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1 Introduction

Friction between surfaces is affected by various factors such 
as geometry, mechanical action, chemical reactions. Though 
friction is not fully understood, considerable progress has 
been made since Amonton and Coulomb initiated the formal 
study of the subject by defining constant static and kinetic 
friction coefficients. Of particular interest is the role of sur-
face and material properties on friction at the microscopic 
and macroscopic levels.

A number of researchers have developed models of the 
interaction between a single deformable asperity and a rigid 
plane. On the analytical side, Chang et al. [1] propose a 
model of an elastic-perfectly plastic asperity that assumes a 
rectangular pressure distribution in the contact zone. Among 
the modifications and improvements to this approach, we 
mention the use of elliptical contact pressure distribution 
by Evseev et al. [2], linear interpolation between elastic and 
plastic results by Chang [3] and mathematical smoothing of 
results by Zhao et al. [4].

With advances in computing power in recent decades, 
many researchers have proposed computational approaches 
as a means to simulate the response of an asperity and to 
verify analytical approaches. This includes the works by 
Kucharski et al.  [5], Vu-Quoc et al.  [6], and Kogut and 
Etsion [7]. Notably, Kogut and Etsion [7] develop an empiri-
cal relationship for the normal and shear force response of 
an asperity as a function of interference value. This relation-
ship is independent of the material properties and shows 
discontinuities when the asperity transitions from a purely 
elastic regime to an elastic–plastic regime, and from an 
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elastic–plastic regime to a fully plastic regime. Jackson 
and Green [8] also develop empirical formulations based 
on the finite element analysis of an elasto-plastic asperity, 
but their model shows no discontinuities and captures the 
dependence of the response on the material’s yield strength 
and Poisson’s ratio. More recently, the study by Shankar 
and Mayuram [9] on the role of yield strength and tangent 
modulus suggests that both quantities influence the transition 
from elastic–plastic contact to the fully plastic contact. Chat-
terjee and Sahoo [10] conclude that during the compression 
stage, the contact parameters are greatly influenced by strain 
hardening but negligibly by the contact conditions (full stick 
or perfect slip).

Another line of research has been the response and failure 
of an asperity under combined normal and tangential load-
ing [11–14]. Kogut and Etsion [15] (KE model) present a 
semi-analytical friction model based on the hypothesis that 
sliding begins when there is elastic–plastic contact between 
the contacting bodies. Brizmer et al.  [16] (BKE model) 
assume a full stick contact condition and hypothesize that 
failure occurs when the asperity contact stiffness (ratio of 
shear force to lateral displacement) reaches 10% of its initial 
value. Wu et al. [17] use the maximum shear stress criterion 
for sliding inception. Their model transitions from the KE 
model at low compressive interference to the BKE model 
at high compressive interference. This model is similar to 
the Coulomb friction model in terms of partial slip in that 
no-slip contact is maintained until a certain criterion is met, 
beyond which localized sliding is assumed.

The role of material damage has been receiving more 
attention in recent years. Wu et al. [18] study the flake-like 
wear particle formation in a two-dimensional plane strain 
cylinder upon shearing. Their work compares three mate-
rial damage models to study fracture behavior and the fric-
tion coefficient of the asperity: the Bao–Wierzbicki crite-
rion [19], the Johnson–Cook criterion [20] and shear band 
localization [21].

Much of the work on asperity shearing assumes elastic-
perfectly plastic material behavior, and the effects of hard-
ening and material damage have not been explored in great 
detail. Our goal in this work is to understand how hard-
ening and material damage affect the friction response at 
both micro- and macro-levels using three-dimensional 
computational models. Toward this end, we use a statis-
tical homogenization-based approach proposed by Sista 
and Vemaganti [22], shown in a schematic form in Fig. 1, 
consisting of three components: (a) a mathematical model 
of the surface roughness, generally in the form of a joint 
probability distribution of asperity heights and curvatures, 
(b) the normal and shear responses of a single asperity in 
a parametric form and (c) the homogenization procedure. 
The result is a prediction of the overall macroscopic normal, 
shear and friction responses of the surface.

In the current research, the surface is modeled as an 
isotropic Gaussian random process following [23–25]. The 
autocorrelation function (ACF) for the surface heights is 
assumed to be Gaussian, though other forms can be used 
without affecting the overall approach adopted here. The 
Gaussian ACF filters out the smaller asperities that do 
not contribute to the overall friction but can significantly 
skew the surface parameters [26]. Consequently, the sur-
face and its spectral moments are completely defined by 
two ACF parameters: the RMS roughness � and the cor-
relation length �.

