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1  Introduction

Efforts to develop mechanical devices at micrometer 
length scales have required designs that either avoid con-
tact between moving parts or employ novel techniques to 
manage constraints imposed by the basic tribological phe-
nomena of adhesion, friction, and wear [1–4]. These chal-
lenges highlight the need for an improved understanding of 
microtribology, the regime where interfaces contain just a 
few asperities in close contact [5, 6]. Scanning probe studies 
of nanoscale single-asperity contacts have brought a wealth 
of new insights into fundamental processes; however, the 
sliding speeds achieved are typically far slower than encoun-
tered in practical devices [4, 6–8]. Traditional pin-on-disk 
tribometers can investigate realistic multi-asperity contacts 
at device-relevant speeds from 100 mm/s to 1 m/s, but these 
instruments are intended for macroscopic interfaces contain-
ing perhaps millions of asperities. There remains a need for 
new experimental approaches that bridge the gaps between 
nanoscopic and macroscopic methods to develop a multi-
scale understanding of interfaces and open new avenues for 
engineering applications such as microelectromechanical 
systems, hard disk drives, and precision medical devices [5, 
6]. In this paper, we report on a microtribometer formed by 
integrating two instruments, a nanoindentation probe and 
a quartz crystal microbalance (QCM). We show that our 
technique is capable of studying the frictional properties 
of microscopic contacts at high sliding speeds over a wide 
range of applied loads.

Abstract  We have developed a technique for measuring 
frictional forces and contact areas, over a wide range of 
applied loads, at microscopic contacts reaching high slid-
ing speeds near 1 m/s. Our approach is based on integrat-
ing two stand-alone methods: nanoindentation and quartz 
crystal microbalance (QCM). Energy dissipation and lateral 
contact stiffness are monitored by a transverse shear quartz 
resonator, while a spherical indenter probe is loaded onto 
its surface. Variations in these two quantities as functions 
of shear amplitude, with the normal load held fixed, reveal 
a transition from partial to full slip at a critical amplitude. 
Average values of both the threshold force for full slip and 
the kinetic friction during sliding are determined from these 
trends, and the contact area is inferred from the lateral stiff-
ness at low shear amplitudes. Measurements are performed 
at loads ranging from 5 µN to 8 mN using an electrostati-
cally actuated indenter probe. For the materials chosen 
in this study, we find that the full slip threshold force is 
about a factor of two larger than kinetic friction. The forces 
increase sublinearly with load in close correspondence with 
the contact area, and the shear strengths are found to be 
relatively insensitive to pressure. The threshold shear ampli-
tude scales in proportion to the contact radius. These results 
demonstrate that the probe–QCM technique is a versatile and 
full-featured platform for microtribology in the speed range 
relevant to practical applications.
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The precisely defined resonances of thin quartz disks led 
to their earliest applications as stable time bases in electronic 
circuits and thickness monitors in film deposition systems 
[9, 10]. Today, the quartz crystal microbalance is used as 
a sensitive probe of surface interactions in a wide variety 
of scientific contexts [11, 12]. The use of QCM for fun-
damental studies of friction was initiated in the late 1980s 
by Krim et al. [13–15], in a series of experiments on the 
sliding of noble gas monolayers adsorbed onto metallic sur-
faces at cryogenic temperatures. Around this time, Dybwad 
[16] studied the elastic and inertial effects of attaching small 
spheres to the QCM surface. These experiments inspired a 
variety of studies employing sharp tips or spheres in con-
tact with QCMs to measure local elastic and dissipative 
properties, the mechanics of small contacts, and friction-
induced melting [17–26]. The ‘probe–QCM’ technique was 
further developed in experiments where the state of relative 
motion at the interface could be unambiguously determined, 
whether stuck, partially slipping, or in full slip at high slid-
ing speeds [27–29]. The most recent studies have carefully 
explored the transitions between these states of motion as the 
QCM shear amplitude is increased, leading to measurements 
of the associated lateral stiffnesses, elastic and dissipative 
forces, contact areas, and shear strengths [30–35]. This has 
included observations at the nanoscale using atomic force 
microscope tips [34, 35].

These results highlight the avenues for conducting quan-
titative micro/nanotribology with the probe–QCM approach. 
However, the prior experiments with contacts in full slip 
conditions were carried out at a single applied load or nar-
row range of loads. Here we perform measurements over 
an extended load range in order to provide a more complete 
analysis of tribological phenomena, closer to that routinely 
achieved in more established probe-based methods. This 
includes investigating the variation in frictional forces and 
contact areas with load and evaluating the extent to which 
the observed shear strengths depend on externally applied 
pressure. In addition, we find that the threshold force to ini-
tiate full slip is significantly larger than the average kinetic 
friction. Meanwhile, the shear amplitude required for sliding 
increases with the radius of contact. We address the implica-
tion of our results for theories of microslip.

