
Vol.:(0123456789)1 3

Tribol Lett (2017) 65:156 
DOI 10.1007/s11249-017-0937-2

ORIGINAL PAPER

Elastic Sinusoidal Wavy Surface Contact Under Full Stick 
Conditions

Xianzhang Wang1   · Yang Xu1 · Robert L. Jackson1 

Received: 27 August 2017 / Accepted: 10 October 2017 / Published online: 26 October 2017 
© Springer Science+Business Media, LLC 2017

List of symbols
E	� Elastic modulus
E′	� Effective elastic modulus, 

E∕
(
1 − �2

)

f 	� Spatial frequency (reciprocal of 
wavelength)

G	� Shear modulus, E∕(2(1 − �))

h	� The height of the surface
p	� Contact pressure
p̄	� Average pressure on the half-space
p∗	� Average pressure for complete 

contact
p11, p12, p21, p22	� Normal stress constant
q	� Shear stress
q∗
x
, q∗

y
	� Amplitude of shear stress

Sy	� Yield strength
ux, uy, uz	� Elastic displacement component
x, y, z	� Cartesian coordinates on the sur-

face (z is normal to the surface)
z0	� The position where the maximum 

von Mises stress locates at
�	� Stress spatial frequency in x 

direction
�	� Stress spatial frequency in y 

direction
Δ	� Amplitude of sinusoidal surface
�x, �z	� Strain components
�	�

√
�2 + �2

�	� Wavelength of sinusoidal surface 
(1/f)

�	� Poisson’s ratio
�x, �y, �z	� Normal stress component
�x11, �x12, �x21, �x22	� Shear stress constant
�xy, �yz, �xz	� Shear stress component
�y11, �y12, �y21, �y22	� Shear Stress constant

Abstract  A purely normal contact problem of an elastic 
half-space with a three-dimensional periodic sinusoidal 
wavy surface and a rigid flat under the full stick condition 
is studied. The contacting points from mating surfaces have 
zero relative tangential displacement under the full stick 
condition. The scope of this study is restricted to a special 
case where the entire contact interface is in contact (referred 
to as complete contact) under the full stick condition. Com-
plete contact is defined as when there are no gaps remaining 
between the surfaces. The corresponding state of stress of 
the half-space is derived analytically. According to the state 
of stress, we find (1) an analytical solution for the average 
pressure required to cause complete contact, (2) the location 
of the global maxima of the von Mises stress and (3) the 
critical magnitude of the waviness amplitude below which 
the plastic yielding of the half-space will never occur before 
the initiation of complete contact. The results are also com-
pared with the solution under the perfect slip condition. We 
find that the location of the maximum von Mises stress may 
occur either on the contact interface or beneath it depending 
on the value of Poisson’s ratio.

Keywords  Sinusoidal waviness · Elastic · Normal 
contact · Complete contact · Yielding
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�(i, j)	� Airy stress function
�x,�x,�z	� A first partial derivative to �
�xx,�xy,�xz,�zz	� A second partial derivative to �
�xxz,�xyz,�xzz	� A third partial derivative to �

Subscripts
max	� Maximum value
vm	� von Mises
c	� Critical value
x	� In x direction
y	� In y direction
stick	� Under the full stick condition
slip	� Under the perfect slip condition

Operator Symbols
�∕�x, �∕�y, �∕�z	� First partial derivative
�2∕�x�z, �2∕�x2, �2∕�z2	� Second partial derivative

1  Introduction

The normal contact of linear, isotropic, homogeneous linear 
elastic bodies is a fundamental problem in contact mechan-
ics. For this kind of problem, the solutions (e.g., the contact 
and interfacial shear stress) strongly rely on the types of 
boundary conditions at the interface which can be gener-
ally divided into two categories: normal and tangential ones. 
Consider a non-adhesive contact case. The normal boundary 
condition for the non-adhesive contact is characterized by 
the Kuhn–Tucker inequality [1]. Different cohesive models 
might be applied together with the Kuhn–Tucker inequal-
ity to the interface when adhesion is introduced. The three 
main commonly used tangential boundary conditions in the 
analytical and numerical models are:

•	 Perfect Slip Condition

Interfacial shear stress is not considered, i.e., there is no 
friction existing between the two surfaces in contact.

•	 Full Stick Condition

The interfacial shear stress is sufficient to prevent any slip 
between the contact interfaces of the elastic bodies.

•	 Partial Slip Condition

The contact area is divided into two regions, the stick 
region and the slip region. In the stick region, the friction 
at the interface is sufficient to prevent any slip; in the slip 
region, the stress overcomes the friction and relative dis-
placement can take place.

The current work considers the full stick case. When con-
tact interfaces are under the full stick condition, the mating 
points from both interfaces have zero relative displacement 
along their tangent direction. This type of boundary condi-
tion occurs in many situations. Experimental results of a 
glass lens in torsional [2, 3] and sliding contact [4] con-
firmed the existence of the stick region before the onset of 
the global rotation and sliding. Recently, a delicate experi-
ment done by Svetlizky and Fineberg [5] showed that the 
stick and slip regions in pre-sliding can be modeled as the 
propagation of the interfacial crack opening surfaces in full 
stick. This clearly indicates that the contact region is under 
the full stick condition right before being penetrated by the 
slip region. Due to the complex nature of the contact prob-
lem under the full stick condition, very little work was done 
on analytically solving the interfacial states for plane (2D) 
and spatial (3D) contact problems.