To understand the role of hardening in the response of 
a single asperity, we investigate the role of isotropic strain 
hardening and rate hardening on the asperity’s normal con-
tact and friction responses. Two alloys are considered: 
Al 2024-T3 and Ti6Al4V. The Y / E (yield strength-to-
Young’s modulus) ratio of the Al alloy is about 1.6 times 
that of the Ti alloy (see Table 1), and this ratio plays an 
important role in the friction response of the material [22]. 
The alloys are modeled as bilinear plastic materials. Addi-
tionally, the effects of material damage on the coefficient 
of friction are studied for the case of an elastic-perfectly 
plastic asperity. Here, we use the damage models proposed 
by Bao and Wierzbicki [19], and Johnson and Cook [20].

The contact area between the asperity and the rigid 
plane supports the normal and shear loads until the asper-
ity fails. Rather than assuming a partial slip contact model, 
this failure is controlled in this study by a maximum shear 
force resistance criterion proposed by Wu et  al.  [17]. 
But because of the presence of material damage in our 
model, our results for the shear response of the asperity 
differ significantly from those reported by Wu et al. [17]. 
The results of the single asperity study are parameterized 
and statistically homogenized to predict the overall fric-
tion response of the surface for various values of surface 
roughness and asperity aspect ratios.

Single Asperity
Normal Force

Surface Roughness
PDF model

Statistical
Homogenization

Single Asperity
Shear Force

Micro-asperity Model

Fig. 1  Statistical homogenization approach for calculating mac-
roscopic friction coefficient from the micro-asperity friction 
response [22]
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The remaining article is structured as follows: After Intro-
duction, Sect. 2 describes the computational methods used 
for the microscale single asperity problem. The statistical 
homogenization approach for the macroscale is described in 
Sect. 3. This is followed by results and discussion in Sect. 4, 
and some concluding remarks in Sect. 5.

2  Computational Methods for the Microscale 
Problem

2.1  Problem Description and Finite Element Mesh

This study examines the compression and friction behav-
ior of a hemispherical asperity for various normal preloads, 
material parameters, loading rates and material damage 
models by initially compressing and subsequently shearing 
an asperity, as shown in Fig. 2. A two-dimensional compu-
tational model is used to find the normal force–displacement 
responses of a deformable asperity under compression, and a 
three-dimensional model is used to find its friction response 
under combined normal and shear loading.

The two-dimensional axisymmetric model used to 
compute the normal force–displacement response of an 
asperity under compression alone is shown in Fig. 3. The 
three-dimensional half-hemisphere model used to sim-
ulate the friction response of the asperity is shown in 
Fig. 4. This half-hemisphere model takes into considera-
tion the planar symmetry of the problem. For each case, 
the figure shows the finite element discretization of the 

P

Q

Fig. 2  Schematic diagram of a hemispherical asperity under com-
pressive (P) and shear (Q) forces

Fig. 3  Axisymmetric finite 
element mesh for a hemispheri-
cal asperity under compression 
alone

Fig. 4  Symmetric finite ele-
ment mesh for a hemispherical 
asperity under compression and 
shear
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asperity along with a close-up of the area where contact 
occurs with the rigid plane.

The computational results reported in this work are 
obtained using the commercial finite element package 
ABAQUS/EXPLICIT 6.12-3. The rigid body compress-
ing and shearing the asperity is represented by a flat rigid 
surface.

The two-dimensional axisymmetric model consists of 
28,528 nodes and 28,152 bilinear axisymmetric quadri-
lateral, reduced integration (CAX4R) elements as shown 
in Fig. 3. The three-dimensional half-hemisphere model 
is partitioned similar to the two-dimensional model and 
consists of 240,357 nodes and 229,600 linear hexahedral 
reduced integration (C3D8R) elements as shown in Fig. 4.

A mesh sensitivity study is used to determine the 
appropriate discretization level. These details are dis-
cussed in Results section.

2.2  Boundary Conditions and Contact Interactions

The boundary conditions for the two- and three-dimen-
sional models are shown in the insets of Figs. 3 and 4, 
respectively. The displacements of the base nodes are 
completely constrained for both cases, representing the 
asperity’s connection to a larger bulk of material that is 
unaffected by the compression and shearing effects.

The normal and shear movements of the rigid plane are 
displacement-controlled. For the compression-only simu-
lations, the normal displacement is linearly ramped. But 
for the combined normal and shear loading simulations, 
the normal displacement is applied in the form of a fifth-
order polynomial with zero slope and curvature at the 
beginning and end of loading. This helps reduce any iner-
tial effects when the loading changes from normal dis-
placement to a constant velocity tangential displacement.