2 � Methods

2.1 � Operating Principles and Overview of Equipment

The principles of operation of our probe–QCM tribometer 
are as follows. A force probe loads a spherical tip onto 
the surface of a quartz crystal microbalance (QCM), as 
depicted in Fig. 1a. The QCM surface oscillates laterally 
at frequencies in the MHz range. The amplitude of the 

lateral motion depends on the drive level, but can com-
monly reach values near 50 nm. This results in maximum 
surface speeds over 1 m/s. It is important to emphasize that 
the resonating quartz crystal not only provides the shear-
ing motion responsible for interfacial slip, but also senses 
the lateral forces acting at the interface.

The probe tips may be chosen from any material and 
generally range in diameter from micrometers to millim-
eters. The QCM is an AT-cut quartz crystal in the shape 
of a thin circular disk about 1 cm in diameter with metal-
lic electrodes on its top and bottom surfaces. These sen-
sors are commercially available with a wide variety of 
electrode materials and coatings. The electrode surfaces 
may be modified as desired by depositing overlayers and 
lubricant films, or by attaching atomically flat surfaces 
such as mica or graphite that can be freshly cleaved before 
testing [34–37].

The QCM is driven electrically at frequencies corre-
sponding to resonances of the crystal. AT-cut quartz crys-
tals resonate in transverse thickness shear mode, causing 
laterally directed sinusoidal motion at the surfaces. In the 
present study, we employed only the 5-MHz fundamental 
mode. A network analyzer (Agilent/Keysight, E5100A with 
options 618, 41900A, and 1D5) is used to evaluate the res-
onance properties [21]. The analyzer performs frequency 
sweeps, while measuring the electrical impedance of the 
system. The impedance reaches a minimum value at the 
resonance condition corresponding to peak motion of the 
crystal, as shown in Fig. 1b. Each resonance curve is fit 
to the Butterworth–van Dyke equivalent circuit model to 
determine the series resonant frequency fres, inductance L, 
and resistance R of the crystal [21, 32]. The quality factor is 
Q = 2�fres∕(R∕L), where (R∕L) is the full bandwidth of the 
resonance. The values of Q during the present experiments 
remained above 60,000.

The force probe employed is an electrostatically actuated 
nanoindenter capable of applying a range of loads from about 
1 μN to 10 mN (Hysitron, TriboScope® one-dimensional 
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Fig. 1   a A diagram of the integrated probe–quartz crystal micro-
balance (QCM) tribometer. The crystal used in the present study 
had a nominal fundamental frequency of 5 MHz. b Contact between 
the tip and surface alters the quartz crystal’s resonance curve. These 
observations allow the elastic and dissipative forces acting at the 
interface to be quantified
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transducer). The QCM is mounted in its holder onto an XYZ 
piezo scanner base (Veeco/Bruker, NanoScope II®).

2.2 � Physical Quantities Measured by the QCM

When the spherical tip is loaded onto the QCM surface, the 
resulting lateral forces acting at the interface alter the reso-
nance properties of the crystal. A typical example is shown 
in Fig. 1b. The frequency and bandwidth of the resonance 
both increase due to tip-surface contact. The upward shifts in 
these resonance parameters are quantified by Δfres and ΔQ−1. 
These values determine two distinct physical properties of 
the interface: the effective lateral stiffness,

and the additional energy dissipated per cycle due to tip-
surface contact,

where M = 5.0mg and K = M(2�fres)
2 are the effective mass 

and stiffness of the quartz disk, respectively [29, 32], and U0 
is the peak lateral oscillation amplitude near the center of 
the disk. The effective mass is computed from the density 
of quartz, the thickness of the disk, and the active area of 
the electrode: M = 1∕2�Aeh, where the factor of 1∕2 accounts 
for the variation in shear amplitude throughout the thick-
ness of the disk. It is important to note that the interaction 
forces between the tip and surface are closely confined to 
the interface due to the ‘near-field’ acoustic geometry of 
the setup: The wavelength of 5-MHz shear waves in quartz 
is over 600 µm, much larger than the contact radii obtained, 
near 1 µm [21]. Also, the duration of each resonance meas-
urement is several seconds, whereas the crystal undergoes 
millions of oscillations each second. Therefore, the meas-
ured parameters k and ΔWloss represent values averaged over 
millions of cycles.

The lateral contact stiffness k is converted to the ampli-
tude of the effective elastic force using the relation:

In Sect. 3 below, we show that plots of Fs and ΔWloss 
versus amplitude U0 facilitate an understanding of relative 
motion at the interface. From this analysis, two characteristic 
forces are determined: the threshold force to enter the full 
slip state, denoted by F∗

s
, and the kinetic friction Fk. In addi-

tion, the low-amplitude limit of k provides an assessment 
of the contact size. It is clear that the interactions observed 
in the present work are nonlinear because the stiffness k 
depends on oscillation amplitude. In Sect. 3.3, we discuss 
the instantaneous forces acting at the interface and justify 
the use of the linear viscoelastic relations above with refer-
ence to a recent perturbation theory analysis by Hanke et al. 
[32].

