonly, the roughness is con-
sidered using a statistical model [12]: This model incorporates 
the results of the finite element method and sliding inception 
of a single asperity in a statistical representation of the surface 
roughness.

In 1988, based on the principles of Tabor and Bowden [2], 
Chang, Etsion, and Bogy (CEB) [8] created one of the first 
elastic–plastic asperity contact models. They found the effect 
of normal load on the maximum tangential load is significant 
and included it in a statistical model of rough surface contact 
(Greenwood and Williamson (GW) [12]) by a collection of 
spherical asperities with a Gaussian height distribution, for 
which the asperity height probability density, �(z) , is given by:

where σs is the standard derivation on the asperity heights.
In the CEB model, the inception of slip of each asperity 

occurred at the first yielding (also yield inception) of the sur-
face in contact (considering shear and normal load). Hence, 
the maximum tangential force that all the contacting asperi-
ties can support was assumed to be the static friction of the 
contacting rough surfaces, and it can be calculated by the von 
Mises criterion. The static friction coefficient is given in the 
form:

(2)Ff = �ave ⋅ Ar

(3)�(z) =
1√
2��s

exp

�
− 0.5
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where 
(
Ft

)
max

 is the tangential force needed to shear the 
junctions, Fn is the normal force, and Fs is the adhesion 
force.

Based on the analysis of metallic surfaces, the CEB work 
found that the smooth surfaces and the harder materials can 
support more shear force. In contrast, the static friction coef-
ficient decreases as both the plasticity index and the dimen-
sionless external force increase. The effect of small normal 
loads on the static friction coefficient was experimentally 
investigated, and it was confirmed that the static friction 
coefficient decreases as the normal load increases [13].

The FEM results of a single asperity contact can also be 
incorporated into a statistical model to represent the rough 
surfaces in the elastic–plastic or fully plastic regimes. Kogut 
and Etsion (KE) [9] present a model that incorporates the 
results of finite element results in [3] into a statistical repre-
sentation of surface roughness. They suggest that the CEB 
failure criterion used in [8] underestimated the tangen-
tial force needed to shear the junctions, because the elas-
tic region surrounding the single plastic spot can support 
additional tangential load. They analyzed the effects of the 
tangential force, nominal contact area, plasticity index, Ψ , 
and adhesion parameter, � , on the static friction coefficient. 
Much later, Cohen et al. analyzed the static friction coef-
ficient [10] and junction growth [14] in FEM under the full 
stick condition. They incorporated the finite element results 
[4] into a statistical representation of surface roughness to 
predict the static friction between rough surfaces. By using 
two of the same governing equations in the GW model, the 
normal load Fn and maximum friction force, (Ft)max , can 
be expressed as:

By solving Eq. (6) and finding a best fit curve to the 
results, the dimensionless static friction (Ft)

∗
max is given 

by [10]:

Hence, the static friction coefficient is given by [10]:

where (Ft)
∗
max is the dimensionless tangential load and 

given by:

(5)Fn = �An

∞

∫
d∗
F(�∗)�∗(z∗)dz∗

(6)
(
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)
max = �An

∞

∫
d∗

(
Ft

)
max

(�∗)�∗(z∗)dz∗

(7)
(
Ft

)∗
max =

(
0.26 +

0.43

�

)(
F∗
n

)(0.0095�+0.91)

(8)�s =

(
Ft

)∗
max

F∗
n

=

(
0.26 +

0.43

�

)(
F∗
n

)(0.0095�−0.09)

F∗
n
 is the dimensionless normal load and given by:

and the plasticity index, � , is given by:

where �s is the standard deviation of the asperity heights 
and given by McCool [15] as

C is given by [16]

α is the bandwidth parameter:

The spectral moments m0, m2, and m4 are the variance of 
heights, mean square slope, and the mean square concavity, 
respectively. They are all given by McCool [15] as

The average asperity radius of curvature then can be 
given as

However, the plasticity index is also dependent on mul-
tiple scales of roughness [17]. Jackson and Green [18] pro-
posed an alternative formulation based on the multi-scale 
rough surface contact method (note that it is not equivalent 
to Eq. 10):

(9)
F∗
n
=

(
Ft

)
max

AnSy
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=

Fn

AnSy
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However, the theoretical equation for static friction in 
Cohen et al. [10] is not valid for plasticity indices above 8. 
Li, Etsion, and Talke [11] extended the model to higher plas-
ticity indices by incorporating the FEM results that consid-
ering the large (full plasticity) deformation of Jackson and 
Green [16]. The empirical expressions of plasticity values 
in the range of 0 < 𝜓 ⩽ 32 , were derived [11]. The static 
friction coefficient is given by [11]:

Several experimental studies were performed by research-
ers. The effects of skewness and kurtosis on the original 
CEB statistical static friction model [8] were investigated by 
Tayebi and Polycarpou [19]. In 2007, Lee and Polycarpou 
[20] sought to verify the statistical-based static friction mod-
els by using a precision experimental apparatus. They made 
comparisons to the measurements using the static friction 
model derived by Kogut and Etsion [1], which also includes 
the effects of adhesion. Recently, Lee et al. [21] also exam-
ined the effect of non-Gaussian or asymmetric asperity 
height distributions on the statistical static friction models 
and compared the predictions to experimental measure-
ments. They found that the model developed by Cohen et al. 
[10] predicts higher friction coefficients, and the model pro-
vided by Kogut and Etsion [1] with the Pearson distribution 
has a good agreement with the experimental results. Later, 
Ibrahim-Dickey et al. [22] used an experimental method to 
measure the static friction between tin surfaces. The experi-
mental results have a reasonable qualitative agreement with 
the theoretical model given by Li et al. [11]. It should be 
noted, however, that in all of these papers the asperities were 
modeled as spheres.

Due to the multi-scale nature of rough surfaces, there 
are many other methods to model the contact of rough sur-
faces. Archard [23] developed probably the first multi-scale 
contact model between rough surfaces. The rough surfaces 
used in Archard’s model are described as “protuberances 
on protuberances.” By using a concept of multiple scales of 
the asperities, the model considers smaller spheres layered 
upon larger spheres. Ciavarella et al. [24] solved the contact 
problem of a 2D Weierstrass–Mandelbrot fractal surface 
in contact with a rigid flat using the same stacked asperity 
assumption. They modeled the surface deformation using the 
two-dimensional elastic sinusoidal solution given by West-
ergaard [25]. Jackson and Streator [26] also developed an 
elastic–plastic multi-scale rough surface contact model using 
the same layered asperity structure. In addition to their work, 
Gao and Bower [27] also extended the multi-scale stacked 

(19)� =
Bmax

Bc

(20)
�s =

(
Ft

)∗
max

F∗
n

=
[
0.26 + 0.32exp(− 0.34�1.19)

](
F∗
n

)[−exp(−1.9�0.4)]

contact model by including plastic deformation for 2-D sinu-
soidal asperities. Based upon the model in [26], Wilson et al. 
[28] used stacked 3D elastic–plastic sinusoids to model the 
multiple scales of roughness. However, a multi-scale stacked 
model predicting the static friction between rough surfaces 
is still missing. Various theories and numerical models [26, 
29–40] for the contact of rough surfaces were summarized 
and compared in [41], in which each approach was able 
to reproduce some of the reference solutions. This work 
focuses on the multi-scale stacked modeling and determin-
istic FEM modeling.

2 � Rough Surfaces

2.1 � Measured Real Surfaces

In this study, a standard micro-finish comparator was used 
for surface data (see Fig. 1). The micro-finish comparator 
contains machined surface finish specimens from differ-
ent machining processes. The lapped surfaces 2L, 8L, and 
milled surface 63M were also measured and used in the FE 
model and theoretical analysis. A NANOVEA ST400 white 

Fig. 1   S-22 micro-finish comparator surface finish scale

Fig. 2   NANOVEA ST400 optical profilometer
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light optical profilometer (see Fig. 2) is used to measure the 
real surfaces.

We first consider surface 2L. The surface height rough-
ness is 0.204 μm. Its three-dimensional plot and contour are 
shown in Fig. 3. and Fig. 4, respectively.

2.2 � Random Gaussian Rough Surface

In statistical contact models, the asperity heights of a rough 
surface are described by a Gaussian distribution, although in 
reality all engineering surfaces follow a non-Gaussian distri-
bution. Note that surface height, z, and asperity height, zs, are 

different. The surface heights are the data collected from a 
profilometer, whereas asperity heights are calculated from the 
definition of the asperity, which is the surface points taller 
than their surrounding points. As suggested in [21, 42, 43], it 
is reasonable that the surface height and asperity height have 
similar behaviors.

In order to do an effective analysis and comparison, 9 rough 
surfaces with nominally Gaussian distributions are also gen-
erated by using the command z = normrnd (zave, σ, Nx, Ny) in 
MATLAB. The average value of the surface heights is set to 
zero, and the standard deviation of surface heights is varied 
from 0.01 to 0.2 μm, which are called G1–G9. The root-mean-
square (RMS) height is calculated by the following equation:

where N is the total number of the measured points, zi is the 
measured height at the ith point, and z̄ is the average height 
of all the measured points.

The RMS height and plasticity index are listed in Table 1. 
Firstly, the generated Gaussian surface G5 is used to investi-
gate the effect of the normal force on the static friction coef-
ficient. The rough surface plot and contour are shown in Fig. 5. 
and Fig. 6., respectively. Later, all the rest of the generated 
random surfaces are considered to investigate the effect of the 
plasticity index on the static friction coefficient.