Lagrangian contact constraints control the interaction 
between the rigid surface and the asperity, allowing no 
inter-element penetration. A frictionless contact condition 
is used during the normal loading as friction has negli-
gible effect on the normal load [27]. On the other hand, 
a full stick contact condition is used during tangential 
loading. This choice is motivated by the strong adhesive 
junctions between contacting bodies [28].

2.3  Establishing a Quasistatic Loading Rate

An explicit dynamic solver is used to solve the microscale 
problem, which requires the specification of a velocity for the 
rigid plane compressing the asperity. This velocity should be 
low enough to represent a quasistatic process, while simulta-
neously keeping the computational costs reasonable. Wu and 
Shi [18] determine an optimal velocity based on simulations 
comparing the normal force, shear force, contact pressure 
distribution and kinetic-to-internal energy ratio for various 
velocities. A similar study is performed here. Based on the 
results (discussed in Results section), and taking into consid-
eration the trade-off between computational cost and accuracy, 
0.1 m/s is chosen as the optimum velocity for all the quasistatic 
simulations.

2.4  Material Models

2.4.1  Plasticity Model

The asperities undergo severe deformations during gross slid-
ing. The material behavior under such deformations is far from 
linear elastic, so it is important to model the material response 
accurately in the studies on a single asperity. In this work, we 
explore the importance of the material constitutive model by 
including strain hardening and material failure to determine 
how the macroscopic friction behavior is affected by these 
factors.

For each material under study, we consider two models of 
plasticity: (a) elastic-perfectly plastic and (b) bilinear elas-
tic–plastic with isotropic hardening. The Young’s modulus 
(E), Poisson’s ratio (�) and yield strength (Y) for the materials 
are shown in Table 1. For the case of bilinear plasticity, the 
tangent modulus value is varied from 0.005E to 0.02E, based 
on the experimental data reported by [29].

2.4.2  Material Damage Models

While the plasticity model governs the bulk mechanical 
response of the asperity, the damage model governs the loss 
of its stiffness (load-bearing capacity) after the inception of 
damage. Two such damage models are considered in our work. 
These are described here only briefly, and the details can be 
found in the literature [20, 30].

Johnson–Cook damage model Material failure in the John-
son–Cook model [20] is derived from the following damage 
law governing a scalar damage variable D:

Table 1  Young’s moduli, 
Poisson’s ratios, yield strengths 
and tangent moduli used in this 
study

E (GPa) � Y (MPa) Y / E 0.005E (GPa) 0.02E (GPa)

Al 2024-T3 73.1 0.33 345 4.72 × 10
−3 0.3655 1.462

Ti6Al4V 113.8 0.342 880 7.73 × 10
−3 0.569 2.276
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in which d� is the increment in effective plastic strain during 
an increment in loading and the fracture strain, �f  is given by

where �̇�∗ is the normalized effective plastic strain rate (typi-
cally normalized to a strain rate of 1 s−1), and T∗ is defined as

where T is the temperature of the body, T0 is the reference 
temperature, and Tmelt is the melting temperature of the 
material. The parameters D1, D2, D3, D4, D5 are material 
constants obtained experimentally, and �∗ is the stress triaxi-
ality defined as the mean stress normalized by the effective 
stress. In terms of the principal stresses, �i (i = 1, 2, 3), the 
stress triaxiality can be defined as

Table 2 shows the values of the damage parameters D1 to D5 
for Al 2024-T3 and Ti6Al4V used in this study [31].

The cumulative effect of this equivalent plastic fracture 
strain �f  causes the parameter D to increase from 0 to 1. Frac-
ture is assumed to occur when D reaches 1.

Bao–Wierzbicki damage model According to Bao and 
Wierzbicki [30] a single function cannot predict fracture cri-
teria over the whole stress triaxiality range due to the complex 
processes leading to crack formation. In the low (negative) 
stress triaxiality range crack formation is caused by shear 
fracture; in the high stress triaxiality range it is caused by the 
growth and linkage of void nucleations, while in the intermedi-
ate region a mixed fracture mode develops.

Using a series of upsetting, shear and tensile tests validated 
by numerical simulations Bao–Wierzbicki construct a fracture 
locus for the Al 2024-T351 alloy relating equivalent fracture 
strain to stress triaxiality:

(1)D = ∫
d�

�f

(2)
𝜀f =

(
D1 + D2 exp

(
D3𝜎

∗
))(

1 + D4 ln (�̇�
∗
)

)(
1 + D5T

∗
)
,

(3)T∗
=

T − T0

Tmelt − T0
,

(4)

�∗
=

�m

�
=

(�1 + �2 + �3)∕3√
1

2

[
(�1 − �2)

2 + (�2 − �3)
2 + (�3 − �1)

2
]

(5)𝜀f =

⎧⎪⎨⎪⎩

0.1225
�
𝜎∗

+
1

3

�−0.46

, − 1∕3 ≤ 𝜎∗ < 0

1.9𝜎∗2
− 0.18𝜎∗

+ 0.21, 0 ≤ 𝜎∗ < 0.4

0.15𝜎∗−1, 0.4 ≤ 𝜎∗ < 0.95.