(1)k = 4�(MK)1∕2Δfres

(2)ΔWloss = �K U2
0
ΔQ−1

(3)Fs = k U0

We note that Eq. (1) is derived from a first-order expan-
sion of the resonant frequency of a lightly damped har-
monic oscillator:

and Eq. (2) is a rearrangement of the relationship:

where the mechanical energy stored in the oscillator is given 
by E =

1

2
K U2

0
.The oscillation amplitude is computed from 

the empirical formula:

where Q is measured as described above, and Vp is the peak 
amplitude of the sinusoidal drive voltage across the crys-
tal’s electrodes at resonance, measured with a digital oscillo-
scope (Tektronix, TDS 2002B) [38]. There is a measurement 
uncertainty of 7% in the prefactor of 1.4 pm/V, which is a 
source of systematic error in the amplitude U0. Meanwhile, 
the random error in U0 is dominated by fluctuations of about 
5% in the voltage Vp. The range of amplitudes accessed in 
the present study spanned from 1 to 70 nm, using a 5-MHz 
crystal. Therefore, the maximum surface speeds at the mid-
point of the crystal’s reciprocating motion ranged from 0.03 
to 2.2 m/s, as inferred from the relation v = U0 ⋅ 2�fres. Equa-
tion (6) was determined in a previous experiment using scan-
ning tunneling microscope images of a QCM vibrating in its 
5-MHz fundamental resonance mode [38]. Alternatively, the 
amplitude can be related to the nominal output voltage of 
the network analyzer, the piezoelectric stress coefficient of 
quartz, and geometric properties of the selected quartz disk 
[32, 39]. This approach has been found to be in good agree-
ment with the empirical formula used here [39].

2.3 � Testing Protocol

Each trial consists of amplitude-dependent measurements 
of Δfres and ΔQ−1. We observe that driving the QCM at 
high shear amplitudes with the tip engaged helps to run in 
the interface and establish reproducible signals, as others 
have reported [29]. The shifts Δfres and ΔQ−1 are com-
puted over the available amplitude range by comparing 
the values measured with and without the tip engaged. In 
the present study, two of the 100-μN trials and the 5-μN 
trials were conducted with the selected QCM amplitudes 
accessed in random order. The results were comparable to 
those obtained using linear amplitude ramps.

(4)fres ≃
1

2�

√

K + k

M

(5)ΔQ−1 = Δ

(

Wloss

2�E

)

(6)U0 = (1.4 pm∕V) ⋅ Q ⋅ Vp
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2.4 � Materials

The following materials were selected for the present 
study in order to demonstrate the technique. The sub-
strate was an AT-cut quartz crystal with a nominal reso-
nant frequency of 5 MHz, optically polished surfaces, and 
100-nm-thick gold electrodes with rms roughness values 
near 10 nm (ICM, Inc). A monolayer of octadecanethiol 
(C18) was chemisorbed from ethanol solution onto the 
electrode surfaces. The probe tip was a 50-µm-diameter 
sphere of polycrystalline α-Al2O3 with a typical grain size 
of 5 µm (microspheresnanospheres.com). The effects on 
our results of the grain size, roughness, or other properties 
of these microspheres as fabricated are unknown, although 
plastic deformation of the softer gold substrate and interfa-
cial wear are expected. The probe and quartz crystal were 
cleaned by rinsing in ethanol and DI water and drying in a 
nitrogen flow. The measurements were performed in ambi-
ent conditions with RH ~ 40%.

The microsphere probe was assembled using a tech-
nique developed in house, similar to the approach 
described in Mak et al. [40]. Starting with a standard tip 
holder from Hysitron, Inc., the hole down the center of 
the shaft was filled with a two-component epoxy (Loc-
tite, Hysol® 1C) and capped with a sapphire ball whose 
diameter was 0.5  mm (0.0197”, smallparts.com). The 
microsphere was glued to the apex of this ball using a 
small drop of the same epoxy. Both the epoxy drop and the 
sphere were handled using pulled glass pipettes attached 
to a micromanipulator under a long working distance bin-
ocular microscope. A photograph of the assembled probe 
is shown in Fig. 2.

3 � Results and Discussion

3.1 � Lateral Contact Stiffness: A Transition 
from Partial to Full Slip

The behavior of the lateral contact stiffness with increasing 
QCM amplitude is shown in Fig. 3a for a representative data 
set acquired at an applied load of 1 mN. We observe a trend 
of weakening stiffness as the shear amplitude grows. This 
type of nonlinear elastic response signals the occurrence of 
interfacial microslip and has been reported in a number of 
probe–QCM studies [27–35]. Microslip is expected on gen-
eral grounds for sphere-plane contacts within the theories of 
Cattaneo and Mindlin (CM) [41–43] and Savkoor [43, 44]. 
These theories conclude that the interface obtains its high-
est stiffness as the shear amplitude approaches zero because 
the entire contact region remains stuck during the cyclical 
motion. Increasing the amplitude causes an annulus of slip to 
initiate on the outer periphery of the contact, and this partial 
slip lowers the effective stiffness of the contact. The size of 
the slip zone continually increases with oscillation amplitude 
because the inner boundary of the slip annulus moves further 
inward. At a critical amplitude, the stuck central portion of 
the contact is eliminated, marking the transition from partial 
to full slip.