3 � FEM Modeling

A finite element deterministic rough surface contact model 
with normal and tangential loading is used to compare to the 
multi-scale model (description in the next section). The FEM 
model and the boundary conditions are shown in Fig. 7. The 
contact elements use the augmented LaGrange method for 
enforcing contact and limiting penetration between the sur-
faces. The augmented LaGrange method is very similar to the 
pure penalty method, but it adjusts the contact force with a 
constant that is independent of the penetration stiffness. In 
order to make the surface periodic, two lines are added to the 
last row and column, respectively, so that the heights of coor-
dinates of points at z(i, 1) and z(i, n + 1), as well as z(1, j) and 
z(n + 1, j), have the same values, and they have the same dis-
placements in the y direction. Hence, the contact surface is 
comprised of 129 × 129 nodes that results in 128 × 128 ele-
ments. The moving node method is employed to create the 

(21)Rq =

√√√√ 1

N

N∑
i=1

(
zi − z

)2
Fig. 3   Three-dimensional plot of the surface 2L

Fig. 4   Topographical contour plot of the surface 2L

Table 1   RMS height and 
plasticity index of generated 
Gaussian surfaces

Surface name G1 G2 G3 G4 G5 G6 G7 G8 G9

RMS height ( �m) 0.01 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
Plasticity index � 1.32 3.33 6.62 10.04 13.20 16.59 19.76 23.11 26.17
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rough surface geometry [44]. In order to avoid producing badly 
distorted elements and negative Jacobians, several steps are 
used to move the whole surface height from flat to rough, i.e., 
there are a few layers over which to apply the rough surface 
heights. The surface is meshed uniformly in the horizontal 
division. Hexahedron elements are used to model these layers, 
and tetrahedra elements are used to model the base. The bot-
tom surfaces are fixed in all directions, and the xz surfaces are 
restrained in the y direction, and the yz surfaces on each side 
are coupled to enforce periodicity. The normal force is applied 
on the rigid flat and then the normal preload is held constant 
while a tangential displacement is applied on the rigid flat. The 
employed material properties are an elastic modulus, E, of 
200 GPa, Poisson’s ratio, � , of 0.3, yield strength, Sy, of 1 GPa 
and a tangent modulus, Et, of 2% of the elastic modulus. The 
critical interfacial shear strength, τc, is set to Sy

�√
3 (based 

on the von Mises yield criteria). The sliding occurs when the 
shear stress of all the elements reach τc. Then, gross sliding 
occurs, and the stiffness vanishes at that moment.

A constant normal load, Fn , was applied as a single force at 
the pilot node, and then, a step wide increase in the tangential 
displacement, ux , of the flat was added to simulate the gradu-
ally increasing tangential load. Before tangential loading, the 
sinusoidal surface and the rigid flat are assumed to be in the 
full stick condition. Once the tangential loading is applied, the 
maximum frictional shear stress criterion is used for govern-
ing the local sliding initiation. The instantaneous tangential 
force, Ft , was obtained from the x component of the reaction 
at the pilot node. The sliding inception is when all the con-
tact elements first start sliding, and the tangential force then 
is 
(
Ft

)
max . When this occurs the static friction coefficient is 

�s =
(
Ft

)
max

/
Fn.

The effectiveness of the FEM model is tested. The rough 
surface 8L is used to do the simulation. Figure 8 shows 
the contact area for surface 8L under the normal loads 
Fn

/(
AnSy

)
= 0.06 and Fn

/(
AnSy

)
= 0.12 . The red color 

presents the local contact areas. These plots suggest that the 
contact area spots at this load are very small and may consist 
of a small number of contact elements within each asperity.

The numbers of local contact areas and contact nodes are 
plotted in Fig. 9. As the dimensionless normal load increases, 
the numbers of contact nodes increase while the number of 
local contact area increases until it becomes a nearly constant. 
Note that the results in Fig. 9 are not normalized so that the 
differences between them can be seen more easily. The average 
number of contact nodes per each local contact area (Np/NA) 
as function of normalized force is plotted in Fig. 10. From 
Fig. 10, as the dimensionless normal load increases, the ratio 
increases. The ratio is below 4 for the dimensionless lower 
normal loads 0.06 and 0.12, i.e., there are less than 4 contact 
nodes for each contact area. This probably causes accuracy 

Fig. 5   Three-dimensional plot of Gaussian surface G5

Fig. 6   Topographical contour plot of Gaussian surface G5

Fig. 7   Finite element model and boundary conditions for rough sur-
face contact
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problems in the FEM model. Therefore, all of the low load 
results are probably in error.

4 � Methodology

4.1 � Normally Loaded Multi‑scale Model

Recall that Jackson and Streator (JS) used a stacked 3D 
sinusoidal geometry to represent the asperities in contact 
at each level of the surface, and predicted the real contact 
area as a function of the normal contact load. The central 
idea of the JS model is that a surface can be decomposed 

into stacks of sinusoidal waves with different amplitudes 
and wavelengths, as shown in Fig. 11. Each frequency is 
considered a scale or layer of asperities which are stacked 
iteratively upon each other. The Fourier transform was 
used to convert the surface data into a series of stacked 
harmonic waves.