For the elastic contact under the plane stress/strain condi-
tion, several researchers have focused on the indenter with 
simple geometries and some of the results are summarized in 
Johnson’s classic book [6]. Johnson [6] gave the interfacial 
normal and shear stress between the rigid flat-end punch 
and an elastic half-space under the full stick condition. The 
solutions were solved based on the integral governing equa-
tion developed by Galin [7]. Since all the points on the flat 
end come into contact simultaneously, the punch results 
do not rely on the loading history. Johnson [6] also gave 
a solution for the sliding contact of the cylindrical punch 
under full stick assuming that the interaction between the 
interfacial normal and shear stresses is decoupled. Adhe-
sive plane contact between a cylinder and a stretched flat 
of similar materials where the substrate was stretched was 
studied by Chen and Gao [8] and later they solved the similar 
contact problem between dissimilar materials [9]. A similar 
contact between a rigid cylinder and an elastic half-space 
was studied by Zhupanska [10]. In Zhupanska’s model, the 
half-space is not pre-stretched. Block and Keer [11] applied 
Galin’s formulation [7] for the non-periodic contact prob-
lem to the periodic contact problem based on the periodic 
Green’s function. The solution [11] to the rigid periodic flat-
end punches in contact with an elastic half-space was given 
by analytically solving the coupled integral equations. Good-
man’s approximation [12] was applied to the problem where 
the punch profile is periodically sinusoidal and closed-form 
solutions were obtained for the interfacial normal and shear 
stresses.

Most works on the analytical modeling of three-dimen-
sional full stick contact belong to the axisymmetric case. 
Mossakovskii [13, 14] was the first to solve the axisymmet-
ric normal contact problem under the full stick condition. 
Mossakovskii [14] presented the solutions for an elastic half-
space in contact with a rigid indenter of different shapes: 
a flat-end cylinder, a parabolic shaped punch and a power 
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law shaped punch. Because the interfacial normal and shear 
stresses are dependent on the loading history, Mossakovskii 
[13, 14] modeled the interfacial state of stresses incremen-
tally. Goodman [12] gave an approximate solution of the 
Hertzian contact between dissimilar materials under the 
full stick condition. The interfacial normal stress is found 
by Hertzian contact based on Goodman’s approximation. 
Goodman [12] also used the incremental formulation to 
solve the interfacial shear stress. A more efficient analysis to 
the axisymmetric contact under the full stick condition was 
given by Spence [15]. He found a similar interfacial state of 
stresses is yielded at each step during the progressive load-
ing, this behavior is usually referred to as self-similarity. He 
pointed out that the solution to the self-similar problem can 
be obtained directly without the application of the incremen-
tal technique. Solving the governing dual integral equations 
by the Wiener–Hopf technique [16] yields the interfacial 
normal and shear stresses. Based on the self-similarity tech-
nique, Borodich [17] solved the Hertzian contact between 
two nonlinear elastic anisotropic bodies under the full stick 
condition. Based on Mossakovskii’s analysis, Borodich and 
Keer [18] considered a contact between a rigid, axisymmet-
ric punch and an isotropic elastic half-space under the adhe-
sive (full stick) condition and found a relation between the 
contact stiffness, the contact area and the elastic modulus.

Numerical simulation is an effective approach for investi-
gating the situation for both elastic and elastic–plastic con-
tact. This method was used to find the stress distribution 
and displacement for elastic contact by Conway [19]. He 
considered that an elastic strip was compressed by a punch 
with the shapes of cylindrical and circular rollers in the full 
stick condition. Kosior et al. [20] used a numerical method 
to analyze the contact problem with friction between two 
elastic bodies. They used a domain decomposition method 
coupled with the boundary element method (BEM) to solve 
the contact problem of two elastic bodies. In an additional 
paper [21], they solved the same problem numerically by 
the finite element method (FEM) considering the contact 
between both a deformable spherical indenter and a deform-
able support. Brizmer et al. [22] used the FEM to investigate 
the effect of the contact condition (slip and full stick) and 
material properties on the termination of elasticity of the 
contact between an elastic plastic sphere and a rigid flat with 
the slip and full stick conditions.

All of the previous work assumed a spherical asper-
ity geometry. The current work instead uses a sinusoidal 
or wavy geometry. The two-dimensional elastic sinusoi-
dal contact was first solved by Westergaard [23]. Johnson, 
Greenwood and Higginson (JGH) [24] developed asymptotic 
solutions for the elastic contact of a three-dimensional sinu-
soidal profile. In their work, they provided a relationship 
between pressure and contact area for two limiting regimes: 
at the early stages of contact and near complete contact. 

Jackson and Streator [25] provided an empirical equation 
based on the experimental and numerical data, linking the 
two regimes. They investigated the analysis between rough 
surfaces that considered asperities using a sinusoidal geom-
etry and proposed a non-statistical multi-scale model to 
predict the real contact area as a function of normal contact 
load. With the development of more multi-scale models 
between rough surfaces [26, 27], the contact problem of an 
elastic–plastic deformable sinusoidal surface and a rigid flat 
was investigated by several researchers for the perfect slip 
case [28–30]. Gao et al. [28] found a relationship between 
contact pressure, contact size, effective indentation depth 
and residual stress for the 2D elastic–plastic sinusoidal con-
tact. Krithvasion and Jackson [29] provided an approximate 
solution for the elastic–plastic regimes and an empirical 
expression for predicting the contact area as a function of 
contact pressure. Jackson et al. [30] provided an analyti-
cal expression for the average pressure that causes complete 
contact.

As can be seen from the above literature review, most 
of the existing literature are about either spherical contact 
under the full stick condition or sinusoidal contact under 
the perfect slip condition. Very little work was done so far 
on the sinusoidal contact under the full stick condition, and 
an analytical solution for complete contact pressure is still 
missing for elastic contact under full stick condition, this 
case is very important for describing rough surface contact 
where there is a significant amount of friction. The main 
goal of this paper is to analyze the behavior of sinusoidal 
contact under the full stick condition. Therefore, the effects 
of contact conditions (perfect slip or full stick) are investi-
gated in the present study for an elastic sinusoidal contact.