3.2 � Elastic Forces and the Threshold of ‘Static’ 
Friction

Direct evidence of the transition to full slip is shown in 
Fig. 3b. Here we compute the amplitude of the oscillatory 
elastic force using Fs = k U0. We find that Fs increases in 
a sublinear fashion with U0 and reaches a plateau F∗

s
 at a 

critical amplitude U∗
0
. For this trial with a load of 1 mN, the 

plateau value is F∗
s
 = 2.04 ± 0.05 mN. When the amplitude is 

less than U∗
0
, we find good agreement with the CM microslip 

relation for the size of the tangential force at the endpoints of 
the oscillation: Fs = F∗

s
(1 − (1 − U0∕U

∗
0
)3∕2) [41, 42]. The 

Savkoor theory derives a nearly identical curve with a more 
complicated mathematical form [33, 44, 45]. The plateau 
in our observed elastic force provides empirical evidence 
that the contact enters a full slip state. This interpretation 
is supported by the CM and Savkoor models, for which the 
onset of full slip corresponds to a maximum in the tangential 
restoring force. We identify F∗

s
 with the threshold force of 

static friction, since it is in phase with the displacement, 
although recognizing this occurs at MHz frequencies.

3.3 � Kinetic Friction in Full Slip

We now determine the kinetic friction during full slip 
using measurements of the dissipated energy and its 
dependence on the amplitude of motion. Figure 3c displays 

Fig. 2   Photograph of the microsphere probe and its reflection in the 
optically flat gold electrode on the top surface of the QCM. Visible 
are the tapered end of the probe shaft, the sapphire ball capping the 
hole down the center of the shaft, and the aluminum oxide micro-
sphere attached with epoxy. The diameter of the microsphere is 
50 µm. The electrode has a monolayer of octadecanethiol deposited 
onto its surface
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the trend in ΔQ−1 versus amplitude U0. Figure 3d displays 
the resulting variation in the interfacial energy loss per 
cycle, as computed from Eq. 2 using the observed val-
ues of ΔQ−1. We find that ΔWloss increases linearly with 
amplitude in the full slip range, U0 > U∗

0
. The simplest 

interpretation is that this trend represents the work done 
each cycle by a constant average frictional force Fk acting 
over increasingly large distances as the amplitude of the 
cyclic motion is increased.

To illustrate this idea, two instantaneous force–distance 
loops for a reciprocating interface are shown in Fig. 4. 
Both loops feature constant forces during full slip and 
curved portions associated with partial slip. The area 
enclosed by each loop is the work done by friction, equat-
ing to the energy dissipated per cycle. In both cases, the 
energy loss grows linearly as the displacement amplitude 
increases as long as the full slip forces remain constant. 
Note that the values on the horizontal axis are in units of 
U∗

0
, the amplitude at which full slip begins to occur. These 

force loops are speculative. It is not possible to reconstruct 
the complete details of the instantaneous loops using only 
the two values measured for a given amplitude of motion 
via the QCM frequency and quality factor shifts. However, 
one can propose any loop shape and compute the expected 
resonance shifts using perturbation theory, a topic that 

has been thoroughly developed by Hanke et al. [32]. Two 
significant findings of this analysis are as follows: Firstly, 
the effective elastic force obtained from Eqs. (1) and (3) 
represents a weighted average over the entire loop that is 

(a)

(c) (d)

(b)

Fig. 3   Lateral stiffness (a) and elastic force (b) versus shear ampli-
tude. The initial weakening of the stiffness with amplitude signals 
partial slip within the contact zone. The elastic force rises to a plateau 
value that indicates the threshold required to initiate full slip. Vertical 
gray lines mark the critical amplitude separating the partial and full 
slip regimes. In (b), the Cattaneo–Mindlin model is plotted as a solid 

curve in the partial slip regime. Dissipation factor (c) and normalized 
energy loss per cycle (d) versus shear amplitude. The linear increase 
in energy dissipated in the full slip regime, indicated by the solid line 
in (d), provides a direct measurement of the average kinetic friction. 
In (c), the function corresponding to the linear trend in (d) is shown 
as a solid curve

Fig. 4   Instantaneous force–distance hysteresis loops. Each loop rep-
resents a way to realize linear growth in energy loss (enclosed area) 
with increasing oscillation amplitude. The horizontal flats represent 
the constant value of kinetic friction in full slip for each loop. The 
curved sloped portions reflect the lateral force during partial slip and 
are derived from the Cattaneo–Mindlin model. The contact becomes 
stuck at the endpoints of the motion, where the velocity reaches zero, 
then undergoes a transition from partial to full slip. In loop I, the 
maximum elastic force at the endpoints is equal to the full slip kinetic 
friction. In loop II, kinetic friction is smaller by a factor of two, a dif-
ference that corresponds to our experimental results
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most influenced by the instantaneous forces near the end-
points of the motion; secondly, the frictional energy loss 
represented by the enclosed area relates to the change in 
quality factor in exactly the same way as for a viscously 
damped harmonic oscillator. The latter finding justifies 
the use of Eq. (2) with the understanding that ΔWloss is 
rigorously equal to the energy loss per cycle regardless of 
the specific force law.