Due to the similarities between Al 2024-T3 and Al 2024-
T351, the model in Eq. (5) is used in this study.

Giglio et al. [32] carry out a similar exercise and calibrate 
the fracture locus for the Ti6Al4V alloy:

Figure 5 shows the comparison of the fracture strain ver-
sus stress triaxiality response for the Johnson–Cook and 
Bao–Wierzbicki damage models for the two materials under 
consideration. The models show very different fracture strain 
responses, especially for small values of triaxiality.

2.5  Critical Normal Interference and Force

Upon application of normal load, the asperity shows plastic 
yielding at a certain interference. The displacement and reac-
tion force at this initial yield point are defined as the critical 
interference, �c, and critical load, Pc, respectively. Analyti-
cal models for the critical interference have been proposed by 
various authors including Chang, Etsion, Bogy (CEB) [1], 
Bhushan [33], Zhao, Maietta, Chang (ZMC) [4], and Jackson 
and Green [8].

(6)

𝜀f =

⎧
⎪⎨⎪⎩

0.164

1 + 3𝜎∗
+ 0.292, − 1∕3 < 𝜎∗ ≤ 0

1.376𝜎∗2
− 0.052𝜎∗

+ 0.461, 0 < 𝜎∗ ≤ 0.4

1.853 exp(−1.89𝜎∗
), 0.4 < 𝜎∗ ≤ 0.95.

(7)�c =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
�KH

2E�

�2

R CEB [1]

6.32
�
Y

E�

�2

R Bhushan [33]
�
3�kH

4E�

�2

R ZMC [4]
�
� ⋅ c ⋅ Y

2E�

�2

R Jackson-Green [8],

Table 2  Johnson–Cook material damage parameters used in this 
study

D1 D2 D3 D4 D5

Al 2024-T3 0.13 0.13 − 1.5 0.011 0.0
Ti6Al4V − 0.09 0.25 − 0.50 0.014 3.87
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Fig. 5  Comparison of Johnson–Cook and Bao–Wierzbicki damage 
models: fracture strain as a function of triaxiality
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where Y is the yield strength of the softer material and E′ is 
the Hertz elastic modulus defined as

Here E1, E2 and �1, �2 are the Young’s moduli and the Pois-
son’s ratios of the contacting materials, respectively. The 
CEB model defines K = 0.454 + 0.41� as the maximum 
contact pressure factor ( pressure max∕H), H as the hard-
ness of the softer material and the hemispherical asperity 
radius as R. In the ZMC model, k is the mean contact pres-
sure factor ( pressure mean∕H), and in the Jackson–Green 
model, c = 1.295 exp(0.736�) is the yield strength coefficient 
( pressure max∕H).

The Jackson–Green critical interference equation is 
a notable improvement compared to the previous models 
because (a) it is independent of the hardness and (b) its 
dependence on the Poisson’s ratio is derived numerically, 
as opposed to [1] where it is derived analytically by making 
volume conservation assumptions.

All these models follow the Hertzian solution for the criti-
cal normal force, Pc [34]:

 The critical interference and critical load formulations of 
Jackson and Green [8] are used in this study to normalize 
the displacements and forces, respectively.

2.6  Single Asperity Failure Criterion

The current literature provides many different models for the 
limiting shear load that asperity can support. Some of the 
commonly used criteria include local yielding [35], com-
plete plastic contact [15], minimum relative tangent stiffness 
value [16] or von Mises shear strength limit [17].

During tangential loading, the shear force supported by 
the asperity initially increases and then decreases as exten-
sive damage sets in around the contact region. In this work, 
the asperity shear failure is assumed to occur at that lateral 
displacement ux when the shear resistance Q takes on its 
maximum value Qmax. The motivation behind this is that if 
a shear force greater than Qmax is applied, then the asperity 
cannot support this load and will proceed to complete fail-
ure. Therefore, the final asperity static friction coefficient 
is defined as

where P is the normal force experienced by the asperity cor-
responding to the combined normal and tangential loading.

(8)1

E�
=

1 − �1
2

E1

+

1 − �2
2

E2

.

(9)Pc =
4

3
E

√
R�c

3

(10)�∗
=

Qmax

P
,

3  Computational Methods for the Macroscale 
Problem

Sista and Vemaganti [22] (SV) use a computational model to 
extrapolate micro-asperity friction results to the macroscale 
using the following components: (a) a parametric representa-
tion of the normal and shear responses of a single asperity, (b) 
a statistical model of the surface based on a known autocor-
relation function (ACF) and (c) a statistical homogenization 
procedure to compute the overall friction response. These 
components are briefly described below.