2 � Methodology

2.1 � Problem Statement

Consider a half-space with a bi-cosinusoidal waviness con-
tour in purely normal contact with a rigid flat. The half-
space is homogeneous, isotropic and linear elastic. The 
periodic bi-sinusoidal surface has the following expression:

w h e r e  o n l y  o n e  p e r i o d  i s  c o n s i d e r e d : {
(x, y)|x�

[
0, �x

)
, y�

[
0, �y

)}
 (Fig. 1). The wavelengths are 

�x = 2�∕� and �y = 2�∕�. The three-dimensional view and 
the contour of the surface are shown in Fig. 2 and Fig. 3, 
respectively. In order to compare the results with the equa-
tions in [24] and [30], in which the geometry are described 
as:

(1)h = Δ cos (�x) cos (�y)

(2)h = Δ(1 − cos (�x) cos (�y))
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a special case of � = � will be considered in Sects. 2.4 and 
2.5. The only difference of these two equations is a con-
stant term, the amplitude, Δ. It should be much less than 
the wavelengths, i.e. Δ ≪ 𝜆x

(
𝜆y
)
, in order to exclude large 

deflections. Small ratio of amplitude to wavelength was also 
observed experimentally by Jackson [27] and Zhang and 

Jackson [31], so it is a reasonable assumption. The contact-
ing interface is under the full stick condition. Since the inter-
facial normal and shear stresses depend on the loading stage 
[12, 14], generally, the contact problem should be formulated 
incrementally [12, 14]. In some special cases, (e.g., spherical 
contact), self-similarity can be used to simplify the formula-
tion [16]. In order to avoid the complexity brought by the 
load-dependency, the contacting points are assumed to be 
achieved simultaneously, i.e., ux(x, y, 0) = uy(x, y, 0) = 0.

In order to simplify the contact problem, tangential load-
ing and adhesion are not considered. Consider the special 
stage where the bi-sinusoidal waviness is initially in contact 
with the rigid flat everywhere. This stage is referred to as 
complete contact. At complete contact and under full stick, 
the contact problem belongs to the second type boundary 
value problem where the surface displacement components 
in [6] are prescribed by:

2.2 � Interfacial State of Stress

Wavy or sinusoidal contact has been first studied by the work 
of Wastergaard [25]. In his work, a two-dimensional half-
space contact under the perfect slip condition was analyzed. 
The cosinusoidal pressure distribution at the interface was 
given by:

and the normal elastic displacement due to the pressure in 
Eq. (4) was given by:

where � =
√
�2 + �2.

Johnson et al. [24] investigated the three-dimensional 
contact between an elastic half-space and a rigid flat, the bi-
sinusoidal distribution of the surface pressure was given by:

The elastic displacement due to this surface pressure is given 
by:

Then, Tripp et al. [32] also investigated the three-dimen-
sional half-space by using the potential method and consid-
ered the shear stress distribution:

(3)

ux(x, y, 0) = 0

uy(x, y, 0) = 0

uz(x, y, 0) = −h(x, y)

(4)�z(x, 0) = p∗
slip

cos (�x + �y)

(5)uz =
[
2p∗

slip

(
1 − �2

)
∕E�

]
cos (�x + �y)

(6)�z(x, y, 0) = p∗
slip

cos(�x)cos(�y)

(7)uz =
[
2p∗

slip

(
1 − �2

)
∕E

(
�2 + �2

)1∕2]
cos(�x)cos(�y)

(8)�xz(x, y, 0) = q0cos(�x)cos(�y)

Fig. 1   Schematic representation of a half-space with bi-sinusoidal 
waviness in contact with a rigid flat surface. Only the xz cross section 
is shown

Fig. 2   Three-dimensional bi-sinusoidal wavy surface

Fig. 3   Schematic representation bi-sinusoidal waviness. Points A, B, 
C, D and E are the peaks. Points B’, C’, D’ and E’ are the valleys
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and the elastic displacement components were given in 
terms of the potential function.

where the Airy stress function for this case is given by:

G is shear modulus, and given by G = E∕(2(1 + �)) and q0 is 
the amplitude of shear stress.

Following Tripp et al.’s method, we assumed a bi-sinusoi-
dal pressure distribution and shear stress distribution in both 
x and y directions. Generally, the unknown contact pressure, 
p(x, y), and the interfacial shear stresses, qx(x, y), and qy(x, y), 
can be expressed by the Fourier series with an infinite num-
ber of terms. Since the normal displacement, uz(x, y, 0), only 
contains a single sinusoidal term, a simplified form of the 
boundary stresses may be written as:

where the normal stress constants p11, p12, p21, p22 and shear 
stress constants �x11, �x12, �x21, �x22, �y11, �y12, �y21, �y22, are 
initially unknown. Note that the mean value of qx(x, y) and 
qy(x, y) over each period are zero. The average value of p(x, y) 
is p̄ and is the minimum of the value which can exclude all 
the negative values in p(x, y). The addition of p̄ would be 
achieved by the application of a sufficient normal load.

Similarly to the calculation of displacement components 
on the sinusoidal surface of the plane contact in “Appen-
dix 1”, the elementary solutions of the interfacial displace-
ment components due to different bi-sinusoidal/cosinusoidal 
stress boundaries are listed in “Appendix 2”. The resultant 
interfacial displacement components, ux(x, y, 0), uy(x, y, 0),  
and uz(x, y, 0), due to the stress boundaries in Eq. (3) are the 
superposition of the corresponding elementary solutions. 
Substituting the interfacial displacement components into the 
boundary conditions for complete contact under full stick 

(9a)ux = (4�G)−1
[
2�zz + 2��xx − z�xxz

]

(9b)uy = (4�G)−1
[
2��xy − z�xyz

]

(9c)uz = (4�G)−1
[
(1 − 2�)�xy − z�xzz

]

(10)�(x, y, z) = −
(
2�q0∕�

3
)
e−�z cos (�x) cos (�y)

(11a)

p(x, y, 0) = p11 cos (�x) cos (�y) + p12 cos (�x) sin (�y)

+ p21 sin (�x) cos (�y) + p22sin(�x) sin (�y)

(11b)

q
x
(x, y, 0) = �

x11 cos (�x) cos (�y) + �
x12 cos (�x) sin (�y)

