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Abstract
Using first-principles method, for h-BN bilayer, we successfully probe the major factors of different low-friction paths in the 
three-dimensional potential energy surface (3D-PES) under variable loads. By means of the static PES and charge density 
difference analysis, we demonstrate how electrostatic interactions, with regard for van der Waals contributions at 0 nN, pro-
gressively impact the shape of 3D-PES and low-friction paths with increasing the normal load. Herein, the sliding properties 
of h-BN bilayers have a distinct relative orientation. Especially, the load-induced 3D-PES with variable shape is assigned to 
the band gap and repulsive van der Waals force. It is noted that the low friction not only is obtained for the commensurate 
layers under low loads, but also high ones.
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1 Introduction

Hexagonal boron nitride (h-BN), which has a structural 
analogue of graphene, has attracted extensive attention due 
to its outstanding properties [1]. These superior chemical 
and physical properties impel us continuously to exploit 
the cause that h-BN exhibits superior performance to the 
bulk counterpart applied in transistor, solid lubricant, 

high-temperature environment, and energy storage [2–4]. 
Moreover, researchers have particularly payed more atten-
tions to monolayer h-BN (the so-called white graphene 
[5]) due to its high in-plane mechanical strength, thermal 
conductivity and chemical stability, and distinct oxidation 
resistance performance compared to graphene [5–8]. These 
exceptional properties of monolayer h-BN indicate its poten-
tial as an anti-wear material.

Watanabe et al. report that h-BN film deposited on the 
silicon substrate shows a short lubricating endurance life 
due to its lower adhesion to the silicon substrate [9]. If 
h-BN film well adheres to substrate, they also believe that 
it is a good solid lubricant. Indeed, the monolayer h-BN as 
a anti-wear coating for Cu surface could well reduce the 
exceptional low friction as reported by Li et al. [8]. Besides, 
h-BN as a lubricant additive also plays an important role in 
enhancing wear resistance and reducing friction coefficient 
[10–13]. The same tribological theory could be concluded 
from these references [8–14] that h-BN well adhesion to 
substrate or worn surfaces is a key factor to obtain high 
wear resistance and low-friction coefficient during sliding. 
Thus, understanding the active mechanism of h-BN for the 
tribological improvements is conducive to probing the low-
friction behavior. Given that the complex interactions during 
sliding process are not directly monitored in experiments at 
the nanoscale, first-principles method offers a powerful tool 
to capture atomic details and gain a deeper insight into the 
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complex interactions at the nanoscale. Accordingly, Koski-
linna et al. systematically investigate the tribological proper-
ties of h-BN based on first-principles calculations [15]. They 
point out that the friction coefficient of h-BN is enhanced 
with increase of the normal load and low-friction coefficient 
can only be obtained at low normal load. Thereafter, a ques-
tion is: what are the key factors for the different friction 
coefficients with increase of the normal load?

Herein, in order to well answer this question, the inter-
faces between two h-BN monolayers with different normal 
loads and the static three-dimensional potential energy sur-
faces (3D-PES) assigned to their motion to the interlayer 
forces are calculated using first-principles calculations. The 
calculated 3D-PES show that the low friction not only could 
be obtained for the commensurate layers under low normal 
load, but also high normal load. We discuss the unusu-
ally tribological behavior in detail to well probe the active 
mechanism.

2  Computational Details

All calculations are carried out using CASTEP code [16]. 
The DFT-D method is proved to be an effective tool due to 
the good agreement among the geometrical parameters, the 
experimental and high-accuracy theoretical data [17, 18]. 
Thus, the generalized gradient approximation (GGA) with 
PBE-D scheme reported by Grimme [19], which can well 
account for van der Waals interactions in all calculations. A 
kinetic cutoff energy of 400 eV is used for the plane-wave 
basis set. A 10 × 10 × 1 Monkhorst–Pack mesh is used for the 
k-point sampling. The electron density difference is used to 
investigate the interaction of two h-BN layers.

The bulk lattice parameters a and c are calculated as 
2.494 and 6.488 Å, respectively, which is well in consistent 
with the experimental data (2.503 and 6.661 Å) [20]. The 

calculated model as shown in Fig. 1 is constructed with the 
same monolayer h-BN. The periodic boundary conditions 
are set in the x–y plane, and interactions between periodic 
replicas are avoided by adding 15 Å of vacuum along the z 
direction. With the upper h-BN monolayer translation above 
the lower one, the three-dimensional potential energy sur-
faces (3D-PES) is constructed by collecting the interlayer 
interaction energy for different relative lateral positions [21]. 
In particular, for Fig. 1b, along x, y, or xy direction, the h-BN 
bilayer coincides after the upper h-BN monolayer moving 
0.5 Å above the lower one.

Next, the compressed bilayer configurations, in which the 
interlayer distance is fixed at different values, are considered 
to investigate the effect of increasing the normal load. The 
force along z direction as a functional of z is defined as 
Fz = −

�V(z)

�z
, where V(z) is the potential energy with different 

interlayer distances along z direction.