3.1  Parameterization of Single Asperity Friction 
Response

The SV model originally uses the KE model for the single asper-
ity response. Here, we use the results from the single asper-
ity results of this study in order to better represent the effects 
of material damage and hardening at the micro-level. The top 
center and right boxes in Fig. 1 show the normal reaction force 
P∗ and shear reaction force Q∗, respectively, of a single asperity 
that has a normalized height � and a normalized curvature �.

For static friction, the FEA responses of Al 2024-T3 and 
Ti6Al4V with Johnson–Cook damage are parameterized by 
the following equation for use in the SV model:

where �k are constants to be estimated from the FEA 
response using, for example, a least squares fit. For com-
parison, the KE model [7] for the single asperity response 
used by Sista and Vemaganti [22] is

where the dimensionless normal force P
∗

P∗

c

 is given by

(11)�∗

(
�

�c

)
= �1 coth

((
�

�c

)�2
)
+ �3,
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=

⎧
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�
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c

�
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0, 6𝜔c ≤ 𝜔 ≤ 110𝜔c

(13)

P∗

P∗
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�
�
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�3∕2

, � ≤ �c

1.03

�
�

�c
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, 1 ≤ � ≤ 6�c
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�
�

�c
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, 6 ≤ � ≤ 110�c.
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3.2  Statistical Model of Surface

The surface is modeled as an isotropic Gaussian random pro-
cess with the surface height as the random variable. Follow-
ing Longuet-Higgins [23], Nayak [24], and Francis [25], the 
statistical distribution of asperity height and curvature of an 
isotropic surface is represented using a function f (�, �) that 
gives the joint probability of finding an asperity with nor-
malized height � and normalized curvature � on the surface:

where � =

√
1.5m2

2

(
m0m4

) , where m0, m2 and m4 are the radial 

spectral moments of the surface. The autocorrelation func-
tion (ACF) for the surface heights is assumed to be Gaussian 
with the form

where � is the root-mean-square (RMS) roughness of the 
surface and � is correlation length. Then the radial spectral 
moments of the surface (and therefore the joint probabil-
ity density function f) are completely specified by the ACF 
parameters � and �:

Sista and Vemaganti [22] define a parameter known as the 
surface aspect ratio:

For a constant aspect ratio, as the RMS roughness of the 
surface increases, the correlation length increases propor-
tionally. This results in asperities that are tall and broad with 
gradually changing heights. For a constant RMS roughness 
and increasing aspect ratio the overall asperity heights 
remain the same, although the asperities become narrower, 
almost spiky in nature due to the proportional drop in cor-
relation length. These changes in the nature of the surface 
are shown in Fig. 6.

3.3  Statistical Homogenization

The third component of the SV model deals with summing 
the contributions from all the asperities on a surface using 

(14)

f (�, �) =

√
3

�
√
1 − �2

{�2 − 1 + exp
�
−�2

�
}

× exp

�
−

1

2
�
1 − �2

�{�2 − 2��� + �2}

�
,

(15)R(x) =
1

�2
exp−

(
x2

�2

)
,

(16)m0 = �2, m2 =
2�2

�2
, m4 =

12�2

�4
.

(17)Aspect ratio =
�

�
.

statistical homogenization. This is shown in the center box 
of Fig. 1. The macroscopic normal force ⟨P⟩, macroscopic 
shear force ⟨Q⟩ and the macroscopic coefficient of friction 
⟨�⟩ are given by:

where Dp = m4∕(6
√
3�m2) is the density of asperities on 

the surface and �∗ is the parameterized single asperity static 
friction coefficient. A recursive adaptive Simpson quadrature 
method in the software MATLAB [36] is used to evaluate 
the integrals in Eq. (18).

4  Results and Discussion

This section is divided into four subsections. First, we 
describe the mesh convergence studies carried out to 
ensure the accuracy of the simulations. Then, the nor-
mal force behavior of a single asperity under compres-
sion alone is discussed. The third part discusses results 
of combined normal and tangential loading on a single 
asperity. Finally, the results of the macroscopic friction 
studies are discussed.