+ �
x21 sin (�x) cos (�y) + �

x22 sin (�x) sin (�y)

(11c)

q
y
(x, y, 0) = �

y11 cos (�x) cos (�y) + �
y12 cos (�x)sin(�y)

+ �
y21 sin (�x) cos (�y) + �

y22 sin (�x) sin (�y)

(see Eq. (3)) and combining the same bi-sinusoidal/cosi-
nusoidal terms, then the above boundary conditions can be 
decomposed into 12 linear equations. After solving this linear 
system, only three out of the twelve unknowns are non-zeros:

Note the complete contact pressure is reached when the aver-
age contact pressure is equal to p∗ in the full stick condition. 
p∗ now is denoted p∗

stick
, and Eq. (12a) becomes:

In contrast, the complete contact pressure for the isotropic 
wave surfaces, (� = � = 2�∕�), in the perfect slip condition 
is given by Johnson et al. [24]:

where E′ is the equivalent elastic modulus which is given by:

E1, v1 and E2, v2 are the elastic modulus and Poisson’s ratio 
of the contacting surfaces.

The elastic modulus of the rigid flat is considered to be ∞, 
and Eq. (15) reduces to:

Since both Eqs. (13) and (14) have the EΔf  term, the com-
plete contact pressure in perfect slip condition,p∗

slip
, and in 

full stick condition, p∗
stick

 are normalized using EΔf . Then 
the normalized complete contact pressure is plotted versus 
Poisson’s ratio (see Fig. 3). It can be seen from Fig. 3, as the 
Poisson’s ratio increases, the dimensionless complete con-
tact pressure also increases in both stick and slip. The com-
plete contact pressure is also much lower in stick than it is 
in slip. This is because the addition of traction in the stick 
case increases the overall stress in the contact and therefore 

(12a)p11 = p∗ =
2ΔE�(1 − �)

(1 + �)
(
8�2 − 12� + 5

)

(12b)�x21 = q∗
x
=

ΔE�(1 − 2�)

(1 + �)
(
8v2 − 12� + 5

)

(12c)�y12 = q∗
y
=

ΔE�(1 − 2�)

(1 + �)
(
8�2 − 12� + 5

)

(13)p∗
stick

=
4
√
2�EΔf (1 − �)

(1 + �)
�
8�2 − 12� + 5

�

(14)p∗
slip

=
√
2�E�Δf =

√
2�EΔf

1 − �2

(15)1

E�
=

1 − �2
1

E1

+
1 − �2

2

E2

(16)E� =
E1

1 − �2
1
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lowers the pressure needed to cause strain to compress the 
surface. And the difference between the two curves 
decreases, they converge to the same value at � = 0.5. This 
is because the influence of tangential traction on the normal 
pressure is small for high values of Poisson’s ratio, and the 
tangential stress under the full stick condition are low 
enough to make the complete contact pressure in stick and 
in slip similar. This observation was also found for the rigid 
flat punch indentation case as found in Johnson’s book [6]. 
For the compressible material (𝜈 < 0.5), the complete con-
tact pressures in stick are lower than their corresponding 
value in slip; for the incompressible material (� = 0.5), the 
complete contact pressure in stick is exactly equal to the 
value in slip (Fig. 4).

Dividing Eqs. (13) by (14), then the ratio between the 
stick and slip case is given by the following function of �:

Figure 5 presents the ratio of the complete contact pressure 
in full stick over that in perfect slip. The ratio was found to 
be independent of the geometry and material properties, 
except for the Poisson’s ratio. The two limits are p

∗
stick

p∗
slip

= 0.8 

when � = 0, and p
∗
stick

p∗
slip

= 1 when � = 0.5. The ratio increases 

as the Poisson’s ratio increases. That is because the tangen-
tial traction does not affect the ratio as much at the high 
values of Poisson’s ratio.

Consequently, the final forms of the contact pressure and 
the interfacial shear stresses under the full stick condition 
are:

(17)
p∗
stick

p∗
slip

=
4(1 − �)2

(
8�2 − 12� + 5

)

(18a)p(x, y) = p∗
stick

cos (𝛼x) cos (𝛽y) + p̄

(18b)qx(x, y) = q∗
x
sin (�x) cos (�y)

Note that the complete contact is initially reached when 
p̄ = p∗

stick
.

2.3 � General State of Stresses at Complete Contact

In order to determine the state of stresses of the half-space 
under the action of the boundary stresses, Eq. (13) can be 
decomposed into three sub-states for each surface trac-
tion p(x, y), qx(x, y) and qy(x, y) individually. Then they 
can be superposed to find the complete solution. First 
we will neglect the final p̄ in Eq. (18a), Tripp et al. [32] 
provided the state of stresses of the half-space due to the 
application of a bi-cosinusoidal normal stress distribu-
tion, p(x, y) = p∗

stick
cos (�x) cos (�y) on the boundary of a 

half-space:

(18c)qy(x, y) = q∗
y
cos (�x) sin (�y)

(19a)

�x = p∗
stick

[
�2

�2
−

�2z

�
+ 2�(�∕� )2

]
e−�z cos (�x) cos (�y)

(19b)

�y = p∗
stick

[
�2

�2
−

�2z

�
+ 2�(�∕� )2

]
e−�z cos (�x) cos (�y)

(19c)�z = p∗
stick

(1 + �z)e−�z cos (�x) cos (�y)

(19d)�xy = −p∗
stick

(
��

�2

)
(1 − 2� − �z)e−�z sin (�x) sin (�y)

(19e)�yz = p∗
stick

�ze−�z cos (�x) sin (�y)

(19f)�xz = p∗
stick

�ze−�z cos (�x) sin (�y)

Fig. 4   Dimensionless complete contact pressure in full stick and pre-
fect slip condition