The basic assumptions of the JS multi-scale model [26] 
are: (a) Smaller asperities are located on top of the larger 
asperities; (b) each scale level of asperities carries the same 
total normal load; (c) at each scale level, all the asperities 
at this level share the normal load equally; (d) the contact 
area at a given scale level cannot be greater than the contact 
area at a larger scale. Note that these assumptions are not 

Fig. 8   Contact area under dimensionless normal loads for surface 8L

Fig. 9   Number of local contact areas and nodes versus dimensionless 
normal load for surface 8L

Fig. 10   Average local contact area density versus dimensionless nor-
mal force for surface 8L
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necessarily true for a real rough surface contact, and there-
fore, the resulting model is an approximation, although it 
has shown promising comparisons to experimental results 
[45–47]. Based on these assumptions, each frequency level 
of asperities carries the same total load, and the load at each 
scale level is sheared equally among all the asperities at that 
level. Following this, the contact area is then calculated 
iteratively using the factorial equation:

where Ar is the real area of contact, Ā is the contact area 
of a single asperity on a certain scale of roughness, � is the 
real asperity density, An is the nominal contact area, and the 
subscript i denotes a specific asperity scale level, with imax 
denoting the smallest scale level considered.

Since each scale shares the same the total load, Fn , the 
contact pressure at the ith scale can be related to the total 
load by

Where p̄i is the contact pressure at ith scale.
Each frequency level is modeled using a sinusoidal con-

tact model, for elastic contact, The empirical equation devel-
oped by Jackson and Streator [26], which is based on the 
experimental data provided by Johnson et al. [48], can be 
used:

(22)Ar =

(
imax∏
i=1

Āi𝜂i

)
An

(23)pl = Fn

/
Ai−1

(24)

For p < 0.8 ∶ Ā =
(
ĀJGH

)
1

[
1 −

(
p

p∗

)1.51
]
+
(
ĀJGH

)
2

(
p

p∗

)1.04

(25)For p̄ ⩾ 0.8 ∶ Ā =
(
ĀJGH

)
2

The two asymptotic solutions provided by Johnson et al. 
[48] are given as

where p∗ is the average pressure to cause complete con-
tact between the surfaces of a single scale and is given by as:

For elastic–plastic contact, the FEM-based equations in 
[49, 50] can be used.

where

Ghaednia et al. [51] presented an empirical equation for 
the average pressure that causes complete contact for the 
elastic–plastic case. The equation is given as:

where Δc is the analytically derived critical amplitude. 
When the amplitude is less than this value, the sinusoidal 
surface deforms elastically. When the amplitude is greater 
than this value, it deforms plastically. Δc is given by:

And CνCv is a function of Poisson’s ratio and given by

Note that when Δ = Δc , p∗ep = p∗ . Equation (31) results 

are the same overall prediction as given in [49].
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(34)Cv = 0.0017 exp (8.09v) − 0.0567

Fig. 11   A schematic depicting the decomposition of a surface into 
superimposed sine waves
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4.2. Normally Loaded Multi-scale Model Results.
As discussed previously, the rough surface data set used 

for this model is converted into a series of stacked sine 
waves using the Fourier transform. All calculations for the 
model are then made based on the amplitude and wavelength 
of these sinusoidal waves.

The MATLAB command “fft2 (z, Nx, Ny )” is used to 
perform the Fourier transform. This command is the two-
dimensional Fourier transform of a matrix using a fast Fou-
rier transform algorithm. Nx and Ny are the number of the 
points in the x or y directions. In this case, Nx = Ny = N  . 
The FFT converts the surface height matrix into a complex-
valued matrix. That is, zf = fft2 (z, Nx, Ny)∕(4N

2) . The 
amplitude of the matrix can be obtained from Δ = abs(zf) or 
Δ = zf · conj(zf). However, the method to obtain the ampli-
tudes discussed in the Sect. 4.1 is just for a 2D profile. A 
single amplitude for each scale level is required, while mul-
tiple amplitudes will result from the FFT for a 3D surface. 
An equivalent 2D equivalent amplitude was calculated by 
using a two-sided amplitude spectrum method developed by 
Rostami and Streator [37]. A single-side spectral method is 
found more convenient to calculate amplitude. The equiva-
lent amplitude can be obtained by the expression:

The wavelength can be obtained by: λk = L/k, where L is 
the scan length. For example, the wavelengths of the first and 
second scale level are L and L∕2 , respectively. The measured 
surface 2L is used to develop the friction model. The scan 
lengths in the x and y directions are both 127 μm, and the 
total number of points in the area is 16,384 (128 points in 
each direction). The resulting amplitude versus wavelength 
curve is plotted in Fig. 12, and the resulting amplitude to 
wavelength ratio versus wavelength is plotted in Fig. 13. In 
Fig. 13, the effective amplitude is normalized by the wave-
length. The amplitude to wavelength ratio has a decreasing 
trend with the increasing wavelength. This trend is what is 

expected for a self-affine stochastically varying multi-scale 
surface structure, as discussed in Jackson [52].

