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On the Linearity of Contact Area and Reduced Pressure

Martin H. Müser1
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Abstract Computer simulations, Persson theory, and

dimensional analysis find that the relative contact area

between nominally flat surfaces grows linearly with the

reduced pressure p� at small loads, where p� is the ratio of

the macroscopic pressure p to the contact modulus times

the root-mean-square height gradient �g. Here, we show that

it also holds for Hertzian and other harmonic, axisym-

metric indenters—as long as �g is determined over the true

contact area and p is defined as the load divided by an

arbitrary but fixed reference area. For a Hertzian indenter,

the value for the proportionality coefficient j turns out to

be j ¼ 3p=
ffiffiffiffiffi

32
p

. The analysis explains why mathemati-

cally rigorous treatments of Greenwood–Williamson type

models identify a sublinear dependence of contact area on

load.
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1 Introduction

The recent past has seen much work on the linear elasticity

of solids with nominally flat surfaces. It is now well

established [1–7] that the equation

arel ¼ jp� ð1Þ

describes the dependence of the relative contact area on the

reduced pressure p� quite well, where p� � p=E��g is

assumed to be small compared to unity. In this definition,

E� is the contact modulus, and �g the root-mean-square

gradient of the air gap between the two solids before they

touch. If the height topographies are randomly rough (to be

precise, if the Fourier components of the height topography

satisfy the random-phase approximation), the value of j
turns out to be slightly greater than two with a rather weak

dependence on the Hurst roughness exponent [2, 3, 7].

Since Eq. (1) was also obtained from dimensional

analysis [7], the question arises why it does not appear to

hold for those cases, where analytical relations are known

such as Hertzian or other axisymmetric indenters. In this

Letter, it is shown that this perception is erroneous and that

Eq. (1) also applies to certain single-asperity contacts.

2 Theory

We start our calculation by assuming that

arel ¼ jp=�gE� ð2Þ

is satisfied for an axisymmetric indenter with a harmonic

height profile

hðqÞ ¼ R

n

q
R

� �n
ð3Þ

for n[ 0. Here q gives the distance from the symmetry

axis, and R is a variable of unit length. For a Hertzian

indenter (n ¼ 2), R is the radius of curvature. Assuming an

arbitrary but fixed apparent contact area over which the

pressure is averaged, Eq. (2) can be rewritten as

pa2c ¼
jL
�gE� : ð4Þ

The root-mean-square gradient of the undeformed gap

profile, averaged over the true contact, is
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�g ¼ 1
ffiffiffi

n
p ac

R

� �n�1

: ð5Þ

Replacing �g in Eq. (4) leads to the equality

L ¼ pE�

j
ffiffiffi

n
p a2c

ac

R

� �n�1

; ð6Þ

which reduces to the well known L / a3c relation for a

Hertzian contact.

From Sneddon’s analytical solution for axisymmetric

indenters, see Eqs. (4.3) and (7.3) in Ref. [8], one obtains

L ¼ cnE
�a2c

ac

R

� �n�1
ð7Þ

with

cn ¼
ffiffiffi

p
p

C n
2
þ 1

� �

C n
2
þ 3

2

� � ; ð8Þ

where Cð�Þ represents the gamma function. Thus, for

Eq. (6) to be correct, we need to set

j ¼ p
cn

ffiffiffi

n
p : ð9Þ

Evaluating j at n ¼ 2 yields

jH ¼ 3p
ffiffiffiffiffi

32
p ð10Þ

for a Hertzian indenter.

3 Discussion and Conclusions

In this letter, it is demonstrated that Eq. (2) does not only

apply to randomly rough surfaces but also to axisymmetric

punches whose height profile is a harmonic function of

degree n in the distance from the symmetry axis. Equa-

tion (2) must therefore also hold for a collection of

indenters if the patch-area distribution function does not

change with load. The numerical value for an individual

Hertzian indenter, jH � 1:67, is markedly different from

that obtained in the famous paper by Bush et al. [9],

jBGT ¼
ffiffiffiffiffiffi

2p
p

� 2:52, but close to Persson’s original esti-

mate [1] of j, namely jP ¼
ffiffiffiffiffiffiffiffi

8=p
p

� 1:60. One difference

between our and these previous treatments is that we

determine �g solely over the real contact area, while the

usual definition of �g considers the full surface. However,

this difference is not significant for randomly rough sur-

faces, which we tested numerically.

Simulations reveal that there must be a characteristic

(maximum) cluster size in real contacts, which increases

with load [10]. As a consequence the mean value of �g also

increases with load for n[ 1 and decreases for n\1, and

thus, a rigorous treatment of the Greenwood–Williamson

model [11] model must lead to a slightly sublinear

dependence of ar with p for n[ 1. Given the computa-

tional resources in the mid-1960s, it might be under-

standable that GW did not realize the deviation of the true

arelðpÞ relation in their model from linearity. However, it is

astounding to notice that since then only one numerical

GW study [4] appears to have been sufficiently carefully

designed to unravel that discrepancy. This adds to our

previous criticism that bearing-area models predict con-

tacts to be much too clustered near the highest peak

[12, 13] and to substantially underestimate the mean dis-

placement at small loads [14].
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