Fig. 5   The ratio of complete contact pressure in full stick over per-
fect slip
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In addition, Tripp et  al. [32] also gave the closed-form 
solution of the state of stress of the half-space due to 
the action of a bi-cosinusoidal shear stress distribution, 
qx(x, y) = q∗

x
sin (�x) cos (�y), on the boundary. This bound-

ary problem is solved by a known potential function. Fol-
lowing the same methodology, the state of stresses due to the 
boundary stress qx(x, y) = q∗

x
sin (�x) cos (�y) is

S i m i l a r ly,  a  b o u n d a r y  s t r e s s  d i s t r i b u t i o n , 
qy(x, y) = q∗

y
sin (�x) cos (�y) will result in the following 

state of stress:

Then, the state of stress due to the mutual action of the 
boundary tractions, p(x, y), qx(x, y), and qy(x, y) in Eq. (18), 
is the superposition of the contributions listed above:

(20a)
�x = −q∗

x
�∕�

[
2 + 2�(�∕� )2 − (�∕� )(�z)

]
e−�z cos (�x) cos (�y)

(20b)

�y = −q∗
x
�

[
�2

�2
−

�2z

�
+ 2�(�∕� )2

]
e−�z cos (�x) cos (�y)

(20c)�z = −q∗
x
�ze−�z cos (�x) cos (�y)

(20d)�xy = q∗
x
�∕�

(
1 −

2��2

�2
−

�2z

�

)
e−�zsin(�x) sin (�y)

(20e)�yz = −q∗
x

��

�
ze−�z cos (�x) sin (�y)

(20f)�xz = q∗
x

(
1 − �2z∕�

)
e−�z sin (�x) cos (�y)

(21a)�x = −q∗
y
�∕�

(
2�

�2

�2
−

�2z

�

)
e−�z cos (�x) cos (�y)

(21b)
�y = q∗

y
�∕�

[
2 + 2�(�∕� )2 − (�∕� )(�z)

]
e−�z cos (�x) cos (�y)

(21c)�z = −q∗
y
�ze−�z cos (�x) cos (�y)

(21d)�xy = q∗
y
�∕�

(
1 −

2��2

�2
−

�2z

�

)
e−�zsin(�x) sin (�y)

(21e)�yz = q∗
y

(
1 − �2z∕�

)
e−�z cos (�x) sin (�y)

(21f)�xz = −q∗
y

(
��

�

)
ze−�z sin (�x) cos (�y)

After algebraic manipulation, it yields the following simpli-
fied forms of the state of stress:

(22a)

�
x
=

{
p
∗
stick

[
�2

�2
−

�2
z

�
+ 2�(�∕� )2

]

−q∗
x
�∕�

[
2 + 2�

(
�

�

)2

− (�∕� )(�z)

]

−q∗
y
�∕�

(
2�

�2

�2
−

�2
z

�

)}
e
−�z cos (�x) cos (�y)

(22b)

�
y
=

{
p
∗
stick

[
�2

�2
−

�2z

�
+ 2�(�∕� )2

]

−q∗
x
�

[
�2

�2
−

�2z

�
+ 2�

(
�

�

)2
]

+q∗
y
�∕�

[
2 + 2�(�∕� )2 − (�∕� )(�z)

]}

e
−�z cos (�x) cos (�y)

(22c)
�z =

{
p∗
stick

(1 + �z) − q∗
x
�z − q∗

y
�z
}
e−�z cos (�x) cos (�y)

(22d)
�
xy
=

[
−p∗

stick

(
��

� 2

)
(1 − 2� − �z) + q

∗
x

�

�

(
1 −

2��2

� 2
−

�2
z

�

)

+q∗
y

�

�

(
1 −

2��2

�2
−

�2
z

�

)]
e
−�z sin (�x) sin (�y)

(22e)

�yz =

[
p∗
stick

�z − q∗
x

�

�
(�z) + q∗

y

(
1 −

�2z

�

)]
e−�z cos (�x) sin (�y)

(22f)

�yz =

{
p∗
stick

�z + q∗
x

(
1 − �2z∕�

)
− q∗

y

(
��

�

)
z

}
e−�z sin (�x) cos (�y)

(23a)�x =
ΔE

(
−�2 + 2��

)

(1 + �)
(
8�2 − 12� + 5

)e−�z cos (�x) cos (�y)

(23b)�y =
ΔE

(
−�2 + 2��

)

(1 + �)
(
8�2 − 12� + 5

)e−�z cos (�x) cos (�y)

(23c)�z =
ΔE

(
�2z + 2z − 2��

)

(1 + �)
(
8�2 − 12� + 5

)e−�z cos (�x) cos (�y)

(23d)�xy =
ΔE��z

(
�2z + 2z − 2��

)

(1 + �)
(
8�2 − 12� + 5

) e−�z sin (�x) sin (�y)
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In addition to the sinusoidal stresses, there is an average 
uniform pressure given in the last term of Eq. (18). Due to 
this uniform pressure, p̄ = p∗

stick
, and by employing Hooke’s 

law, the stress on the half-space is derived by:

Note that the sign of the stresses in Eq. (15) follows the 
convention in contact mechanics, i.e., compressive stress 
is positive and tensile stress is negative. Carrying out the 
superposition, the stress field can be recombined from the 
Eqs. (14) and (15) with the following results:

(23e)�yz =
ΔE�(�z + 1 − 2�)

(1 + �)
(
8�2 − 12� + 5

)e−�z cos (�x) sin (�y)

(23f)�xz =
ΔE�(�z + 1 − 2�)

(1 + �)
(
8�2 − 12� + 5

)e−�z sin (�x) cos (�y)

(24a)�x = p∗
stick

(
�

1 − �

)

(24b)�y = p∗
stick

(
�

1 − �

)

(24c)�z = p∗
stick

(25a)
�
x
=

ΔE

(1 + �)
(
8�2 − 12� + 5

)
[(
−�2 + 2��

)
e
−�z cos (�x) cos (�y) + 2�

]

(25b)
�
y
=

ΔE

(1 + �)
(
8�2 − 12� + 5

)
[(
−�2 + 2��

)
e
−�z cos (�x) cos (�y) + 2�

]