4.1  Mesh Convergence Study

A mesh sensitivity study is conducted prior to the analysis 
wherein the dimensionless normal force versus dimension-
less normal displacement responses (P∕Pc vs. �∕�c) from 
three meshes are compared to the Hertzian response and 
the dimensionless shear force versus dimensionless lateral 
displacement responses (Q∕Pc vs. ux∕�c) are compared to 
each other in Fig. 7. The legend denotes the smallest ele-
ment size of a particular mesh in terms of the asperity 
radius R. The normal force results for the two-dimensional 
axisymmetric and the three-dimensional half-hemisphere 
model both agree very closely with the Hertzian solution. 
The difference between the final and intermediate meshes 
is 0.16% and that between the Hertzian solution and the 
finest mesh is 0.32%. In the case of the shear force, the 
difference between the intermediate and finest meshes is 
2.65%. The finest mesh is used in the rest of the studies 
reported here.

(18)

⟨P⟩ =Dp ∫
∞

�=0 ∫
∞

�=h

P∗
(�, �)f (�, �) d� d�

⟨Q⟩ =Dp ∫
∞

�=0 ∫
∞

�=h

�∗P∗
(�, �)f (�, �) d� d�

⟨�⟩ =⟨Q⟩
⟨P⟩ ,
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4.2  Asperity Compression Response

4.2.1  Quasistatic Linear Elastic‑Perfectly Plastic Material

In Figs. 8 and 9, we show the normal force–displacement 
response for Al 2024-T3 and Ti6Al4V using the elastic-
perfectly plastic material model. For interference values up 
to 2�c, the computed response follows the Hertzian response 
(as seen from the mesh convergence studies). At high inter-
ference values, when the material undergoes extensive plas-
tic deformation, the response transforms into a linear curve 
with a smaller slope.

As shown in the insets of Figs.  8 and  9, the CEB 
model  [1] has a discontinuity at �c. Also, up to a 

compression of 14�c, the normal force predicted by the 
CEB model is more than that predicted by the current finite 
element simulation. Beyond 14�c, the CEB response is 
lower than the current one. This is because the CEB model 
assumes that the entire contact region turns plastic beyond 
the critical interference and that the hardness (or average 
indentation pressure) of the material is constant regard-
less of the change in geometry. This limitation of the CEB 
model is also discussed by Evseev et al. [2].

The piecewise KE model, which is a power law model, 
shows good agreement with our FEA response up to a com-
pression of 60�c for both Al 20204-T3 and Ti6Al4V metals. 
This is shown in Figs. 8 and 9. Beyond that value, it predicts 
a higher force than that predicted by the current model. The 

σ

σ/λ
0.005 0.01

2.5µm

7.5µm

10µm

Fig. 6  Surface asperity distribution for various values of surface roughness and aspect ratio [22]
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piecewise KE model [7] also shows discontinuities in its 
results in terms of slope and magnitude at �c and 6�c com-
pression ratios. On the other hand, the Jackson–Green model 
[8] shows good agreement with our FEA results and also 
does not suffer from any discontinuities.

4.2.2  Quasistatic Linear Strain‑Hardened Material

Next, we introduce linear strain hardening into the material 
model for the asperity. As expected, the normal force–dis-
placement response increases in terms of magnitude and 
slope, nearly proportional to the tangent modulus, as shown 
in Figs. 10 and 11.

4.2.3  Linearly Elastic‑Perfectly Plastic Material 
with Varying Loading Rates

The effects of different loading rates (0.1, 1, 5 and 10 m/s) 
are studied next. The results for the Al alloy assuming per-
fect plasticity are shown in Fig. 12. Velocities higher than 
10 m/s are not included in the study as the FE model begins 
to show numerical instabilities at high loading rates leading 
to non-physical results. The increase in compression loading 
rate leads to a very negligible increase in the normal force 
response for the Al 2024-T3 alloy. This increase caused by 
greater inertial forces at non-quasistatic velocities is so small 
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that one can assume these responses to be approximately 
equal up to a velocity of 10  m/s. The corresponding results 
for the Ti6Al4V alloy are very similar and are not shown for 
the sake of brevity.

4.3  Single Asperity Shearing Response

4.3.1  Quasistatic Linearly Elastic‑Perfectly Plastic 
Material

Subsequent to the normal loading, a shear load is applied 
to the asperity. Assuming elastic-perfectly plastic behavior, 

the shear force responses for the Al 2024-T3 alloy at dif-
ferent compressive preloads are shown in Fig. 13. For low 
compression preloads the failure limit occurs at smaller tan-
gential displacements, while at high compression preloads 
a larger tangential displacement is required for failure. This 
happens because the contact area for the low compression 
case is small and the shear load is supported by this small 
area, which fails rapidly leading to a quick decrease in the 
shear force resistance. On the other hand, an asperity with a 
large preload has a larger contact area with the rigid surface 
and therefore many elements are required to fail before the 
net shear force resistance drops.

The shear force, normal force and static friction responses 
of the Ti6Al4V alloy assuming elastic-perfectly plastic 
behavior are qualitatively very similar to the Al 2024-
T3 responses and therefore not shown. Likewise, these 
responses for both materials, including isotropic strain hard-
ening and rate hardening behavior or even with different 
damage models, are qualitatively very similar and hence not 
repeated.