Based previously on the frame work [26] discussed in 
Sect. 4.1, the real contact area of the rough surface can be 
obtained as a function of the normal load. While initially 
neglecting frictional load, for the elastic contact, the JGH 
model (Eqs. (26) and (27)) and fitted equation equations 
(Eqs. (24) and (25)) are used to predict the contact area on 
each scale level. For the elastic–plastic contact, the multi-
scale framework incorporates the KJ model [50], Jackson 
et al. [49], and Ghaednia et al. [51] analysis to consider the 
asperity contact on each scale level.

In order to verify the multi-scale model, the contact area 
predicted by the deterministic FEM model as a function of 
scale level iteration under different normal loads is plotted 
in Fig. 14. Figure 14 shows that the scale levels cause con-
tact area to decrease. At the same scale level, contact area 
increases as the dimensionless normal load increases. For 

Fig. 12   Resulting amplitude versus wavelength for the surface 2L

Fig. 13   Resulting amplitude/wavelength versus wavelength for the 
surface 2L

Fig. 14   Predicted contact area as a function of considered scale levels 
under different contact normal loads for surface 2L
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the surface 2L, the last scale to reduce contact area is at the 
smallest scale.

4.2 � Multi‑scale Static Friction Model

The following will describe how the JS multi-scale model 
is modified to predict the effect of tangential load and 
friction. The maximum shear stress criterion is used to 
determine the sliding inception. As discussed, when the 
average frictional shear stress on one asperity in contact 
reaches the critical interfacial shear strength, local sliding 
occurs. Once all the asperities in contact slide, the entire 
surface starts sliding.

Unlike some soft materials [53], the contact area of 
metallic asperities increase as the tangential load increases 
due to plastic deformations in the vicinity of the contact 
[7, 54–57], which is called junction growth. In this study, 
the junction growth of the rough surface can be observed 
in the FEM results. Figure 15 shows the junction growth 
of the surface 2L as an example. In the multi-scale friction 
modeling, the junction growth is considered. Therefore, 
the contact area at sliding inception at each scale is pre-
dicted iteratively, and the sliding contact area at sliding 
inception of the rough surface can be obtained.

From the FEM results, the junction growth phenomenon 
for this case can be observed. As can be seen from Fig. 15, 
as dimensionless tangential displacement increases, the 
contact area ratio increases and converges to a constant 
value at the sliding inception. For this case, the increased 
contact area ratio is 18.75%. Therefore, the effect of junc-
tion growth is now considered when we are building the 
multi-scale friction model.

To include tangential load, based on the assumptions 
of the normal stacked friction model, three assumptions 
are added:

d.	 Each scale level of asperities carries the same tangential 
total load.

e.	 At each scale level, all the asperities at this level shared 
the load equally.

f.	 The shear stress at a given scale level cannot be less than 
the shear stress at a larger scale.

Note that these are limiting assumptions, but for plastic 
contacts the normal pressure tends to be mostly uniform and 
hence the load on each lateral asperity is maintained. When 
stacking the asperities that each scale carries, the same 
load is also a major assumption. It is merely based on the 
observation of the geometry that smaller features are usually 
placed on top of larger ones. These assumptions were first 
proposed by Archard and then later adopted by others. The 
assumptions have been shown in some previous works to 
produce a simple model that appears to work surprisingly 
well for contacts with plastic deformation.

To illustrate in more detail how the multi-scale friction 
model is used to model static friction, a flowchart is given 
in Fig. 16.

The main procedure is listed below:

(1)	 Scan the rough surface and find scan length L; then, 
perform an FFT from the measured data.

(2)	 Calculate the parameters required at each scale level 
such as wavelength, �i , and equivalent amplitude, Δi , 
using Eq. (35). Apply a normal force, Fn.

(3)	 Set the initial values: nominal contact area, An and criti-
cal shear strength, �c.

(4)	 Iterate to find the maximum tangential load (i repre-
sents the scale iteration, while j represents the load 
iteration)

Iteration a. Apply the tangential load by several loading 
steps, first start iteration from j = 1.

Iteration b. At the first loading step, calculate the contact 
pressure at each scale, start iteration from i = 1 . Considering 
that the total normal load is divided evenly among all the 
asperities of this level, compute the contact pressure applied 
on all the asperities at scale level 1. Compute contact area 
of all the asperities at level 1 under normal preload only by 
using Eqs. (29)–(34) for elastic–plastic contact. The contact 
area is determined by a given normal load, geometric param-
eter and set of material properties. Compute shear stress at 
level 1, keeping with assumption f, the shear stress at scale 
level 1 can be obtained by �1 = max

((
Ft

)
0

/
A1,

(
Ft

)
0

/
An

)
 . 