(25c)
�
z
=

ΔE

(1 + �)
(
8�2 − 12� + 5

)
[(
�2z + 2� − 2��

)
e
−�z cos (�x) cos (�y) + 2 − 2�

]

(25d)�xy =
ΔE��z

(1 + �)
(
8�2 − 12� + 5

)e−�z sin (�x) sin (�y)

(25e)�yz =
ΔE�(�z + 1 − 2�)

(1 + �)
(
8�2 − 12� + 5

)e−�z cos (�x) sin (�y)

(25f)�xz =
ΔE�(�z + 1 − 2�)

(1 + �)
(
8�2 − 12� + 5

)e−�z sin (�x) cos (�y)

2.4 � The Maximum von Mises Stress

When considering the initiation of the plastic deformation, 
the von Mises (or distortion energy) criteria is considered to 
be a very effective method. It is given by:

by substituting �x, �y, �z, �xy, �yz, and �xz from Eq. (25) into 
the Eq. (26), the von Mises stress is founded. Since for the 
current case, wavelengths in the x and y direction are equal 
(� = � = 1∕� = f ), the equation becomes:

In order to find the location of the maximum von Mises 
stress in the xy plane, the maximum of Eq. (27) will occur 
at the inflection point or where the gradient is nil. Therefore, 
carrying out the second-order derivation, and letting ��

2
vm

�x�y
= 0,  

the location of the peak points, i.e. (0, 0), (0, �),(�, 0),(�, �), 
and (�∕2, �∕2). of �vm are determined. Substituting the 5 
points into Eq. (27) results in the same equation for each 
case:

The differential of Eq. (28) is then becoming

The maximum von Mises stress is obtained by solving for 
the location z whered�vm0∕dz = 0. Hence, we can find the 
value of z where the von Mises reaches the maximum value. 
It is:

Since � =
√
2� = 2

√
2�∕�, Eq. (30) yield to

(26)
�vm =

√
1

2

[(
�x − �y

)2
+
(
�y − �z

)2
+
(
�x − �z

)2
+ 6

(
�2
xy
+ �2

yz
+ �2

xz

)]

(27)

�vm =
ΔE�

(1 + �)
(
8�2 − 12� + 5

)
{[(

3

2
�z − 4� + 2

)

e
−�z cos (�x) cos (�y) − 4� + 2

]2

+
3

4
�2z2e−2�z sin2 (�x) sin2 (�y) +

3

2
(�z + 1 − 2�)2

e
−2�z

[
cos2 (�x) sin2 (�y) + sin

2 (�x) cos2 (�y)
]} 1

2

(28)

�vm0 =
ΔE�

(1 + �)
(
8�2 − 12� + 5

)
||||

[(
3

2
�z − 4� + 2

)
e−�z − 4� + 2

]||||

(29)

d�vm0

dz
=

ΔE�2

(1 + �)
(
8�2 − 12� + 5

)
||||
−
3

2
�z + 4� −

1

2

||||

(30)z0 =
8� − 1

3�

(31)z0 =
8� − 1

6
√
2�

�
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The location z0 is dependent only on the geometry parameter 
of wavelength, �, and the material parameter Poisson’s ratio, 
�. Most of the Poisson’s ratios of typical engineering materi-
als are in the range of 0 ≤ � ≤ 0.5. Considering this range, 
z0 < 0, when 0 ≤ 𝜈 <

1

8
 and z0 ≥ 0 when 1

8
≤ � ≤ 0.5. By 

definition, z0 should be always greater than or equal to zero, 
and therefore we need to discuss these two cases: When 
0 ≤ � ≤

1

8
, there is no solution for Eq. (29) in [0, +∞). Con-

sidering that Eq. (29) is a decreasing function, when z0 < 0, 
it should be to be set to z0 = 0. This physically means that 
the maximum stress is on the surface. When 1

8
≤ � ≤ 0.5, z0 

is in [0, +∞) and then found to be: z0 =
8�−1

6
√
2�
�. The values 

of z0 =
8�−1

6
√
2�
� and z0 = 0 are then substituted back into 

Eq. (28) to find the maximum value of the von Mises stress 
for the full stick condition:

Based on the work in [30], the maximum von Mises stress 
expression is derived for perfect slip condition:

The dimensionless maximum von Mises stress is plotted in 
Fig. 6. It is shown that the ratio willdecrease as the Poisson’s 
ratio increases for both in stick and slip. The maximum von 
Mises stress under the full stick condition is lower than or 
equal to the corresponding value in slip. From the previous 
discussion, the maximum von Mises stress can occur either 
on the surface, z0  =  0, or somewhere under the 

(32)

For 𝜈 <
1

8
,
�
𝜎vm

�
max =

8
√
2𝜋(1 − 2𝜈)

(1 + 𝜈)
�
8𝜈2 − 12𝜈 + 5

� Δ
𝜆
E

For 𝜈 ≥
1

8
,
�
𝜎vm

�
max =

3
√
2𝜋e(1−8𝜈)∕3 − 8

√
2𝜈 + 4

√
2

(1 + 𝜈)
�
8𝜈2 − 12𝜈 + 5

� Δ

𝜆
E

(33)
�
�vm

�
max =

√
2�E�Δf

�
3

2
e−2∕3(�+1) +

�
1 − 2�

1 − �

��

surface,z0 =
8�−1

6
√
2�
�, depending on the value of Poisson’s 

ratio. This is similar to that found in cylindrical contact by 
Green [33]. The transition is at � =

1

8
, while the transition 

found in [33] was at � = 0.1938, for the cylindrical 
contact.

2.5 � Critical Value of Amplitude

The value of �vm is valid in the elastic deformation range and 
is used to calculate the critical amplitude during complete 
contact denoted Δc, provided by Jackson et al. [30]. The defi-
nition of the critical amplitude is: when Δ ≤ Δc the sinusoi-
dal contact will deform purely elastically, for the entire range 
of loads, including when it has completely flattened out.