Next, the static coefficient of friction for the asperity as 
a function of the interference is shown in Fig. 14. For each 
alloy considered here, we see that the material parameters 
as well as the choice of the damage model significantly 
impact the friction response. For the purpose of comparison, 
the figure also shows the responses predicted by the BKE 
model [16], the WSP model [17] and the KE model [15]. 
The BKE model response is for a hypothetical material with 
Y∕E = 10−3, while the WSP model response represents Al 

0 50 100 150
0

100

200

300

400

500

600

700

Dimensionless compression displacement, ω/ωc

D
im

en
si

on
le

ss
 n

or
m

al
 fo

rc
e,

 P
/P

c
FEA Perfectly plastic
FEA ET = 0.005ETi

FEA ET = 0.01ETi

FEA ET = 0.015ETi

FEA ET = 0.02ETi

Fig. 11  Effects of strain hardening: computed normal force 
responses of isotropic strain-hardened Ti6Al4V under compression 
for various values of the tangent modulus

0 100 200 300 400 500 600 700 800
0

500

1000

1500

2000

2500

3000

3500

4000

Dimensionless compression displacement, ω/ωc

D
im

en
si

on
le

ss
 n

or
m

al
 fo

rc
e,

 P
/P

c

FEA Perfectly Plastic 0.1m/s
FEA Perfectly Plastic 1m/s
FEA Perfectly Plastic 5m/s
FEA Perfectly Plastic 10m/s

760 780 800 820 840

3400

3600

3800
0 5 10

0

10

20

30

Fig. 12  Effects of loading rate: computed normal force response for 
elastic-perfectly plastic Al 2024-T3 under compression at different 
rates. Insets show smooth responses at low compressions but increas-
ing oscillations at high compression values

0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

200

Dimensionless lateral displacement,   u
x
/ω

c

D
im

en
si

on
le

ss
 s

he
ar

 fo
rc

e,
   

Q
/P

c

ω = 0.25ω
c

ω = 0.5ω
c

ω = 1ω
c

ω = 5ω
c

ω = 25ω
c

ω = 50ω
c

ω = 100ω
c

ω = 150ω
c

0 20 40
0

0.5

1

1.5

Fig. 13  Asperity shearing response: change in shear force with lat-
eral displacement for various levels of compressive preload. Elas-
tic-perfectly plastic Al 2024-T3 asperity. Inset: a closer look at the 
responses for preloads of 0.25�

c
, 0.5�

c
 and 1.0�

c
. Note the much 

smaller scale on the force axis compared to the main figure



Tribol Lett (2017) 65:154 

1 3

Page 11 of 14 154

2024-T351 with Y∕E = 4.4 × 10−3. The KE model is devel-
oped for the range 10−2 ≥ Y∕E ≥ 10−3 [15].

The KE model assumes that asperity shear failure occurs 
when there is plastic inception in the contact region. Their 
semi-analytical friction model also does not consider the 
softening of the normal resistance provided by the asperity 
as it is sheared; instead, the model uses the normal force 
from the compression-only results. Due to these assump-
tions the KE model underestimates friction considerably. 
In reality, the asperity does support shear loads beyond the 
inception of plasticity in the contact area and fails at a later 
stage. The BKE response is similar to our FEA response for 
both alloys with the Johnson–Cook damage model. Both the 
BKE and WSP models agree with the computational results 
for JC damage at high interference values.

4.3.2  Quasistatic Bilinear Isotropic Strain‑Hardened 
Material

Strain hardening has different effects on Al 2024-T3 and 
Ti6Al4V, as shown in Figs. 15 and 16, respectively. For the 
Al 2024-T3 alloy, there is a large increase in the friction 
response, especially at low interference values, as the tan-
gent modulus is increased. This is in contrast to the nominal 
increase in the friction coefficient for the Ti6Al4V alloy.

Being more ductile, the Al 2024-T3 alloy undergoes con-
siderable plastic deformation and strain hardening before 
damage. Thus, at high plastic strains it provides more resist-
ance, leading to a larger coefficient of friction. On the other 
hand, the Ti6Al4V alloy fails more quickly and is unable to 
achieve a large amount of plastic deformation.

4.3.3  Linearly Elastic‑Perfectly Plastic Material 
with Varying Loading Rates

We now consider the friction responses of the alloys at 
various shearing rates. Note that the non-quasistatic shear 
loading rate is not the slip velocity between the contacting 
bodies. Rather, it is the rate at which the junction between 
the bodies is broken. As such, the friction parameter being 
observed in this scenario is still the static coefficient of 
friction.