Considering junction growth, compute the contact area at 
the sliding inception, 

(
As

)
1
 , of each individual asperity at 

level 1 using:

Fig. 15   FEM data of contact area evolution under combined normal 
and tangential loading for surface 2L
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where the parameter � can be expressed as:

(36)As

A0

= 2.6

⎧⎪⎨⎪⎩
coth

⎡⎢⎢⎣
15.2

�
p

p∗
ep

�1∕2⎤
⎥⎥⎦
exp (−0.017 � − 3) − 0.03 �

1

4

�
p

p∗
ep

�4

+ 0.1364

⎫⎪⎬⎪⎭

��
�c

Sy

�2

+ 2.13

�

(37)� =
E�

Sy

Δ

�

Then, keeping with assumption d, guarantee that the con-
tact area at a given scale level cannot be greater than the val-
ues of the larger scales below it. That is, choose the smaller 
value between the contact area at level 0 and that calculated 

Fig. 16   Flowchart of the pro-
posed multi-scale friction model

Find L, and compute from an FFT of surface profile for all frequency levels, , of interest

Choose applied loads , and critical shear strength

Set , 

Compute the average contact pressure at level :

Compute contact area of all asperities at level : 

Compute the contact area at the sliding inception of all asperities at level : 

, compute the maximum tangential force 

Compute the Static Friction Coefficient: 

Surface data

No

?
No

Compute contact area at level : 

i= ?

Start

Done

Compute the tangential force 
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by Eq. 36 orA1 = min
((
As

)
1
,A0

)
 . Then, start the next itera-

tion for i = 2 (increase the scale level), and calculate contact 
area at scale level 2 using the same procedure.

Repeat iteration until the scale number reaches imax , then 
end iteration b.

Keeping with assumption e and assumption f, the tan-
gential load at each scale level is the same, so it is enough 
to calculate the tangential force at the contacting scale, by 
using the real contact area times shear strength.

Start next iteration for j = 2 (increase the tangential load).
Repeat these procedures iteratively until the ((
Ft

)
j
−
(
Ft

)
j−1

)/(
Ft

)
j
 is below a small constant value (Ec) 

to check convergence. Iteration a. ends at the jmax iteration.
The tangential load at the initiation of slip is the maxi-

mum tangential load that is obtained. As shown by Etsion 
et al. [4], the slope of the tangential load will approach zero 
as the maximum is approached. Therefore, the maximum 
tangential load at any iteration is what must be overcome to 
cause sliding (is static friction).

(5)	 5.) At last, compute the static friction coefficient of the 
rough surface, �s =

(
Ft

)
max

∕Fn.

5 � Results and Discussion

5.1 � Multi‑scale Friction Model Results

Based on the procedure introduced in Sect. 4.2, the contact 
area is investigated first. Surface 2L under a dimensionless 
normal load Fn∕(AnSy) = 0.5 is considered. The predicted 
contact areas at each scale under only normal load and at 
sliding inception are plotted in Fig. 17. As can be seen from 

Fig. 17, for both cases the contact area decreases as the scale 
becomes smaller, and the differences between each case are 
due to the junction growth for each scale.

Considering assumption e, each scale level of asperi-
ties carries the same tangential total load. Then, the larger 
scales have smaller contact areas and lower shear stresses. 
The predicted shear stress is plotted in Fig. 18. The pre-
dicted shear stress increases until it reaches the critical 
shear strength. The larger scales have a smaller shear 
stress, because the tangential force is distributed over a 
large area. The lower scales have larger contact areas and 
therefore lower stresses. The increased contact area from 
junction growth needs more tangential force to overcome 
the friction. After a few iterations of increasing tangential 
force, the tangential force will converge to a constant value 
(see Fig. 19).

Fig. 17   Predicted static friction coefficient as a function of consid-
ered scale levels under only normal load and at sliding inception for 
surface 2L

Fig. 18   Predicted shear stress as a function of considered scale levels 
under a dimensionless normal load Fn∕(AnSy) = 0.5 for surface 2L

Fig. 19   Predicted dimensionless tangential load under a dimension-
less normal load, Fn∕(AnSy) = 0.5 for surface 2L
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5.2 � Deterministic FEM Results

In order to investigate the effect of plasticity index on 
the static friction coefficient, the generated Gaussian 
surfaces G1–G9 are used in the simulations. The contact 
area under only normal loading are plotted in Fig. 20. As 
can be seen from Fig. 20, under the same normal load, 
the surfaces with larger plasticity indices have lower con-
tact area ratios in most of cases. Under the dimensionless 
normal load Fn∕(AnSy) = 1.86 , the smoothest one (sur-
face G1) has reached complete contact ( Ar∕An = 1 ) prior 
to this load. The roughness is increased to increase the 
plasticity index. Roughness increases the amount of plas-
tic deformation, because it also reduces the real contact 
area. When the real contact area is reduced, the contact 
pressure increases, which increases plastic deformation. 
Jackson and Green [58] also investigated the effect of 
plasticity index on the contact area ratio. They varied the 

yield strength to vary the plasticity index while using one 
certain rough surface. This would increase contact area, 
i.e., under the same normal load, the surfaces with larger 
plasticity indices have larger contact area ratios. Recall 
from Eq. 10, the plasticity index increases as �s increases 
and while Sy decreases.