3  Results

As shown in Fig. 2, the potential energy and its first deriva-
tive with respect to the interlayer distance along z direction 
are monotonic curves. The potential energy initially kept a 
constant of 0 eV ranges from 4.0 to 3.5 Å, the position of 
the minimum energy locates at ~ 3.5 Å, which is well in con-
sistent with previous computational results [15]. Less than 
3.5 Å, the potential energy increases with decrease of inter-
layer distance. The variable of Fz exhibits a similar change 
tendency with that of potential energy.

Next, to well investigate the effect of the normal load on 
sliding properties of h-BN bilayer, the three-dimensional 
potential energy surfaces (3D-PES) for H–H (T–T) configu-
ration are calculated with different normal loads as shown in 
Fig. 3. In Fig. 3a, under the normal load of 0 nN, there exists 

Fig. 1  a Top view of a h-BN 
monolayer, b side view of h-BN 
bilayer with hollow–hollow 
(H–H) or top–top (T–T) con-
figuration, c top view of h-BN 
bilayer with hollow–top (H–T) 
configuration
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low-friction path along X or Y direction, however, increas-
ing the normal load to 1.4 nN, only one low-friction path 
is observed along Y direction, the low-friction path along 
Y direction is blocked under high normal load, as shown 
in Fig. 3b. Interesting, further rising the normal load to 6.0 
nN, the obvious low-friction path is found along X direc-
tion (Fig. 3c). It indicates that the low friction of h-BN 
bilayer can be achieved at high normal load for H–H (T–T) 
configuration.

For comparison, the potential energy and its first deriv-
ative with respect to the interlayer distance along z direc-
tion for H–T configuration are shown in Fig. 4. Mean-
while, the position of the minimum energy also locates 
at ~ 3.5 Å. The potential energy and Fz also exhibit the 
same change trend compared to that of H–H (T–T) con-
figuration. Subsequently, the three-dimensional potential 
energy surfaces for H–T configuration are calculated as 
shown in Fig. 5, under the normal load of 0 and 0.6 nN, 

the continuous mountain-like potential energy surfaces are 
observed in Fig. 5a, b, the low-friction path is obviously 
detected along the mountain valley (Y direction). However, 
increasing the normal load to 3.7 nN, the shape of PES 
is quite different from that in Fig. 5a, b, the low-friction 
paths along Y direction are completely blocked; however, 
the low-friction path can be obtained along the edge of X 
direction (low potential energy region).

As we know, the tribological behavior is closely related 
to its electronic structure. Thus, the charge density differ-
ence of h-BN bilayer in H–H (T–T), H–T configuration is 
calculated as shown in Fig. 6. The mixed covalent-ionic 
bonding characteristics, the valence charges are located 
around N atoms. A common conclusion can be obtained 
from Fig. 6a–f that the electron clouds between B atoms in 
h-BN bilayer overlap each other with increase of the nor-
mal load, indicating that low-friction path can be assigned 
to the interactions between B atoms in h-BN bilayer.

Fig. 2  Variable of potential energy and its first derivative with respect 
to the interlayer distance along z direction

Fig. 3  Three-dimensional potential energy surfaces for the sliding motion of h-BN bilayers in H–H (T–T) configuration at a 0 nN, b 1.4 nN, and 
c 6.0 nN

Fig. 4  Variable of potential energy and its first derivative with respect 
to the interlayer distance along z direction
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Zhang et al. reported [22] the kinetic frictional force (fx) 
equals the predicted 

(
��int

�x

)
||max, �int is interfacial energy of 

h-BN slabs. And they also pointed out that kinetic frictional 
force was closely related to the change of potential energy 
along the sliding direction. Thus, the kinetic frictional forces 
with respect to sliding distance along x direction are plotted 
in Fig. 7. We obtain a similar result that the kinetic frictional 
force is determined by the change of potential energy along 
x direction. Besides, there is a one-to-one correspondence 
between frictional force and charge density difference. It has 
to be noted that the so-called D disorder peak is observed in 
well-ordered graphene, corresponding to A edge vibration 
modes on both external and internal edges, which can only 
exist on single hexagonal ring or for cluster of reduced num-
ber of cyclic rings. Differently, we calculated Raman spectra 
of monolayered h-BN as shown in Fig.  8. A D peak at 
1339.5 cm−1 is obviously observed corresponding to the 
high-frequency intra-layer E2g vibration mode [7, 23] (for 
detailed vibration mode, see Supplementary Movie), which 
is well in agreement with the experimental data 
(1330.2–1367.4 cm−1) [24].