Aided by this discussion of force loops, we now com-
plete our analysis of the linear trend in ΔWloss versus U0 
shown in Fig. 3d. The distance traveled in the full slip 
state during each complete cycle is given by 4(U0 − U∗

0
). 

We account for the total cyclic energy loss with the equa-
tion ΔWloss = Fk ⋅ 4(U0 − U∗

0
) + ΔW∗

loss
, where ΔW∗

loss
 is 

the energy loss (enclosed area) observed at the thresh-
old amplitude U0 = U∗

0
. A linear fit to this equation for 

U0 > U∗
0
 yields the value of Fk. We find a kinetic friction 

of Fk = 1.01 ± 0.02 mN for the data in Fig. 3d.
In Fig. 3c, we display the corresponding fit curve for 

ΔQ−1 versus U0, obtained from Eq. (2) by substituting our 
linear model for the energy loss:

It is interesting that for the data set in Fig. 3c, the curve 
describing ΔQ−1 reaches its peak at an amplitude larger 
than U0 = U∗

0
. In general, the peak in ΔQ−1 can occur at an 

amplitude less than, equal to, or greater than U∗
0
 depend-

ing on the values of ΔW∗
loss

, Fk and U∗
0
. A more reliable 

indication of the threshold for full slip is given by the 
amplitude at which the elastic force reaches a maximum, 
as in Fig. 3b, or where the energy loss grows linearly, as 
in Fig. 3d.

To summarize our results for the 1-mN trial, the 
observed kinetic friction of Fk = 1.01 ± 0.02 mN is a 
factor of two smaller than the static friction limit of 
F∗
s
  =  2.04  ±  0.05 mN. Kinetic friction is generally 

expected to be smaller than static friction, and differences 
of this size are common for macroscopic systems. How-
ever, such an effect has not been previously reported from 
probe–QCM measurements. Linear increases in energy 
dissipation with amplitude were observed in three previ-
ous studies [30, 34, 35]. In one case, a comparison was 
made between the measured elastic and dissipative forces. 
The kinetic friction was judged to be roughly equal to the 
threshold for full slip [30]. The authors concluded that 
their results are consistent with loop I in Fig. 4, where 
Fk ∼ F∗

s
. In contrast, our results are consistent with a cycle 

such as loop II, where Fk ∼
1

2
F∗
s
. However, these loops are 

merely simple cases consistent with the respective experi-
mental findings. Other loop shapes are possible that are 

(7)ΔQ−1 =
ΔWloss

�K U2
0

=
1

�K

[

4Fk

U0

+

(

ΔW∗
loss

− 4Fk U
∗
0

)

U2
0

]

broadly similar to these but differing in details, and these 
may be more physically reasonable. For example, varia-
tions about the constant kinetic friction values shown may 
leave the predicted dissipation signals unchanged, as long 
as the total enclosed area of the loop is preserved. Also, 
the predicted elastic force Fs is relatively unaffected by 
the forces that occur during the middle of the motion away 
from the extreme endpoints [32].

Our analysis of the data in terms of elastic forces and 
energy dissipation has assumed that the relative motion at 
the interface is entirely tangential. While the observed trends 
with increasing shear amplitude fit this model well, we can-
not rule out the possibility of contributions from motions 
normal to the interface due to flexural modes of the quartz 
crystal. These modes are understood to contribute to the 
oscillation of thickness shear crystals, particularly at the 
fundamental frequency [46].

We now provide illustrative comparisons to results in 
the literature to complement the interpretation presented 
here. These studies demonstrate that contrasting physical 
behaviors at the interface produce correspondingly differ-
ent amplitude-dependent trends in the measured quantities. 
For example, in three recent probe–QCM studies linear vis-
coelastic responses were observed over the entire available 
range of shear amplitudes [29, 30, 32]. This occurred when 
polymer films at the interface were sufficiently thick [29, 
30], or when the spherical probes were relatively small [32]. 
Apparently the shear stresses in either case were not large 
enough to cause partial slip, and the dissipation reflected 
the internal damping of stuck contacts. In contrast to the lin-
ear growth in ΔWloss during full slip reported here, viscous 
damping produces quadratic increases with amplitude. This 
is due to the fact that the maximum QCM surface velocity 
increases with amplitude, through vmax = 2�fres ⋅ U0. Thus, 
the maximum drag force, attained at the midpoint of each 
cycle, is proportion to the amplitude, and the area enclosed 
by the force–distance loop increases with amplitude squared. 
Another example regards friction-induced melting. In one 
recent probe–QCM study, melting at the interface between 
a tip and indium surface was observed through the detection 
of negative, rather than positive, shifts in the QCM resonant 
frequency [25].