Figure 21 presents typical results for the instantaneous 
tangential load as a function of dimensionless tangential 
displacement for the surfaces with different plasticity indi-
ces. In order to show the figure clearly, the tangential dis-
placement ux is normalized by the interference under normal 
preload only, �0 . As shown in Fig. 21, the surfaces with 
higher plasticity indices have larger normalized stiffnesses, 
but this is only due to the normalization used. In reality, 
they all have nearly the same stiffness at low tangential 
displacements, but the stiffnesses of the higher plasticity 
indices decrease at lower tangential displacements. As can 
be seen from Fig. 21, as dimensionless tangential displace-
ment increases dimensionless tangential load increases until 
it reaches a constant value for each case. At that moment, the 
slopes of the curves vanish and the tangential loads are the 
maximum tangential loads.

5.3 � Comparison

5.3.1 � Effect of Plasticity Index

As can be seen from Fig. 21, the tangential load at the 
sliding inception is the maximum tangential load 

(
Ft

)
max , 

which can be extracted from FEM results. The static fric-
tion coefficients are then obtained by 

(
Ft

)
max

/
Fn and 

plotted in Fig.  22 for all the generated Gaussian sur-
faces. The deterministic FEM results, CKE model and 
LET model are also plotted in Fig. 22 to compare with 
the results of the proposed multi-scale model. This case 

Fig. 20   Contact area ratio versus dimensionless normal load for the 
various surfaces with different plasticity indices

Fig. 21   Dimensionless tangential load Ft∕Fn versus the dimension-
less tangential displacement ux

/
�0 for the surfaces with various plas-

ticity indices

Fig. 22   Comparison of static friction coefficient for generated Gauss-
ian surfaces with various plasticity indices under a dimensionless 
normal load Fn

/
(AnSy) = 0.155
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is under the low load of 
(
Fn

/
(AnSy) = 0.155

)
 . All of the 

models show the same trend that the static friction coef-
ficient decreases as plasticity index increases. Note that 
the static friction coefficient of the surface with Ψ = 16.59 
is higher than the static friction coefficient of the surface 
with Ψ = 13.20 . Recall that the contact area of the surface 
with Ψ = 16.59 is higher than the contact area of the sur-
face with Ψ = 13.20 under the same dimensionless contact 
pressure 

(
Fn

/
(AnSy) = 0.155

)
 (see Fig. 20). This confirms 

that the static friction coefficient is related to the contact 
area. The proposed static friction model predictions are 
lower than the FEM results and higher than or close to the 
CKE model and LET model for the surfaces with lower 
plasticity indices (roughly Ψ ⩽ 11 ). Under high loads, the 
static friction coefficient becomes below the LET model 
slightly, and it is still lower than the FEM predictions. 
However, the proposed multi-scale friction model predic-
tions are less than the FEM results, especially under low 
normal loads.

Next, the effect of plastic index on the static friction 
coefficient under a heavier load Fn

/
(AnSy) = 0.62 is inves-

tigated. Figure 23 shows the comparison of static friction 
coefficient, �s , as a function of plasticity index, Ψ , between 
the proposed model and the FEM results under various 
normal loads for the surfaces G1 to G9. Under the normal 
preload Fn

/
(AnSy) = 0.62 , the multi-scale friction model 

predicts lower values than the FEM data. The reason why 
the LET model is not compared is that it is outside of its 
applicable range.

Much higher loads than in Fig. 23 are also applied. 
The dimensionless normal preload Fn

/
(AnSy) = 0.93 is 

applied first. As can be seen from Fig. 24, the multi-scale 
friction model predicts lower values of the static friction 
coefficient than the FEM data except for the first point. 

That is because the contact area of the G1 surface under 
normal loading is greater than 90%, and due to junction 
growth the complete contact might be reached. Under the 
normal preload Fn

/
(AnSy) = 1.86 , as can be seen from 

Fig. 25, and excluding the complete contact cases (the 
surfaces G1, G2 and G3 are completely flattened), the 
proposed static friction model predicts lower values than 
the FEM data. It also can be seen that as the dimension-
less normal preload increases, the difference between the 
FEM results and proposed multi-scale model becomes 
smaller. Recall that the FEM data are more accurate at 
higher loads due to more elements in contact. In addition, 
the multi-scale model is also probably more accurate at 
higher loads, where the contact pressure is uniform due 
to plastic deformation.

Fig. 23   Comparison of static friction coefficient between FEM data 
and the proposed model for surfaces with various plasticity indices 
under a dimensionless normal load Fn

/
(AnSy) = 0.62

Fig. 24   Comparison of static friction coefficient between FEM data 
and the proposed model for surfaces with various plasticity indices 
under a dimensionless normal load Fn

/
(AnSy) = 0.93

Fig. 25   Comparison of static friction coefficient between FEM data 
and the proposed model for surfaces with various plasticity indices 
under a dimensionless normal load Fn

/
(AnSy) = 1.86
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5.3.2 � Effect of Normal Load

Next, the effect of normal load on the static friction model is 
studied. The results produced by the proposed model using 
the KJ model at the asperity level are compared. A compari-
son of the predicted static friction coefficient as a function 
of dimensionless normal load, Fn

/
(AnSy) , is made between 

the proposed multi-scale friction model, LET model and 
FEM results. As can be seen from Fig. 26, the FEM results 
show a decreasing trend, while the proposed model and the 
LET model predict a nearly constant relationship. The LET 
model is only valid for lower loads, as stated in the origi-
nal work. As the dimensionless normal load increases, the 
FEM data approach the proposed model. The reason why 
the FEM results decrease is that it has numerical error, espe-
cially at low loads, because less elements are in contact. 
Therefore, it is more accurate at higher loads where it is in 

better agreement with the theoretical models, because then 
more contact elements are engaged. It should also be noted 
that the proposed multi-scale model also makes many limit-
ing assumptions. Nonetheless, it is reassuring that the two 
models begin to agree at higher loads.