4  Discussion

Generally, the anti-wear of substrate and coating system 
closely depends on the adhesion between friction pairs and 
coating. The anti-wear results from lower friction and anti-
adherence between coating and the gliding counterpart 
[25]. Based on Neuville’s views, we find that low friction 
should correspond to low adhesion between coating and 
the gliding counterpart. On the other hand, a D disorder 
peak is observed in Fig. 8, it indicates that h-BN is a simi-
lar structure compared to carbon materials. And Neuville 
et al. believed that h-BN could be transformed into harder 
c-BN with the incidence of quantum electronic activation, 
meanwhile c-BN could be heat-degraded to h-BN during 
sliding [23, 26]. Thus, the quantum electronic atomic rear-
rangement model has also been applied in h-BN. Thus, we 
systematically investigate the tribological properties of 
h-BN bilayer under variable normal load. We obtain a 
quite different conclusion from the previous work [15]. 
Based on Tomanek’s theory [27], the kinetic friction coef-
ficient could be calculated by the formula � =

Ff

FN

 , combi-

Fig. 5  Three-dimensional potential energy surfaces for the sliding motion of h-BN bilayers in H–T configuration at a 0 nN, b 0.6 nN, and c 
3.7 nN

Fig. 6  The charge density 
difference of h-BN bilayer in 
H–H or T–T configuration at a 
0 nN, b 1.4 nN, and c 6.0 nN; in 
H–T configuration at d 0 nN, e 
0.6 nN, and f 3.7 nN
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nation of Figs. 7 and 8, FN equals FvdW at 0 nN, thus, the 
�kmax

 is estimated to be about 0.75 (H–H or T–T) and 
0.37 (H–T), the rest FN equals Fz minus FvdW, �kmax

 is 
estimated to be 1.1 and 2.4 for 1.4 and 6.0 nN (H–H or 
T–T), and 0.15 and 1.7 for 0.6 and 3.7 nN (H–T), respec-
tively. It is well in agreement with the change trend of 
friction coefficient as reported by the previous experimen-
tal researches [14, 28, 29]. In order to well understand this 

strength phenomenon, we should pay more attention to its 
electronic structure. As we known, h-BN has a similar 
hexagonal structure to graphene that applied in many 
fields. However, h-BN is a semiconductor with wide band 
gap, thus it exhibits good electrical insulation. An et al. 
reported pressure-induced insulator-semiconductor transi-
tion in h-BN bilayer [30]. We calculate the band gap for 
H–H (T–T) and H–T configurations under different normal 
loads. The band gap is 4.23 (0 nN), 3.79 (1.4 nN), and 
2.26 eV (6.0 nN) for H–H (T–T) configurations, and 4.68 
(0 nN), 4.57 (0.6 nN), and 4.19 eV (3.7 nN) for H–T con-
figurations. It indicates that the band gap of H–H (T–T) 
configurations sensitively decreases with increase of the 
normal load compared to that of H–T configurations. And 
the band gap has a significant effect on the sliding proper-
ties of semiconductor materials as reported in our previous 
work [31]. We point out that the low friction can retain 
under higher band gap. Thus, high band gap should be one 
of key factors to construct the low-friction path in 3D-PES. 
On the other hand, it is reported that h-BN has strong 
bonding in xy plane but weak bonding along z direction 
[20]. It implies the strong covalent interlayer bonding and 
weak interlayer van der Waals bonding. As increasing the 
normal load, the van der Waals interaction is enhanced as 
shown in Fig. 9, the positive values of FvdW indicate a 
repulsion [32] in h-BN bilayer. The strong repulsive FvdW 
can maintain the low friction as reported in most of 

Fig. 7  Variation of frictional force along x direction: a 0 nN, b 1.4 nN, and c 6.0 nN for H–H or T–T configuration; d 0 nN, e 0.6 nN, and f 
3.7 nN for H–T configuration

Fig. 8  Calculated Raman spectra of monolayered h-BN. Inset is 
vibration mode of h-BN at 1339.5 cm−1
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previous investigations [33–35]. In this work, the Fz is 
almost balanced by Fvdw at 0 and 0.6 nN (H–T), as shown 
in Figs. 2, 4, and 9, ensuring its low friction. Thus, the 
change of charge density difference with the augmenter of 
the normal load leading to enhancing repulsive FvdW 
should be another key factor for the low-friction path in 
3D-PES.

Of course, a detailed tribological investigation should 
take into account numerous variables such as hardness, the 
sliding velocity, the compressive stress, tensile stress, and 
so on. Given that studying the effect of these factors on low 
friction beyond the scope of this work, here, we simply aim 
at probing the possible relationship between low friction and 
potential energy surfaces.

5  Conclusions

By means of first-principles method, we construct the poten-
tial energy surfaces for the sliding motion of h-BN bilay-
ers to probe their tribological properties depending on the 
applied the normal load or lateral orientation. Two h-BN 
bilayers as H–H (T–T) and H–T configuration are estab-
lished. The load-induced low-friction paths are obviously 
observed for two models, which indicates its better lubricant 
properties under high load.

We also detect the delicated interplay between electro-
static, band gap, and van der Waals contributions to the 
h-BN bilayer. We find that high band gap of h-BN bilayer 
is conducive to constructing low-friction paths in 3D-PES 
and electron interactions of B atoms in between monolayer 
h-BN accelerate the increase of the repulsive Van der Waals 
force maintaining low-friction paths. We believe that this 

investigation on h-BN provides positive guidance for further 
experimental investigations.
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