3.4 � Contact Area Measurements Using the Lateral 
Stiffness

The understanding of tribological systems can be greatly 
enhanced by separately assessing how the measured fric-
tional forces depend on applied load and contact area. To 
this end, we infer the contact area A directly from the low-
amplitude lateral stiffness using the approach developed 
in Leopoldes et al. [29, 47, 48]. An important advantage 
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of this approach is that it eliminates the need to use con-
tinuum theories (Hertz, JKR, DMT) to model the increase 
in area with load, as is commonly done when no meas-
urement is available [7]. The stiffness of a single fully 
stuck elastic contact is given by k0 = 8G∗a, where G∗ is 
the reduced shear modulus and a is the contact radius [42, 
43]. This relationship remains valid regardless of whether 
adhesive forces act at the interface [43, 47]. However, plas-
tic deformation of the gold surface by the tip is expected to 
produce a type of ball-in-socket geometry at the contact, 
possibly leading to somewhat elevated stiffness values. In 
using this expression, we make an informed estimate of 
G∗ using bulk shear moduli for aluminum oxide and gold: 
G∗ ∼ 14GPa. We then determine k0 for each trial using the 
stiffness measured at the lowest shear amplitude, as demon-
strated by the data point circled in Fig. 3a. The contact area is 
calculated from A = �a2 = �(k0∕8G

∗)2. For the 1-mN trial 
in Fig. 3a, the inferred contact radius is 1.1 µm, which 
is a reasonable value for the load and tip size used and 
corresponds to an area of 3.8 µm2. We present additional 
contact area measurements in Sect. 3.6, in the context of 
discussing the variation of friction and area with load.

3.5 � Scaling Properties Observed Upon Varying 
the Load

Figure 5 shows amplitude-dependent data acquired at a 
variety of applied loads spanning the range of our indenter 
probe. Two qualitative features of these data are readily 
apparent from the plots of stiffness and dissipation, Fig. 5a, 
c: The signals increase in magnitude as the load increases 
to form larger contacts, and the trends versus amplitude are 
similar in shape for the same quantity at different loads. In 
fact, we find the data sets collapse to common curves when 
scaled to form dimensionless variables using the character-
istic values F∗

s
, Fk, and U∗

0
 determined for each trial, as with 

the 1-mN data set discussed earlier. Again we favor trans-
forming the stiffness and dissipation values into quantities 
that can be more directly interpreted from the shape of the 
graph, using Eq. (3) and (2), respectively. Our results are 
shown in Figs. 5b, d. Figure 5b plots the normalized elastic 
force Fs∕F

∗
s
 versus normalized amplitude U0∕U

∗
0
 at all loads. 

The common curve shows the effective elastic force rising 
sublinearly in good agreement with the CM microslip model 
until the threshold of full slip, U0∕U

∗
0
= 1, at which point 

the force maintains a maximum value that is roughly con-
stant. Figure 5d displays the normalized plots of the energy 

(a)

(c) (d)

(b)

Fig. 5   Lateral stiffness (a), normalized elastic force (b), dissipa-
tion factor (c), and normalized energy loss per cycle (d) versus 
shear amplitude, for a range of applied normal loads. The data sets 
in (a) and (c) are seen to collapse to common curves in (b) and (d), 
respectively. This is achieved by normalizing the y-axis values using 
the characteristic forces and threshold amplitudes determined for 
each trial: In (b), the elastic force rises to a plateau that indicates the 
threshold required to initiate full slip. The Cattaneo–Mindlin model 
is plotted as a solid curve in the partial slip regime. In (d), linear 

increases in the energy dissipated over the full slip regime provide 
direct measurements of the average kinetic friction. The threshold 
amplitudes for each trial are marked with vertical black lines in (a) 
and (c), and the horizontal scale under (d) is in units of the thresh-
old amplitude. The horizontal error bars depict the statistical fluctua-
tions of about 5% in the measured amplitude. The variability among 
repeated trials in the observed stiffness and dissipation values is esti-
mated to be about 20%, using the three trials at 100 µN
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loss per cycle:ΔWloss∕(4FkU
∗
0
) versus U0∕U

∗
0
. The common 

behavior is linear growth in energy loss in the full slip state, 
which allows the kinetic friction to be evaluated. The thresh-
old amplitudes are indicated with vertical bars over the data 
sets in Fig. 5a, c, and it is clear that larger loads lead to larger 
values of U∗

0
. In fact, we find that F∗

s
, Fk, and U∗

0
 all increase 

with load. The specific trends observed and their implica-
tions for the shear strength (friction force/area), pressure 
(applied load/area), and other physical results are topics of 
the next sections.

As a final remark, we note that data sets for ΔQ−1 in 
Fig. 5c extrapolate to nonzero values at zero amplitude, 
suggesting constant offsets. By inspection, the offsets show 
an increasing trend with load. The CM and Savkoor theo-
ries of partial slip cannot account for such offsets since they 
both predict that ΔQ−1 extrapolates to zero at the origin 
[32]. One possibility is that the offsets represent viscous 
dissipation in the contact region unrelated to slip. A simi-
lar interpretation was offered by Johnson to account for the 
low-amplitude behavior of macroscopic interfaces subject 
to oscillatory shear, on p. 231 of Johnson [43], in a discus-
sion of experiments from the 1960s. If this damping persists 
at higher amplitudes it should produce quadratic growth in 
the energy loss, as commented earlier. The linear trends in 
Fig. 5d show little evidence of this, however. We propose 
that the observed friction at higher amplitudes is dominated 
by full interfacial slip.