The proposed model has the same trend as the FEM 
model and theoretical models. There are also still some dif-
ferences between them. The proposed multi-scale friction 
model predicts lower values than the FEM data. However, 
as discussed previously the proposed model is not in a good 
quantitative agreement with FEM results at lower loads.

The comparison between the proposed multi-scale model, 
FEM results and the LET model for surface 8L and G5 are 
plotted in Figs. 27 and 28, respectively. Interesting, both 
the proposed model and statistical model predict a nearly 
constant friction coefficient for the surface 8L and surface 
G5. However, one may notice that the proposed multi-scale 
model actually begins to curve and appear to join with the 
FEM results at the highest loads for surface G5 (Fig. 28). 
The static friction coefficients predicted by the proposed 
model fall below the FEM results and the LET model at low 
loads. They do not always show the same trend or have a 
good agreement. We postulate that this is mainly because the 
FEM model is not completely refined and that the spectral 
interpolation method decreases the contact area with addi-
tional refinement. However, the FEM results and proposed 
model predictions are fairly close under heavy normal loads, 
which is when the FEM model is actually most accurate.

6 � Conclusion

Since most existing friction models [10, 11] have limitations 
on the range of normal load and plasticity: Fn

/
(AnSy) ⩽ 0.3 

and Ψ ⩽ 30 , a model for the static friction of rough surfaces 

Fig. 26   Comparison of static friction coefficient between FEM 
results, LET model and the proposed multi-scale friction model for 
surface 2L

Fig. 27   Comparison of static friction coefficient between FEM 
results, LET model and the proposed multi-scale friction model for 
surface 8L

Fig. 28   Comparison of static friction coefficient between FEM 
results, LET model and proposed multi-scale friction model for sur-
face G5
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for a wide range of normal loads and plasticity indices was 
developed, which attempts to capture the multi-scale fea-
tures, and elastic–plastic deformations. This study formu-
lates an iterative multi-scale friction model framework for 
modeling friction between rough surfaces, which uses the 
Fourier series-based representation of the rough surface. 
A comparison of the predicted static friction coefficient 
between the proposed model, statistical models and FEM 
results was made. Note that the FEM model also has numeri-
cal error, but is more accurate at higher loads where the 
multi-scale model and FEM model are in better agreement.

Firstly, the effect of plasticity index on the static friction 
coefficient is analyzed. In this step, 9 generated Gaussian 
surfaces with various plasticity indices under a wide range 
of normal loads are used in the simulations. The proposed 
model shows the same trend as the theoretical models and 
FEM results: as the plasticity index increases, the static 
friction coefficient decreases. The proposed model predicts 
lower static friction coefficients than the FEM results, 
while the predictions are close to the theoretical models 
under high normal loads. The difference in static friction 
coefficients between the proposed model and FEM results 
becomes smaller with increasing normal load, where the 
FEM is more accurate.

Then, the effect of normal load on the static friction 
coefficient was analyzed. In this step, the surface 2L, 
surface 8L and surface G5 were used in the FE models. 
The FEM results show a decreasing trend of the static 
friction coefficient with load, while the proposed friction 
model and statistical models predict values with less vari-
ation. Again, note that the multi-scale model has limit-
ing assumptions and that the FEM model has significant 
error at low loads, but is more accurate at higher loads. At 
higher loads, the FEM model and multi-scale model are 
in better agreement. The proposed model predictions are 
lower than the theoretical models.

Overall, the proposed model, theoretical models, and 
FEM results are in a good qualitative agreement, especially 
for higher loads and higher plasticity indices. The proposed 
friction model also can predict the complete contact accu-
rately. However, the proposed model and FEM results show 
a big difference for the cases with lower loads and lower 
plasticity indices. This might be because of the numeri-
cal error in the FEM and the limiting assumptions of the 
multi-scale model. The FEM results are most accurate at 
high loads, where the results agree with multi-scale model.

7 � Appendix

As shown in Fig.  21, the surfaces with higher plastic-
ity indexes have a larger normalized tangential stiffness 
before reaching the sliding inception. The reason for this 

is the normalization. In order to show the figure clearly, the 
tangential displacement, is normalized by the interference 
under a normal preload only. The dimensionless tangential 
load versus tangential displacement (without normalization) 
is plotted in Fig. 29. The surfaces with lower plasticity index 
actually have larger stiffnesses, and nearly the same value at 
low loads, which is a different trend from Fig. 21.
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