However, when Δ > Δc, plastic deformation may occur 
before complete contact is reached. By setting the von Mises 
stress �vm equal to the yield strength, Sy, and solving for Δ, 
the critical amplitude during complete contact Δc is given as:

The critical amplitude during complete contact for the per-
fect slip given in [30] is incorrect and the corrected equation 
is given in [34] as:

The dimensionless critical values of amplitude for the per-
fect slip and full stick conditions are plotted in Fig. 7. It 
is noted that the value of the critical amplitude under the 

(34)

For 𝜈 <
1

8
,Δc =

(1 + 𝜈)
�
8𝜈2 − 12𝜈 + 5

�

8
√
2𝜋(1 − 2𝜈)

Sy

E
𝜆

For 𝜈 ≥
1

8
,Δc =

(1 + 𝜈)
�
8𝜈2 − 12𝜈 + 5

�

3
√
2𝜋e(1−8𝜈)∕3 − 8

√
2𝜈 + 4

√
2

Sy

E
𝜆

(35)Δc =

√
2Sy�

�E�

�
3e−2(�+1)∕3 + 2

�
1−2�

1−�

��

Fig. 6   Dimensionless maximum von Mises stress as a function of 
Poisson’s ratio

Fig. 7   Dimensionless critical amplitude for prefect slip and full stick 
conditions
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full stick is greater than the one in the perfect slip condi-
tion. This is because the tangential stresses in the contact 
interface under the full stick condition are nonexistent in the 
perfect slip condition. The additional tangential stress results 
in higher stresses in the material below a non-slip (i.e., full 
stick) surface compared to the slip case.

3 � Conclusions

An analytical, closed-form solution was provided to make 
predictions of the average pressure required to obtain com-
plete contact between elastic wavy or sinusoidal surfaces 
in full stick. The value of the complete contact pressure in 
stick is lower than the value in slip. The ratio of the average 
complete contact pressure between perfect slip and full stick 
conditions are mostly affected by Poisson’s ratio.

This work also determines the location of the maximum 
von Mises stress in sinusoidal contact based upon the distor-
tion energy theory as well. Similar to the cylindrical con-
tact, the maximum von Mises stress occurs on the axis of 
symmetry, and it can occur either on the surface or under 
the surface, depending on Poisson’s ratio. For 0 ≤ 𝜈 <

1

8
, 

the maximum von Mises stress occurs on the surface; for 
1

8
≤ 𝜈 < 0.5, the maximum von Mises stress occurs beneath 

the surface.
A critical amplitude of the sinusoidal surface is also 

derived. When the amplitude of the sinusoidal surface is 
less than the critical value, the deformation is always in the 
elastic range up to the initiation of complete contact; when 
the amplitude is greater than the critical value, the deforma-
tion will be able to enter the elastic–plastic range prior to 
complete contact. The critical value of amplitude is much 
higher in stick than in slip.

The limitations of the presented model need to also be 
mentioned. In practice, no such pure sinusoidal surface pat-
tern may exist. However, due to the vibration of the tool, 
some machined surfaces show periodic patterns similar to 
the sinusoidal waviness [35]. There are also periodic biologi-
cal and naturally occurring structures that may benefit from 
the model. In general, wavy geometries may also be effective 
at modeling the asperities and roughness of surfaces [25, 
36]. In order to guarantee the assumption of small deforma-
tions (linear elasticity), the ratio of amplitude to wavelength 
is considered significant small (Δ ≪ 𝜆) in the current work. 
Otherwise, deformation will distort the initial pattern of the 
sinusoidal surface. In practice, plasticity will of course occur 
in the complete contact case, especially for hard metallic 
materials [29, 30, 37–39]. For soft materials such as poly-
mers and elastomers, this might not always occur. Regard-
less, plasticity is out of the scope of our current work.

Appendix 1: Displacements for Plane Contact (2D)

The periodic semi-infinite elastic body can be treated as a 
plane strain problem, and the stress field can be calculated 
by using the Airy stress function [40]. The general form is 
given as:

To calculate the strain and displacement in generalized plane 
stress, we employ Hooke’s law. The components of strain 
are given by:

From the strain–displacement relations

The two traction conditions at the surface z = 0 are each 
discussed separately.

Normal Stress Condition

The body is subject to the periodic normal stress and free 
of shear stress. The periodic normal stress imposed on the 
semi-infinite elastic body used in [32] is

Tripp et al. [32] provided the Airy Stress function

Substitute Eq. (38) and (40) into (36), So that

(36a)�x(x, z) =
�2�(x, z)

�z2

(36b)�z(x, z) =
�2�(x, z)

�x2

(36c)�xz(x, y) =
�2�(x, y)

�x�z

(37a)�x =
1

E

[(
1 − �2

)
�x − �(1 + �)�z

]

(37b)�z =
1

E

[(
1 − �2

)
�z − v(1 + �)�x

]

(38a)ux(x, z) =
x

∫
0

�x(x, z)dx

(38b)uz(x, z) =
z

∫
∞
�z(x, z)dx

(39)�z(x, 0) = p0 cos (�x)

(40)�(x, z) = −
(p0
�2

)
(1 + �z)e−�z cos (�x)

(41a)�x = p0
1 + v

E
(1 − 2� − �z)e−�z cos (�x)

(41b)�z = p0
1 + v

E
(1 − 2� + �z)e−�z cos (�x)
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The components of strain are from the previous equations, 
then substituting Eqs. (41a) and (41b) into Eqs. (38a) and 
Eqs. (38b), respectively, we can calculate the displacement 
tangent and normal to the boundary respectively from:

Next, at z = 0, the interfacial displacement components 
under the plane strain condition at the surface are given as:

Shear Stress Condition

In contrast, in the next case considered, the body is subject 
to the periodic shear stress and free of normal stress. Simi-
larly, Tripp et al. [32] provides the stress distribution for a 
stress applying at the interference

and the Airy stress function:

Substituting Eq. (38) and (45) into Eq. (36), the components 
of strain are obtained:

Substituting Eq. (46) into Eq. (37), the components of dis-
placement are obtained:

Letting z = 0, the interfacial displacement components under 
the plane strain condition are given as:

(42a)ux(x, z) = p0
(1 + �)

�E
(1 − 2� − �z)e−�z sin (�x)

(42b)uz(x, z) = p0
(1 + �)

�E
(�z − 2� + 2)e−�z cos (�x)

(43a)ux(x, z = 0) = p0
(1 + �)(1 − 2�)

�E
sin (�x)

(43b)uz(x, z = 0) = −p0
2
(
1 − �2

)

�E
cos (�x)

(44)�xz(x, 0) = q0 cos (�x)

(45)�(x, y) = −
(q0
�

)
ze−�z sin (�x)

(46a)�x = q0
1 + �

E
(2 − 2� − �z)e−�z sin (�x)

(46b)�z = q0
1 + �

E
(−2� + �z)e−�z sin (�x)

(47a)ux(x, z) = q0
(1 + �)

�E
(2 − 2� − �z)e−�z[1 − cos (�x)]

(47b)uz(x, z) = −q0
(1 + �)

�E
(�z − 2� + 1)e−�z sin (�x)

(48a)ux(x, z = 0) = q0
2
(
1 − �2

)

E�
[1 − cos (�x)]

The sign of the normal stress follows the convention com-
mon in contact mechanics, i.e., compressive stress is positive 
and tensile stress is negative.

Appendix 2: Displacements for Spatial Contact 
(3D)

Normal Stress Condition

The elastic displacements due to a bi-sinusoidal distribution 
of surface pressure p11 was used for instead of p0, because 
the amplitude of contact pressure might be different, the 
pressure is given as:

The normal elastic displacements of the surface for Eq. (49) 
were given by Johnson [24]:

Equation 49 can be extended to:

Since the amplitudes may be different, p12, p21 and p22 was 
used here.

Following the method in [32], the displacements caused 
by the pressure in Eqs. (51a) to (51c) are obtained:

(48b)
uz(x, z = 0) = −q0

(1 + �)(1 − 2�)

E�
sin (�x)

(49)p = �z(x, y, 0) = p11 cos (�x) cos (�y)

(50)uz(x, y) =

[
2p11

(
1 − �2

)

�E

]
cos (�x) cos (�y)

(51a)p = �z(x, y, 0) = p12 cos (�x) sin (�y)

(51b)p = �z(x, y, 0) = p21 sin (�x) cos (�y)

(51c)p = �z(x, y, 0) = p22 sin (�x) sin (�y)

(52a)

ux(x, y) = −

[
p12

(1 + �)(1 − 2�)

�E

]
cos (�) sin (�x) sin (�y)

(52b)

uy(x, y) =

[
p12

(1 + �)(1 − 2�)

�E

]
cos (�)

[
1 − cos (�x) sin (�y)

]

(52c)uz(x, y) =

[
2p12

(
1 − �2

)

�E

]
cos (�x) sin (�y)

(53a)

ux(x, y) =

[
p21

(1 + �)(1 − 2�)

�E

]
cos (�)

[
1 − cos (�x) sin (�y)

]

(53b)

uy(x, y) =

[
p21

(1 + �)(1 − 2�)

�E

]
sin (�) sin (�x) sin (�y)
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Shear Stress Condition

For the shear stress on the surface or the traction distribu-
tions in the x direction, the corresponding Airy potential 
function and displacement components were found by Tripp 
et al. [32]:

and

and

Substituting Eq. (56) into Eq. (57), the displacement com-
ponents are obtained:

Following Tripp’s formulation, Eq. (55) can be extended to:

(53c)uz(x, y) =

[
2p21

(
1 − �2

)

�E

]
sin (�x) cos (�y)

(54a)

ux(x, y) =

[
p22

(1 + �)(1 − 2�)

�E

]
cos (�) sin (�x) cos (�y)

(54b)

uy(x, y) = −

[
p22

(1 + �)(1 − 2�)

�E

]
sin (�) cos (�x) sin (�y)

(54c)uz(x, y) =

[
2p22

(
1 − �2

)

�E

]
sin (�x) sin (�y)

(55)�xz(x, y, 0) = �x11 cos (�x) cos (�y)

(56)�(x, y, z) = −

(
2��x

�3

)
e−�z cos (�x) cos (�y)

(57a)ux =
1

4�G

(
2�zz + 2v�xx − z�xxz

)

(57b)uy =
1

4�G

(
2��xy − z�xyz

)

(57c)uz =
1

4�G

[
(1 − 2�)�xz − z�xzz

]

(58a)

ux = −
1

2G

1

�

[
2 − 2�

(
�

�

)2

−

(
�

�

)
�z

]
e−�z�x11 cos (�x) cos (�y)

(58b)uy = −
1

2G

��

�3
[2� + �z]e−�z�x11 sin (�x) sin (�y)

(58c)uz =
1

2G

�

�2
[1 − 2� + �z]e−�z�x11 cos (�x) sin (�y)

(59a)�xz(x, y, 0) = �x12 cos (�x) sin (�y)

and the corresponding Airy stress function:

The displacement components for the 3 cases given by the 
distributions in Eq. (59) are derived:

Likewise, the displacement components are given by the 
traction of surface stress distributions �y11 cos (�x) cos (�y),  
�y12 cos (�x) cos (�y), �y21 cos (�x) cos (�y), and �

y22 cos (�x)

cos (�y) are derived as:

(59b)�xz(x, y, 0) = �x21 sin (�x) cos (�y)

(59c)�xz(x, y, 0) = �x22 sin (�x) sin (�y)

(60a)�(x, y, z) = −

(
2��x

�3

)
e−�z cos (�x) sin (�y)

(60b)�(x, y, z) = −

(
2��x

�3

)
e−�z sin (�x) cos (�y)
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