Similar to the rate-dependent normal force response, the 
rate-dependent friction response shows a negligible increase 
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over the quasistatic results as shown in Fig. 17. This neg-
ligible increase is due to the very small inertial effects 
at or below 10 m/s shearing velocity and the strain rate-
dependent parameters in the Johnson–Cook damage model, 
which are very small in magnitude compared to the other 
parameters. Thus, their effect at such low velocities is almost 
undetectable.

4.4  Macroscopic Friction

4.4.1  Parameterization of Single Asperity Response

The computed FEA responses of Al 2024-T3 and Ti6Al4V 
with JC damage are parameterized by Eq. (11). The result-
ing values for the coefficients �k are shown in Table 3. The 
corresponding fits are shown in Fig. 18, where very good 
agreement is observed between the data and the parametric 
representations.

4.4.2  Effect of Surface Roughness and Aspect Ratio

Figure 19 shows the macroscopic friction coefficient as 
a function of the average normal stress on the surface for 
various aspect ratios as well as different asperity materi-
als. As the aspect ratio of the surface increases the coeffi-
cient of friction decreases. This is because a surface with a 
high aspect ratio is more likely to have tall spiky asperities 
that easily come into contact with the rigid plane, undergo 
higher compression and reach failure sooner. A surface with 
a low aspect ratio has broader asperities that provide more 
resistance to loading and result in a higher coefficient of 
friction. Thus, in Fig. 19 the macroscopic friction coeffi-
cient nearly doubles as the aspect ratio is halved. There is 

significant difference between the friction coefficients cal-
culated from the single asperity FEA results of Al 2024-T3, 
Ti6Al4V and the semi-analytical KE model. This is because 
the semi-analytical KE friction model does not consider the 
softening of the normal resistance provided by the asperity. 
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Table 3  Parameterization of an asperity’s response: coefficients �
k
 in 

Eq. (11) for Al 2024-T3 and Ti6Al4V

Material γ1 γ2 γ3

Al 2024-T3 2.09 0.3233 1.63
Ti6Al4V 1.561 0.4127 − 1.241
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Consequently, macroscopic friction is highly dependent on 
the material and failure models chosen for the asperity.

Figure 19 captures the essence of the micro-to-macro-
approach used in this work. Knowing the constitutive 
response of the asperity material and knowing the surface 
characteristics, the statistical homogenization procedure 
allows us to obtain the overall friction response of the 
surface in a form that can readily be used in, say, a finite 
element analysis to simulate macroscopic friction more 
realistically.

5  Conclusions

In this study, finite element models of a hemispherical asper-
ity are employed to study the normal force–displacement 
response in compression and the friction response in full 
stick shear. These responses are computed for various mate-
rial models at multiple loading rates. The Johnson–Cook 
damage model and the Bao–Wierzbicki damage model con-
trol the material deterioration in the shearing simulations. 
This study limits the simulation velocities to a magnitude 
less than or equal to 10 m/s to ensure convergence in the 
transient simulations and to avoid non-physical results.

The results from the single microscale asperity study are 
scaled up to the macroscale using a statistical homogeniza-
tion procedure, which uses the single asperity response and 
a model of the surface roughness to determine the overall 
friction response. The main outcomes of the study are sum-
marized as follows.

– The Jackson–Green model for the normal force response 
of an asperity shows very good agreement with the 
results of our very detailed two- and three-dimensional 
finite element analyses. This response shows a significant 
increase in magnitude with strain hardening. This rela-
tionship needs to be studied extensively for a variety of 
materials before general expressions can be developed.

– Increasing the compression rate leads to a negligible 
increase in the normal force up to velocities of 10 m/s 
and can be ignored at low velocities. Similarly, an asper-
ity’s friction response varies very little at low shearing 
rates and can be assumed to be approximately constant 
up to a rate of 10 m/s.

– Depending on the material, an increase in an asperity’s 
tangent modulus can lead to a considerable increase in its 
coefficient of friction, especially at lower compressions. 
Additional studies over a wider range of materials are 
needed to quantify and further generalize our results.

– The choice of the material damage model significantly 
changes the static friction coefficient of an asperity for 
a given set of elastic and plastic material parameters. 
Therefore, the availability of material damage data that 

can guide the calibration and selection of an appropriate 
damage model plays an important role. Material charac-
teristics that may affect an asperity’s friction response are 
also important to consider (e.g., temperature dependency, 
low triaxiality range, strain rate dependency).

– Macroscopic friction is highly dependent on the mate-
rial and failure models chosen for the asperity. A good 
understanding of material behavior and careful experi-
mentation are therefore necessary to facilitate accurate 
modeling and simulation of macroscopic friction.
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