3.6 � Load Dependence of Frictional Forces and Contact 
Area

Variations of the frictional forces F∗
s
 and Fk with applied 

load are shown in Fig. 6. Over the range of loads from 5 
µN to 8 mN, the static friction threshold F∗

s
 increases sub-

linearly, approximately as the square root of the applied 

load. Meanwhile, the kinetic friction during full slip, Fk, is 
observed to be smaller than F∗

s
 by a factor of about 1.5–2 in 

trials conducted at both 100 µN and 1 mN, the only loads at 
which values for Fk could be reliably determined.1

The sublinear increase in F∗
s
 with load differs from the 

classical law of Amontons and Coulomb stating that fric-
tion is directly proportional to load: F = �N. Many micro- 
and nanoscale experimental studies have observed sub-
linear friction–load curves [5–7]. The frictional forces in 
such cases are often found to be proportional the true area 
of intimate contact, either by modeling the interface with 
contact mechanics theories or by direct observation of the 
contact area. In this picture, a sublinear trend in friction with 
load simply reflects the corresponding increase in area with 
load. This is described by the relation F = �0A, where the 
constant �0 is the interfacial shear strength. The role of the 
external load is limited to its influence on the area A, while 
�0 is determined by adhesive forces internal to the contact. 
This response has been called adhesion-controlled, or area-
controlled, friction.

Our measurements of the contact area allow us to experi-
mentally determine whether our results are accounted for 
within the picture of area-controlled friction. As shown in 
Fig. 6, we find that the increase in area with load closely 
follows the increase in F∗

s
. This provides strong qualitative 

support for the area-controlled model. The next section pur-
sues this question in further detail.

We note that the observed variability in the measured 
forces and areas among repeated trials at a given load, with 
the same tip and substrate, is commonly around 20%. In the 
present study, this is seen in the three trials conducted at 100 
µN. We observe that the variation in force measurements is 
positively correlated with variation in the area, as would 
be expected for a system where frictional forces scale with 
area. Therefore, the shear strengths also seem to vary by 
about 20%. This variability among repeated trials dominates 
the experimental uncertainty in the results, since the statis-
tical noise in measuring the quartz resonance parameters 
and amplitude of oscillation is comparatively small. Force 
measurements are also subject to 7% systematic error in the 
amplitude of oscillation, as mentioned earlier, while both 
the forces and contact areas are subject to 10% systematic 
error in the active area of the quartz electrode, which deter-
mines the effective mass of the crystal. The ratio of static 
friction to kinetic friction, however, is not subject to these 
systematic uncertainties due to cancelation of factors when 
taking the ratio.

Fig. 6   Static and kinetic friction forces, and contact area, versus 
applied load. The inset shows the load region from 0 to 1 mN. Static 
friction scales with contact area over the entire range. Both quanti-
ties exhibit sublinear increases with load consistent with a square root 
dependence, indicated by dashed curves

1  Kinetic friction could not be measured for the 5 µN trial, due to 
excessive scatter, or for the 8 mN trial, due to the large threshold 
amplitude to reach full slip.
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3.7 � Shear Strength Measurements at Increasing 
Pressures

The sublinear trend in our area–load curve implies that the 
mean applied pressure increases with load. This is signifi-
cant because it allows for a determination of whether the 
shear strength is strictly constant, as with F = �0A, or shows 
evidence of increasing with pressure. The more general 
expectation is that the shear strength is a linear function of 
pressure: � = �0 + �p, where � is the pressure coefficient 
[49, 50]. It is possible for either term in the linear expres-
sion for � to dominate the behavior of the tribological system 
of interest. Numerous experimental and theoretical studies 
have shown that the relationship between shear strength and 
pressure can illuminate aspects of friction that remain insuf-
ficiently understood, such as the roles of adhesion, atomic 
roughness, larger-scale structure, and interfacial chemistry 
[48–54].

The shear strengths and pressures measured at each load 
are displayed in Table 1 along with the corresponding con-
tact radius a and threshold amplitude U∗

0
.2 To arrive at these 

values, the frictional forces, F∗
s
 and Fk, and areas A displayed 

in Fig. 6 were used to compute �s and �k (where � = F∕A). 
The pressure was found by dividing the load by the area. 
The values of �s and �k lie in the range of several hundred 
MPa, which is comparable to values reported from scanning 
probe experiments with a variety of rigid materials in ambi-
ent conditions [47, 48, 53–55]. We emphasize that the value 
for G* used to infer the contact areas is merely an informed 
estimate, so quantitative comparisons involving the resulting 
shear strengths are difficult to pursue rigorously.

Importantly, we find that both �s and �k remain relatively 
constant despite significant increases in pressure. The two 
values for �k are nearly identical, while the pressure more 
than doubles between them. The values for �s are seen to 

rise by about 30% overall, but here the change in pressure is 
far larger, spanning about a sevenfold increase. This modest 
rise in �s implies that we cannot rule out a pressure coeffi-
cient � of 0.2 ± 0.2, well within the expected range [48–56]. 
However, the uncertainty in � is as large as the value itself. 
This uncertainty stems from the experimental variability in 
�s, estimated to be 20% judging from the three runs con-
ducted at 100 µN. Therefore, it is inconclusive whether �s 
increases with pressure. It is clear, however, that within the 
linear model of � = �0 + �p, the adhesion-related term �0 
dominates the behavior of our interfaces, while the term 
proportional to applied pressure, �p, plays far less of a role.

3.8 � Implications for Theories of Microslip

We may use our investigation of the shear strength to evalu-
ate the applicability of contrasting theories of microslip to 
our system. The Savkoor theory assumes a constant shear 
strength �0, whereas the CM theory assumes a shear strength 
strictly proportional to pressure, � = �p [33, 41–44]. It is 
interesting to note that the latter assumption corresponds 
to Amontons–Coulomb friction, with friction proportional 
to load, since F = �A = �pA = �N regardless of the vari-
ation in A with N. Since our measured shear strengths are 
relatively insensitive to pressure (and the relations between 
friction and load are sublinear), our results are consistent 
with the assumptions adopted in the Savkoor theory. Along 
these lines, the study by Vlachova et al. [33] demonstrates 
that with sufficiently high resolution at smaller shear ampli-
tudes,U0 < U∗

0
, the probe–QCM technique can distinguish 

further between these two theories using their contrasting 
predictions for the amplitude dependence of k and ΔWloss. 
In future experiments, it should be possible to test both the 
assumptions and specific predictions of microslip theories 
within a single study.

3.9 � Relationship Between the Threshold Amplitude 
and Contact Radius

We find that the threshold amplitude U∗
0
 increases approxi-

mately in proportion to the contact radius a, as shown in the 
two rightmost columns in Table 1. (Recall that we have used a 
single spherical probe and varied the load to increase the con-
tact size.) A simple dimensional argument can account for this 
relationship in terms of a static friction proportional to area 
(constant �0) and a lateral stiffness proportional to a: At the 
threshold of full slip, the tangential elastic force is balanced with 
the limiting force of static friction, kU∗

0
∼ �0A. Substituting in 

terms of contact radius, this becomes (G∗a)U∗
0
∼ �0

(

�a2
)

. 
Therefore, U∗

0
∼ �0

(

�a2
)/

(G∗a) ∼ a. This self-consistent 
analysis provides additional justification for our use of the 
single-asperity relation k0 = 8G∗a. In a previous experiment, 
Borovsky, Krim, Syed Asif, and Wahl demonstrated that 

Table 1   Experimental values of the applied load, pressure, static and 
kinetic shear strength, contact radius, and threshold amplitude

The results at a load of 0.1 mN represent averages over three separate 
trials, and the values in parentheses indicate the range of uncertainty 
among these trials

Load (mN) p (MPa) �s (MPa) �k (MPa) a (µm) U∗ (nm)

0.1 120 (30) 470 (80) 280 (70) 0.53 (0.06) 10 (1)
1.0 270 550 270 1.1 23
8.0 860 620 1.7 43

2  At the lowest load of 0.005 mN, the shear strength for static friction 
was exceptionally large at 9.3 GPa. A similar low-load anomaly was 
observed in Ref. [47]. The effect stems from a sharp drop in lateral 
stiffness and inferred contact area, most likely due to the compliance 
of the molecular layer between the tip and sample, which may include 
loosely bound water or contaminants.
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for a rough multi-asperity interface, the lateral stiffness of a 
sphere-QCM junction can be proportional to a2 through the 
relation k0 ∼ G∗a2∕�, where � is the (constant) average radius 
of contacting regions [23]. We can anticipate that for systems 
exhibiting both a multi-asperity interface and a constant shear 
strength, the observed thresholds U∗

0
 should be independent of 

a (and applied load), since U∗
0
∼ �0

(

�a2
)/(

G∗a2∕�
)

∼ con-
stant. This idea merits further investigation with probe–QCM 
measurements.

4 � Conclusion

In summary, the combined probe–QCM technique allows for 
a direct measurement of forces involved in initiating and sus-
taining full slip motion at high-speed microscopic contacts. 
We have determined the frictional forces as functions of load 
and resolved a difference between static and kinetic fric-
tion. By quantifying the contact area via the lateral stiffness 
and employing a wide range of loads, we have assessed the 
change in mean applied pressure and investigated the extent 
to which the observed shear strengths depend on pressure. 
Finally, we have observed that the threshold amplitude to 
reach full slip increases about in proportion to the contact 
radius as the load is increased. The main advantages of the 
probe–QCM technique as a platform for microtribology are 
its sensitivity to small contacts, its high sliding speeds rel-
evant to practical devices, and the simplicity of using the 
detected signals to measure both frictional forces and contact 
areas.
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